Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination
Abstract
:1. Introduction
2. Crystallographic Data
3. Ligand Exchange Processes: A Thermodynamic Insight
4. Bimetallic Scaffold Stability
5. Ligand Exchange Processes: A Mechanistic Insight
6. Concluding Remarks: Axial or Equatorial Coordination?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Zhao, T.; Kang, D.; Zhang, J.; Song, Y.; Namasivayam, V.; Kongsted, J.; Pannecouque, C.; De Clercq, E.; Poongavanam, V.; et al. Overview of Recent Strategic Advances in Medicinal Chemistry. J. Med. Chem. 2019, 62, 9375–9414. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef] [PubMed]
- Lucaciu, R.L.; Hangan, A.C.; Sevastre, B.; Oprean, L.S. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022, 27, 6485. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, I.; Bashir, M.; Arjmand, F.; Tabassum, S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord. Chem. Rev. 2021, 445, 214104. [Google Scholar] [CrossRef]
- Romero-Canelón, I.; Sadler, P.J. Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation. Inorg. Chem. 2013, 52, 12276–12291. [Google Scholar] [CrossRef] [PubMed]
- Soldevila-Barreda, J.J.; Sadler, P.J. Approaches to the design of catalytic metallodrugs. Curr. Opin. Chem. Biol. 2015, 25, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Agbale, C.M.; Cardoso, M.H.; Galyuon, I.K.; Franco, O.L. Designing metallodrugs with nuclease and protease activity. Metallomics 2016, 8, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Spinello, A.; Saha, A.; Magistrato, A. Frontiers of metal-coordinating drug design. Expert Opin. Drug Discov. 2020, 16, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B. Platinum complex-DNA interactions and anticancer activity. Biochimie 1978, 60, 859–867. [Google Scholar] [CrossRef]
- Komeda, S.; Casini, A. Next-Generation Anticancer Metallodrugs. Curr. Top. Med. Chem. 2012, 12, 219–235. [Google Scholar] [CrossRef]
- Hanif, M.; Hartinger, C.G. Anticancer metallodrugs: Where is the next cisplatin? Futur. Med. Chem. 2018, 10, 615–617. [Google Scholar] [CrossRef]
- Tan, S.J.; Yan, Y.K.; Lee, P.P.F.; Lim, K.H. Copper, gold and silver compounds as potential new anti-tumor metallodrugs. Futur. Med. Chem. 2010, 2, 1591–1608. [Google Scholar] [CrossRef] [PubMed]
- Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper Complexes as Anticancer Agents. Anti-Cancer Agents Med. Chem. 2009, 9, 185–211. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Shamsi, F.; Azam, A. Ruthenium Complexes: An Emerging Ground to the Development of Metallopharmaceuticals for Cancer Therapy. Mini-Reviews Med. Chem. 2016, 16, 772–786. [Google Scholar] [CrossRef]
- Leung, C.-H.; Zhong, H.-J.; Chan, D.S.-H.; Ma, D.-L. Bioactive iridium and rhodium complexes as therapeutic agents. Coord. Chem. Rev. 2013, 257, 1764–1776. [Google Scholar] [CrossRef]
- Riccardi, L.; Genna, V.; De Vivo, M. Metal–ligand interactions in drug design. Nat. Rev. Chem. 2018, 2, 100–112. [Google Scholar] [CrossRef]
- Sainuddin, T.; Pinto, M.; Yin, H.; Hetu, M.; Colpitts, J.; McFarland, S.A. Strained ruthenium metal–organic dyads as photocisplatin agents with dual action. J. Inorg. Biochem. 2016, 158, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-Responsive Therapeutic Metallodrugs. Chem. Rev. 2018, 119, 1138–1192. [Google Scholar] [CrossRef] [PubMed]
- Peña, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H.W.; Metselaar, J.M.; Kiessling, F.; Pallares, R.M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582. [Google Scholar] [CrossRef]
- Tolbatov, I.; Barresi, E.; Taliani, S.; La Mendola, D.; Marzo, T.; Marrone, A. Diruthenium(ii,iii) paddlewheel complexes: Effects of bridging and axial ligands on anticancer properties. Inorg. Chem. Front. 2023, 10, 2226–2238. [Google Scholar] [CrossRef]
- Aquino, M.A. Diruthenium and diosmium tetracarboxylates: Synthesis, physical properties and applications. Coord. Chem. Rev. 1998, 170, 141–202. [Google Scholar] [CrossRef]
- Santos, R.L.S.R.; Sanches, R.N.F.; Silva, D.d.O. Spectroscopic studies on interactions of the tetrakis(acetato)chloridodiruthenium(II,III) complex and the Ru2(II,III)-NSAID-derived metallodrugs of ibuprofen and ketoprofen with human serum albumin. J. Coord. Chem. 2015, 68, 3209–3228. [Google Scholar] [CrossRef]
- Rico, S.R.A.; Abbasi, A.Z.; Ribeiro, G.; Ahmed, T.; Wu, X.Y.; Silva, D.d.O. Diruthenium(ii,iii) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer–lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. Nanoscale 2017, 9, 10701–10714. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Namora, S.; Woisky, R.; Wiezel, G.; Najjar, R.; Sertié, J.; Silva, D.d.O. Synthesis and characterization of a diruthenium–ibuprofenato complex: Comparing its anti-inflammatory activity with that of a copper(II)–ibuprofenato complex. J. Inorg. Biochem. 2000, 81, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Freitas, T.E.; Gomes, R.N.; Colquhoun, A.; Silva, D.d.O. Axially-modified paddlewheel diruthenium(II,III)-ibuprofenato metallodrugs and the influence of the structural modification on U87MG and A172 human glioma cell proliferation, apoptosis, mitosis and migration. J. Inorg. Biochem. 2016, 165, 181–191. [Google Scholar] [CrossRef]
- Benadiba, M.; Costa, I.d.M.; Santos, R.L.S.R.; Serachi, F.O.; Silva, D.d.O.; Colquhoun, A. Growth inhibitory effects of the Diruthenium-Ibuprofen compound, [Ru2Cl(Ibp)4], in human glioma cells in vitro and in the rat C6 orthotopic glioma in vivo. JBIC J. Biol. Inorg. Chem. 2014, 19, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.; Benadiba, M.; Colquhoun, A.; Silva, D.d.O. Diruthenium(II,III) complexes of ibuprofen, aspirin, naproxen and indomethacin non-steroidal anti-inflammatory drugs: Synthesis, characterization and their effects on tumor-cell proliferation. Polyhedron 2008, 27, 1131–1137. [Google Scholar] [CrossRef]
- Silva, D.d.O. Perspectives for Novel Mixed Diruthenium-Organic Drugs as Metallopharmaceuticals in Cancer Therapy. Anti-Cancer Agents Med. Chem. 2010, 10, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Miyake, J.A.; Benadiba, M.; Ribeiro, G.; DEOliveira Silva, D.; Colquhoun, A. Novel ruthenium - gamma-linolenic acid complex inhibits C6 rat glioma cell proliferation in vitro and in the orthotopic C6 model in vivo after osmotic pump infusion. Anticancer Res. 2014, 34, 1901–1911. [Google Scholar]
- Ribeiro, G.; Benadiba, M.; Silva, D.d.O.; Colquhoun, A. The novel ruthenium—γ-linolenic complex [Ru2(aGLA)4Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro. Cell Biochem. Funct. 2009, 28, 15–23. [Google Scholar] [CrossRef]
- Cortijo, M.; González-Prieto, R.; Herrero, S.; Priego, J.L.; Jiménez-Aparicio, R. The use of amidinate ligands in paddlewheel diruthenium chemistry. Coord. Chem. Rev. 2019, 400, 213040. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Panzetta, V.; Leone, M.; Mercurio, F.A.; Cipollone, I.; Monti, M.; Netti, P.A.; Ferraro, G.; Terán, A.; et al. A Diruthenium Metallodrug as a Potent Inhibitor of Amyloid-β Aggregation: Synergism of Mechanisms of Action. Inorg. Chem. 2023, 63, 564–575. [Google Scholar] [CrossRef]
- Delgado-Martínez, P.; Moreno-Martínez, L.; González-Prieto, R.; Herrero, S.; Priego, J.L.; Jiménez-Aparicio, R. Steric, Activation Method and Solvent Effects on the Structure of Paddlewheel Diruthenium Complexes. Appl. Sci. 2022, 12, 1000. [Google Scholar] [CrossRef]
- Bennett, M.J.; Caulton, K.G.; Cotton, F.A. Structure of tetra-n-butyratodiruthenium chloride, a compound with a strong metal-metal bond. Inorg. Chem. 1969, 8, 1–6. [Google Scholar] [CrossRef]
- Angaridis, P. Ruthenium Compounds. In Multiple Bonds between Metal Atoms; Springer: Boston, MA, USA, 2005; pp. 377–430. [Google Scholar] [CrossRef]
- Aquino, M.A. Recent developments in the synthesis and properties of diruthenium tetracarboxylates. Coord. Chem. Rev. 2004, 248, 1025–1045. [Google Scholar] [CrossRef]
- Cotton, F.A.; Murillo, C.A.; Walton, R.A. (Eds.) Multiple Bonds between Metal Atoms; Springer Science and Business Media Inc.: New York, NY, USA, 2005; pp. 377–430. [Google Scholar]
- Santos, R.L.S.R.; van Eldik, R.; Silva, D.d.O. Thermodynamics of Axial Substitution and Kinetics of Reactions with Amino Acids for the Paddlewheel Complex Tetrakis(acetato)chloridodiruthenium(II,III). Inorg. Chem. 2012, 51, 6615–6625. [Google Scholar] [CrossRef]
- Messori, L.; Marzo, T.; Sanches, R.N.F.; Rehman, H.U.; Silva, D.d.O.; Merlino, A. Unusual Structural Features in the Lysozyme Derivative of the Tetrakis(acetato)chloridodiruthenium(II,III) Complex. Angew. Chem. Int. Ed. 2014, 53, 6172–6175. [Google Scholar] [CrossRef]
- Terán, A.; Ferraro, G.; Imbimbo, P.; Sánchez-Peláez, A.E.; Monti, D.M.; Herrero, S.; Merlino, A. Steric hindrance and charge influence on the cytotoxic activity and protein binding properties of diruthenium complexes. Int. J. Biol. Macromol. 2023, 253, 126666. [Google Scholar] [CrossRef]
- Terán, A.; Ferraro, G.; Sánchez-Peláez, A.E.; Herrero, S.; Merlino, A. Effect of Equatorial Ligand Substitution on the Reactivity with Proteins of Paddlewheel Diruthenium Complexes: Structural Studies. Inorg. Chem. 2023, 62, 670–674. [Google Scholar] [CrossRef]
- Terán, A.; Ferraro, G.; Sánchez-Peláez, A.E.; Herrero, S.; Merlino, A. Charge effect in protein metalation reactions by diruthenium complexes. Inorg. Chem. Front. 2023, 10, 5016–5025. [Google Scholar] [CrossRef]
- Benadiba, M.; dos Santos, R.R.P.; Silva, D.d.O.; Colquhoun, A. Inhibition of C6 rat glioma proliferation by [Ru2Cl(Ibp)4] depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. J. Inorg. Biochem. 2010, 104, 928–935. [Google Scholar] [CrossRef]
- Ferraro, G.; Pratesi, A.; Messori, L.; Merlino, A. Protein interactions of dirhodium tetraacetate: A structural study. Dalton Trans. 2020, 49, 2412–2416. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marrone, A. Reaction of dirhodium and diruthenium paddlewheel tetraacetate complexes with nucleophilic protein sites: A computational study. Inorganica Chim. Acta 2021, 530, 120684. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marrone, A. Kinetics of Reactions of Dirhodium and Diruthenium Paddlewheel Tetraacetate Complexes with Nucleophilic Protein Sites: Computational Insights. Inorg. Chem. 2022, 61, 16421–16429. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marrone, A. Molecular dynamics simulation of the Pb(II) coordination in biological media via cationic dummy atom models. Theor. Chem. Accounts 2021, 140, 1–12. [Google Scholar] [CrossRef]
- Todisco, S.; Latronico, M.; Gallo, V.; Re, N.; Marrone, A.; Tolbatov, I.; Mastrorilli, P. Double addition of phenylacetylene onto the mixed bridge phosphinito–phosphanido Pt(i) complex [(PHCy2)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(PHCy2)](Pt–Pt). Dalton Trans. 2020, 49, 6776–6789. [Google Scholar] [CrossRef] [PubMed]
- Marino, T.; Russo, N.; Toscano, M. On the Copper(II) Ion Coordination by Prion Protein HGGGW Pentapeptide Model. J. Phys. Chem. B 2007, 111, 635–640. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marrone, A.; Coletti, C.; Re, N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021, 26, 7600. [Google Scholar] [CrossRef]
- Paciotti, R.; Tolbatov, I.; Marrone, A.; Storchi, L.; Re, N.; Coletti, C. Computational investigations of bioinorganic complexes: The case of calcium, gold and platinum ions. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2019 (ICCMSE-2019), Rhodes, Greece, 1–5 May 2019; p. 030011. [Google Scholar]
- Tolbatov, I.; Marrone, A. Reactivity of N-Heterocyclic Carbene Half-Sandwich Ru-, Os-, Rh-, and Ir-Based Complexes with Cysteine and Selenocysteine: A Computational Study. Inorg. Chem. 2021, 61, 746–754. [Google Scholar] [CrossRef]
Complex (Axial) Ru2 (Equatorial) | Adduct (Axial) Ru2 (Equatorial) | H2O | Ru | H2O | OAc | COO | CO3 | Asp | Asp * | succ | Leu | form | Arg/ Lys | PDB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Cl)Ru2(μ-O2CCH3)4 | [(H2O)2Ru2(μ-O2CCH3)2(OH2)2]3+ | 2.74 | 2.31 | 2.64 | 2.01 | - | - | - | - | - | - | - | - | 4ooo, [39] |
[(H2O)(Cl)Ru2(μ-O2CCH3)2(OH2)2]2+ | 2.58 | 2.24 | 1.84 | 2.01 | - | - | 2.04 | - | - | - | - | - | 4ooo, [39] | |
(Cl)Ru2(DPhF)(O2CCH3)3 | (H2O)(Cl)Ru2(DPhF)(μ-O2CCH3)(succ)(Asp) | 2.61 | 2.30 | - | 2.06 | - | - | - | 2.09, 2.57, 2.71 | 2.71 | - | 2.02 | - | 8ph7, [40] |
[(H2O)(Lys)Ru2(DPhF)(μ-O2CCH3)(succ)2]+ | 2.06 | 2.27 | - | 2.04 | - | - | - | - | 1.92 | - | 2.02 | 2.47 | 8ph7, [40] | |
(Cl)Ru2(DPhF)2(O2CCH3)2 | [(H2O)Ru2(DPhF)2(μ-O2CCH3)(Asp)]+ | 2.38 | 2.29 | - | - | 2.09 | - | 2.03 | - | - | - | 2.05 | - | 8ph5, [40] |
[(H2O)2Ru2(DPhF)2(μ-O2CCH3)(Asp)]+ | 2.40 | 2.33 | - | - | 2.08 | - | 2.10 | - | - | - | 2.04 | - | 8ph5, [40] | |
(Cl)Ru2(D-p-FPhF)(O2CCH3)3 | [(H2O)2Ru2(D-p-FPhF)(μ-O2CCH3)2]2+ | 2.00 | 2.25 | - | 2.05 | - | - | - | - | - | - | 2.02 | - | 8bpj, [41] |
[(H2O)2Ru2(D-p-FPhF)(μ-O2CCH3)2(Asp)]+ | 2.57 | 2.28 | - | - | 2.03 | - | 2.15 | - | - | - | 2.01 | - | 8bpu, [41] | |
(Cl)Ru2(DAniF)(O2CCH3)3 | [(H2O)Ru2(DAniF)(μ-O2CCH3)2(Asp)]+ | 2.12 | 2.28 | - | 2.05 | - | - | 2.11 | - | - | - | 2.04 | - | 8pfv, [42] |
[Ru2(CO3)4]3− | [Ru2(CO3)3(Leu)]2− | - | 2.29 | - | - | - | 2.16 | - | - | - | 2.25 | - | - | 8pfu, [42] |
[Ru2(DPhF)(CO3)3]2− | [(H2O)Ru2(DPhF)(COO)(CO3)2]− | 2.18 | 2.29 | - | - | 2.03 | 2.04 | - | - | - | - | 2.04 | - | 8ph6, [40] |
[(H2O)Ru2(DPhF)(Asp)(COO)(Arg)]2+ | 2.30 | 2.29 | - | - | 2.05 | - | 2.11 | - | - | - | 2.05 | 2.10 | 8ph6, [40] | |
[(H2O)Ru2(DPhF)(CO3)3]2− | 2.17 | 2.26 | - | - | - | 2.05 | - | - | - | - | 2.05 | - | 8ph6, [40] | |
[(H2O)Ru2(DPhF)(Asp)(COO)(O2CCH3)]+ | 2.35 | 2.27 | - | 2.02 | 2.07 | - | 2.04 | - | - | - | 2.04 | - | 8ph6, [40] | |
[Ru2(D-p-FPhF)(CO3)3]2− | [Ru2(D-p-FPhF)(CO3)(OH2)2]2+ | - | 2.26 | 2.04 | - | - | 2.05 | no | - | - | - | 2.01 | - | 8pft, [42] |
[Ru2(D-p-FPhF)(Asp)(CO3)(OH2)2]+ | - | 2.29 | 2.03 | - | - | 2.04 | 2.25 | - | - | - | 2.02 | - | 8pft, [42] | |
[Ru2(D-p-FPhF)(CO3)3]2− | [(H2O)2Ru2(D-p-FPhF)(Asp)(CO3)(OH2)2]+ | 2.26 | 2.30 | 2.02 | - | - | 2.04 | 2.12 | - | - | - | 2.02 | - | 8pfx, [42] |
[Ru2(DAniF)(CO3)3]2− | [(H2O)2Ru2(DAniF)(CO3)3]2− | 2.55 | 2.29 | - | - | - | 2.04 | - | - | - | - | 2.04 | - | 8pfw, [42] |
[(H2O)Ru2(DAniF)(Asp)(CO3)2]− | 2.36 | 2.28 | - | - | - | 2.04 | 2.06 | - | - | - | 2.03 | - | 8pfw, [42] | |
[(H2O)Ru2(DAniF)(CO3)3]2− | 2.31 | 2.27 | - | - | - | 2.06 | - | - | - | - | 2.03 | - | 8pfw, [42] | |
average distance | 2.35 | 2.28 | 2.11 | 2.03 | 2.06 | 2.06 | 2.10 | 2.46 | 2.32 | 2.25 | 2.03 | 2.29 |
Protein Site | Substitution of Axial Ligand | |
---|---|---|
Water (Reaction A) | Chloride (Reaction B) | |
Arg | −15.4 | −3.8 |
Asn(N) | 4.5 | 18.9 |
Asn(O) | −0.7 | 11.5 |
Asp | −0.1 | 18.2 |
Asp– | −10.0 | −0.8 |
C-term | 1.5 | 25.1 |
C-term– | −5.0 | 1.0 |
Cys | −5.0 | 12.9 |
Cys– | −23.5 | −12.4 |
His | −10.4 | 2.5 |
Lys | −13.4 | 1.6 |
Met | −5.8 | 14.1 |
N-term | −7.7 | 7.1 |
Sec | −4.4 | 12.2 |
Sec– | −18.0 | −8.1 |
Axial Ligand X | Distance | NBO Charges | |
---|---|---|---|
M-M Distance | Ru1 | Ru2 | |
Water1 | 2.30 | 1.07 | 1.05 |
Arg | 2.39 | 0.87 | 1.19 |
Asp– | 2.34 | 1.02 | 1.06 |
His | 2.41 | 0.88 | 1.21 |
Lys | 2.41 | 0.89 | 1.19 |
Sec– | 2.44 | 0.75 | 1.03 |
Protein Site | Substitution of Axial Ligand | |
---|---|---|
Water (Reaction A) | Chloride (Reaction B) | |
Arg | 4.5 | 18.5 |
Cys | 11.1 | 20.4 |
Cys– | 15.7 | 22.8 |
His | 7.6 | 18.2 |
Lys | 10.9 | 22.5 |
Sec | 11.9 | 20.4 |
Sec− | 17.6 | 24.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolbatov, I.; Umari, P.; Marrone, A. Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination. Biomolecules 2024, 14, 530. https://doi.org/10.3390/biom14050530
Tolbatov I, Umari P, Marrone A. Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination. Biomolecules. 2024; 14(5):530. https://doi.org/10.3390/biom14050530
Chicago/Turabian StyleTolbatov, Iogann, Paolo Umari, and Alessandro Marrone. 2024. "Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination" Biomolecules 14, no. 5: 530. https://doi.org/10.3390/biom14050530
APA StyleTolbatov, I., Umari, P., & Marrone, A. (2024). Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination. Biomolecules, 14(5), 530. https://doi.org/10.3390/biom14050530