miRNA Expression: I/R Cardiomyocyte and Sevoflurane
Abstract
:1. Introduction
2. Methods
2.1. Primary Human Cardiac Myocytes Culture
2.2. Experimental Design
2.3. Ischemia/Reperfusion (I/R) Procedure and Hypnotic Drugs Exposure
2.4. Cytokine Quantification
2.5. RNA Quality for Ultra Sequencing
2.6. miRNA-seq and mRNA-seq
2.7. Analysis Data: Bioinformatics and Statistics
- (1)
- Pre-processing of the reading data to remove from the reading data those nucleotides of low quality, which belong to the adapters of the technique or that come from a source of contamination. For this stage, we used software developed in the Andalusian Bioinformatics Platform (PAB) (University of Malaga, Parque Tecnológico de Andalucía Málaga, Spain) called SeqtTrimNext, v0.9a1, designed with a parallel and distributed operation to speed up the processing of large amounts of data such as those from NGS experiments.
- (2)
- Alignment of the readings to the genomic reference: In this case, the latest version of the human genome (hg38) with an optimized pipeline for the identification of different gene isoforms or the discovery of new genes, TopHat, since it is capable of recognizing exon-intron processing sites. The level of expression was reported in RPKM (Readings Mapped Per Million) format. For the miRNA, the alignment of the reads to the reference was performed, in this case, the latest version of the miRNA (http://www.mirbase.org/) databases with a pipeline optimized for alignment to both the immature and mature forms of the different miRNAs, TopHat. The expression level has been reported in the form of several mapped readings;
- (3)
- In the third stage, the different groups of data were compared to obtain those genes with differential expression. This process involved the pre-normalization of the expression data and the comparison of the data groups. At this stage, we used the tools of the ‘Tuxedo tools’ project, which includes Cufflinks, Cuffmerge, and Cuffdiff tools specially designed to enhance differential expression calculations from RNA-Seq data.
3. Results
3.1. Cytokine Quantification
3.2. Analysis of the mRNA and miRNA Gene Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Wang, L.; Liu, N.; Dong, T.; Li, R. Sevoflurane preconditioning in on-pump coronary artery bypass grafting: A meta-analysis of randomized controlled trials. J. Anesth. 2016, 30, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yuan, Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015, 15, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, R.; Lu, R.; Jiang, H.; Li, Q.-F.; Sun, Y.; Xu, H.; Huang, Y. Meta-analysis of the protective effect of sevoflurane on myocardium during cardiac surgery. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1058–1066. [Google Scholar] [PubMed]
- Orriach, J.L.G.; Belmonte, J.J.E.; Aliaga, M.R.; Fernandez, A.R.; Ponferrada, A.R.; Navarro, M.R.; Mañas, J.C. Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope. Curr. Med. Chem. 2020, 27, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Orriach, J.L.; Carmona-Luque, M.D.; Raigón-Ponferrada, A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants 2023, 12, 1819. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gottlieb, R.A.; Pourpirali, S. Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2016, 95, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Huan, T.; Rong, J.; Tanriverdi, K.; Meng, Q.; Bhattacharya, A.; McManus, D.D.; Joehanes, R.; Assimes, T.L.; McPherson, R.; Samani, N.J.; et al. Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses. Arter. Thromb. Vasc. Biol. 2015, 35, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Sondermeijer, B.M.; Bakker, A.; Halliani, A.; de Ronde, M.W.J.; Marquart, A.A.; Tijsen, A.J.; Mulders, T.A.; Kok, M.G.M.; Battjes, S.; Maiwald, S.; et al. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS ONE 2011, 6, e25946. [Google Scholar] [CrossRef] [PubMed]
- Biglino, G.; Caputo, M.; Rajakaruna, C.; Angelini, G.; van Rooij, E.; Emanueli, C. Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities? Pharmacol. Ther. 2017, 170, 192–204. [Google Scholar] [CrossRef] [PubMed]
- NNappi, F.; Singh, S.S.A.; Jitendra, V.; Alzamil, A.; Schoell, T. The Roles of microRNAs in the Cardiovascular System. Int. J. Mol. Sci. 2023, 24, 14277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orriach, J.L.G.; Belmonte, J.J.E.; Aliaga, M.R.; Fernandez, A.R.; Capitan, M.J.R.; Muñoz, G.Q.; Ponferrada, A.R.; Torres, J.A.; Santiago-Fernandez, C.; Gonzalez, E.M.; et al. NGS of microRNAs Involved in Cardioprotection Induced by Sevoflurane Compared to Propofol in Myocardial Revascularization Surgery: The ACDHUVV-16 Clinical Trial. Curr. Med. Chem. 2021, 28, 4074–4086. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Luque, M.D.; Gonzalez-Alvarez, L.; Orriach, J.L.G. Identification of miRNAs as Biomarkers of Cardiac Protection in Non-Genetically Modified Primary Human Cardiomyocytes Exposed to Halogenated Hypnotics in an In Vitro Model of Transfection and Ischemia/Reperfusion: A New Model in Translational Anesthesia. Life 2022, 13, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shirai, T.; Rao, V.; Weisel, R.D.; Ikonomidis, J.S.; Li, R.-K.; Tumiati, L.C.; Merante, F.; Mickle, D.A. Preconditioning human cardiomyocytes and endothelial cells. J. Thorac. Cardiovasc. Surg. 1998, 115, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Men, H.; Cai, H.; Cheng, Q.; Zhou, W.; Wang, X.; Huang, S.; Zheng, Y.; Cai, L. The regulatory roles of p53 in cardiovascular health and disease. Cell. Mol. Life Sci. 2021, 78, 2001–2018. [Google Scholar] [CrossRef] [PubMed]
- Pillai, V.B.; Sundaresan, N.R.; Gupta, M.P. Regulation of Akt signalling by sirtuins: Its implication in cardiac hypertrophy and ageing. Circ. Res. 2014, 114, 368–378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunst, G.; Klein, A.A. Peri-operative anaesthetic myocardial preconditioning and protection—Cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia 2015, 70, 467–482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, Y.; Chen, G.; Zhang, F.; Wang, L.; Feng, Z.; Gao, X. Isoflurane Alleviates Myocardial Injury Induced by Hypoxia/Reoxygenation by Regulating miR-18a-5p. Cardiovasc. Toxicol. 2021, 21, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Mio, Y.; Uezono, S.; Kitahata, H. Anesthetic cardioprotection in relation to mitochondria: Basic science. Curr. Pharm. Des. 2014, 20, 5673–5680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Sun, X. Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70. J. Microbiol. Biotechnol. 2021, 31, 1069–1078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orriach, J.L.G.; Belmonte, J.J.E.; Fernandez, A.R.; Aliaga, M.R.; Navarro, M.R.; Manas, J.C. Cardioprotection with halogenated gases: How does it occur? Drug Des. Dev. Ther. 2017, 11, 837–849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerrero Orriach, J.L.; Ortega, G.M.; Ramirez Fernandez, A.; Ramirez Aliaga, M.; Moreno Cortes, M.I.; Ariza Villanueva, D.; Florez Vela, A.; Torres, A.J.; Fernandez, S.C.; Gonzalez, M.E.; et al. Cardioprotective efficacy of sevoflurane vs. propofol during induction and/or maintenance in patients undergoing coronary artery revascularization surgery without pump: A randomized trial. Int. J. Cardiol. 2017, 243, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Landoni, G.; Pasin, L.; Borghi, G.; Zangrillo, A. Is time to change to halogenated drugs in cardiac surgery, what do we have to do with propofol? Curr. Pharm. Des. 2014, 20, 5497–5505. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Alexan, B.; Dennis, D.; Bettina, C.; Christoph, L.I.M.; Tang, Y. microRNA-193-3p attenuates myocardial injury of mice with sepsis via STAT3/HMGB1 axis. J. Transl. Med. 2021, 19, 386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, S.; Benz, F.; Cardenas, D.V.; Vucur, M.; Gautheron, J.; Schneider, A.; Hellerbrand, C.; Pottier, N.; Alder, J.; Tacke, F.; et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. J. Dig. Dis. 2015, 16, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-T.; Wang, Z.-H. Role of miR-193a-5p in the proliferation and apoptosis of hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7233–7239. [Google Scholar]
- Sun, C.; Liu, H.; Guo, J.; Yu, Y.; Yang, D.; He, F.; Du, Z. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Sci. Rep. 2017, 7, 7460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wronska, A. The Role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease: Recent Developments. J. Pharmacol. Exp. Ther. 2023, 384, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-D.; Yang, Y.-J.; Wang, L.-Y.; Qiao, S.-B.; Lu, X.-F.; Wu, Y.-J.; Xu, B.; Li, H.-F.; Gu, D.-F. Elevated plasma miRNA-122, -140-3p, -720, -2861, and -3149 during the early period of acute coronary syndrome are derived from peripheral blood mononuclear cells. PLoS ONE 2017, 12, e0184256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Li, Z.; Liu, J.; Liu, Y.; Miao, G. miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. Dis. Markers 2021, 2021, 8709298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhai, C.L.; Tang, G.M.; Qian, G.; Han, B.J.; Hu, H.L.; Wang, S.J.; Yin, D.; Pan, H.H.; Zhang, S. miR-190 protects cardiomyocytes from apoptosis induced by H2O2 through targeting MAPK8 and regulating MAPK8/ERK signal pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 2183–2192. [Google Scholar] [PubMed] [PubMed Central]
- Yang, Y.; Li, R.; Cao, Y.; Dai, S.; Luo, S.; Guo, Q.; Wang, E. Plasma MIR-212-3p as a biomarker for acute right heart failure with pulmonary artery hypertension. Ann. Transl. Med. 2020, 8, 1571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, L.L.; Saw, E.L.; Lim, J.Y.; Zhou, Y.; Richards, A.M.; Wang, P. MicroRNA Let-7d-3p Contributes to Cardiac Protection via Targeting HMGA2. Int. J. Mol. Sci. 2019, 20, 1522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Genes | Statistically Significant Difference (p-Value) |
---|---|
ACA20 | 0.011 |
U65 | 0.023 |
U79 | 0.023 |
hsa-let-7d-5p | 0.034 |
hsa-miR-127-3p | 0.048 |
hsa-miR-140-5p | 0.048 |
hsa-miR-193a-5p | 0.048 |
hsa-miR-455-5p | 0.048 |
hsa-miR-98-5p | 0.048 |
hsa-piR-1087 | 0.048 |
hsa-piR-22236 | 0.011 |
hsa-piR-25274 | 0.034 |
hsa-piR-28255 | 0.016 |
hsa-piR-29204 | 0.011 |
hsa-piR-32298 | 0.034 |
hsa-piR-33057 | 0.016 |
hsa-piR-33115 | 0.023 |
hsa-piR-33123 | 0.023 |
hsa-piR-33165 | 0.016 |
hsa-piR-33185 | 0.011 |
hsa-piR-3440 | 0.016 |
tRNA-Gly-CCC-2-2 | 0.016 |
tRNA-Gly-CCC-chr1-135 | 0.016 |
tRNA-Pro-AGG-2-4 | 0.011 |
tRNA-Thr-TGT-3-1 | 0.011 |
tRNA-Val-CAC-chr1-134 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Orriach, J.L.; Carmona-Luque, M.D.; Quesada Muñoz, G.; Rodriguez Capitán, M.J. miRNA Expression: I/R Cardiomyocyte and Sevoflurane. Biomolecules 2024, 14, 1554. https://doi.org/10.3390/biom14121554
Guerrero-Orriach JL, Carmona-Luque MD, Quesada Muñoz G, Rodriguez Capitán MJ. miRNA Expression: I/R Cardiomyocyte and Sevoflurane. Biomolecules. 2024; 14(12):1554. https://doi.org/10.3390/biom14121554
Chicago/Turabian StyleGuerrero-Orriach, José Luis, Maria Dolores Carmona-Luque, Guillermo Quesada Muñoz, and Maria Jose Rodriguez Capitán. 2024. "miRNA Expression: I/R Cardiomyocyte and Sevoflurane" Biomolecules 14, no. 12: 1554. https://doi.org/10.3390/biom14121554
APA StyleGuerrero-Orriach, J. L., Carmona-Luque, M. D., Quesada Muñoz, G., & Rodriguez Capitán, M. J. (2024). miRNA Expression: I/R Cardiomyocyte and Sevoflurane. Biomolecules, 14(12), 1554. https://doi.org/10.3390/biom14121554