Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Structure Modeling by AlphaFold2
2.2. Protein Structures from Protein Data Bank
2.3. Structure Similarity Analyses
2.4. AMBER Molecular Dynamic Analysis
2.5. Schrödinger Molecular Docking Analysis
3. Results
3.1. Variant Protein Structure Modeling Potential of AlphaFold2
3.2. Myocilin Variant Protein Structure Modeling by AlphaFold2
3.3. Molecular Dynamics of AlphaFold2-Predicted Myocilin Protein Structures
3.4. Molecular Docking of AlphaFold2-Predicted Myocilin Protein Structures
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapetanakis, V.V.; Chan, M.P.; Foster, P.J.; Cook, D.G.; Owen, C.G.; Rudnicka, A.R. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and meta-analysis. Br. J. Ophthalmol. 2016, 100, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Noda, S.; Wang, Y.; Minoshima, S.; Asakawa, S.; Kudoh, J.; Mashima, Y.; Oguchi, Y.; Shimizu, N. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: Molecular cloning, tissue expression, and chromosomal mapping. Genomics 1997, 41, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.M.; Fingert, J.H.; Alward, W.L.; Nguyen, T.D.; Polansky, J.R.; Sunden, S.L.; Nishimura, D.; Clark, A.F.; Nystuen, A.; Nichols, B.E.; et al. Identification of a gene that causes primary open angle glaucoma. Science 1997, 275, 668–670. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Somarajan, B.I.; Gupta, S.; Walia, G.K.; Singh, A.; Sofi, R.; Chaudhary, R.S.; Sharma, A. The mutational spectrum of Myocilin gene among familial versus sporadic cases of Juvenile onset open angle glaucoma. Eye 2021, 35, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Ortego, J.; Escribano, J.; Coca-Prados, M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett. 1997, 413, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Grover, A. Myocilin-Associated Glaucoma: A Historical Perspective and Recent Research Progress. Mol. Vis. 2021, 27, 480–493. [Google Scholar]
- Sánchez-Sánchez, F.; Martínez-Redondo, F.; Aroca-Aguilar, J.D.; Coca-Prados, M.; Escribano, J. Characterization of the intracellular proteolytic cleavage of myocilin and identification of calpain II as a myocilin-processing protease. J. Biol. Chem. 2007, 282, 27810–27824. [Google Scholar] [CrossRef]
- Aroca-Aguilar, J.D.; Sánchez-Sánchez, F.; Ghosh, S.; Coca-Prados, M.; Escribano, J. Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J. Biol. Chem. 2005, 280, 21043–21051. [Google Scholar] [CrossRef]
- Hill, S.E.; Nguyen, E.; Donegan, R.K.; Patterson-Orazem, A.C.; Hazel, A.; Gumbart, J.C.; Lieberman, R.L. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure 2017, 2, 1697–1707. [Google Scholar] [CrossRef]
- Donegan, R.K.; Hill, S.E.; Freeman, D.M.; Nguyen, E.; Orwig, S.D.; Turnage, K.C.; Lieberman, R.L. Structural basis for misfolding in myocilin-associated glaucoma. Hum. Mol. Genet. 2015, 24, 2111–2124. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, A.W.; Mackey, D.A.; Craig, J.E. Myocilin allele-specific glaucoma phenotype database. Hum. Mutat. 2008, 29, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Kosoko-Lasaki, O.; Haynatzki, G.R.; Wilson, M.R. Genetic dissection of myocilin glaucoma. Hum. Mol. Genet. 2004, 13, R91–R102. [Google Scholar] [CrossRef]
- Liuska, P.J.; Lemmelä, S.; Havulinna, A.S.; Kaarniranta, K.; Uusitalo, H.; Laivuori, H.; Kiiskinen, T.; Daly, M.J.; Palotie, A.; Turunen, J.A.; et al. Association of the MYOC p.(Gln368Ter) Variant with Glaucoma in a Finnish Population. JAMA Ophthalmol. 2021, 139, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Scelsi, H.F.; Barlow, B.M.; Saccuzzo, E.G.; Lieberman, R.L. Common and rare myocilin variants: Predicting glaucoma pathogenicity based on genetics, clinical, and laboratory misfolding data. Hum. Mutat. 2021, 42, 903–946. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.P.; Leung, Y.F.; Fan, B.; Baum, L.; Tong, W.C.; Lee, W.S.; Liu, Y.; Lam, D.S. TIGR/MYOC gene sequence alterations in individuals with and without primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3231–3235. [Google Scholar]
- Ramensky, V.; Bork, P.; Sunyaev, S. Human non-synonymous SNPs: Server and survey. Nucleic Acids Res. 2002, 30, 3894–3900. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 2001, 11, 863–874. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Bijak, V.; Szczygiel, M.; Lenkiewicz, J.; Gucwa, M.; Cooper, D.R.; Murzyn, K.; Minor, W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin. Drug Discov. 2023, 18, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Ravera, E.; Gigli, L.; Fiorucci, L.; Luchinat, C.; Parigi, G. The evolution of paramagnetic NMR as a tool in structural biology. Phys. Chem. Chem. Phys. 2022, 24, 17397–17416. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 2015, 161, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Pearce, R.; Zhang, Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 2021, 297, 100870. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Hill, S.E.; Kwon, M.S.; Martin, M.D.; Suntharalingam, A.; Hazel, A.; Dickey, C.A.; Gumbart, J.C.; Lieberman, R.L. Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations. J. Biol. Chem. 2019, 294, 12717–12728. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.E.; Cho, H.; Raut, P.; Lieberman, R.L. Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices. Acta Crystallogr. D Struct. Biol. 2019, 75, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Skolnic, J. Scoring function for automated assessment of protein structure template quality. Proteins 2004, 57, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. lDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 2013, 29, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- Zemla, A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003, 31, 3370–3374. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010, 26, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xie, L.; Wu, Z.; Cao, Y.; Zheng, Y.; Pang, C.P.; Zhang, M. Detection of mutations in MYOC, OPTN, NTF4, WDR36 and CYP1B1 in Chinese juvenile onset open-angle glaucoma using exome sequencing. Sci. Rep. 2018, 8, 4498. [Google Scholar] [CrossRef]
- Fan, B.J.; Leung, D.Y.; Wang, D.Y.; Gobeil, S.; Raymond, V.; Tam, P.O.; Lam, D.S.; Pang, C.P. Novel myocilin mutation in a Chinese family with juvenile-onset open-angle glaucoma. Arch. Ophthalmol. 2006, 124, 102–106. [Google Scholar] [CrossRef]
- Jia, L.Y.; Tam, P.O.; Chiang, S.W.; Ding, N.; Chen, L.J.; Yam, G.H.; Pang, C.P.; Wang, N.L. Multiple gene polymorphisms analysis revealed a different profile of genetic polymorphisms of primary open-angle glaucoma in northern Chinese. Mol. Vis. 2009, 15, 89–98. [Google Scholar]
- Wu, X.; Wen, B.; Lin, L.; Shi, W.; Li, D.; Cheng, Y.; Xu, L.Y.; Li, E.M.; Dong, G. New insights into the function of Fascin in actin bundling: A combined theoretical and experimental study. Int. J. Biochem. Cell Biol. 2021, 139, 106056. [Google Scholar] [CrossRef]
- Aier, I.; Varadwaj, P.K.; Raj, U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 2016, 6, 34984. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Khan, M.F.; Parvez, S.; Akhtar, M.; Raisuddin, S. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J. Appl. Toxicol. 2017, 37, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Orwig, S.D.; Chi, P.V.; Du, Y.; Hill, S.E.; Cavitt, M.A.; Suntharalingam, A.; Turnage, K.C.; Dickey, C.A.; France, S.; Fu, H.; et al. Ligands for glaucoma-associated myocilin discovered by a generic binding assay. ACS Chem. Biol. 2014, 9, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Imran, M.; Dhamija, P.; Chaurasia, D.K.; Handu, S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2021, 39, 6617–6632. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function. J. Chem. Inf. Model. 2021, 61, 4827–4831. [Google Scholar] [CrossRef]
- Wu, T.; Guo, Z.; Cheng, J. Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer. Bioinformatics 2023, 39, btad298. [Google Scholar] [CrossRef]
- López-Rivera, J.J.; Rodríguez-Salazar, L.; Soto-Ospina, A.; Estrada-Serrato, C.; Serrano, D.; Chaparro-Solano, H.M.; Londoño, O.; Rueda, P.A.; Ardila, G.; Villegas-Lanau, A.; et al. Structural Protein Effects Underpinning Cognitive Developmental Delay of the PURA p.Phe233del Mutation Modelled by Artificial Intelligence and the Hybrid Quantum Mechanics-Molecular Mechanics Framework. Brain Sci. 2022, 12, 871. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Qi, Y.; Feng, J.; Zhu, L.; Bai, Y.; Wu, H. Protective effects of Erigeron breviscapus Hand.-Mazz. (EBHM) extract in retinal neurodegeneration models. Mol. Vis. 2018, 24, 315–325. [Google Scholar]
- Akdel, M.; Pires, D.E.V.; Pardo, E.P.; Jänes, J.; Zalevsky, A.O.; Mészáros, B.; Bryant, P.; Good, L.L.; Laskowski, R.A.; Pozzati, G.; et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 2022, 29, 1056–1067. [Google Scholar] [CrossRef]
- Buel, G.R.; Walters, K.J. Can AlphaFold2 predict the impact of missense mutations on structure? Nat. Struct. Mol. Biol. 2022, 29, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pak, M.A.; Markhieva, K.A.; Novikova, M.S.; Petrov, D.S.; Vorobyev, I.S.; Maksimova, E.S.; Kondrashov, F.A.; Ivankov, D.N. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE 2023, 18, e0282689. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature 2022, 604, 234–238. [Google Scholar] [CrossRef] [PubMed]
Variants | PDB ID | Length (Residues) | Polyphen2 HumDiv Score | Polyphen2 Prediction | Rank | TM-Score | lDDT | RMSD |
---|---|---|---|---|---|---|---|---|
p.E396D | 4WXS | 277 | 0.657 | Probably damaging | Rank 2 | 0.987 | 0.978 | 0.65 |
p.D478N | 6OU2 | 277 | 1.000 | Probably damaging | Rank 4 | 0.981 | 0.936 | 0.63 |
p.D478S | 6OU3 | 277 | 1.000 | Possibly damaging | Rank 3 | 0.945 | 0.938 | 0.96 |
p.D380A/p.D478S | 6OU0 | 277 | 1.000/1.000 | Probably damaging | Rank 4 | 0.944 | 0.934 | 0.59 |
p.N428D/p.D478H | 6PKD | 277 | 1.000/1.000 | Possibly damaging | Rank 3 | 0.972 | 0.933 | 1.1 |
p.N428E/p.D478K | 6PKF | 277 | 1.000/1.000 | Probably damaging | Rank 4 | 0.976 | 0.929 | 0.93 |
p.N428E/p.D478S | 6PKE | 277 | 1.000/1.000 | Probably damaging | Rank 3 | 0.944 | 0.926 | 0.62 |
p.C245Y | / | 277 | 1.000 | Probably damaging | Rank 0 | 0.963 | 0.973 | 1.21 |
p.G252R | / | 277 | 1.000 | Probably damaging | Rank 0 | 0.980 | 0.985 | 1.03 |
p.S313F | / | 277 | 0.999 | Probably damaging | Rank 0 | 0.988 | 0.985 | 0.67 |
p.E323K | / | 277 | 1.000 | Probably damaging | Rank 0 | 0.975 | 0.969 | 0.94 |
p.T353I | / | 277 | 0.560 | Possibly damaging | Rank 1 | 0.977 | 0.971 | 0.94 |
p.G367R | / | 277 | 1.000 | Probably damaging | Rank 1 | 0.987 | 0.980 | 0.67 |
p.Q368* | / | 141 | / | / | Rank 0 | 0.452 | 0.307 | 1.15 |
p.P370L | / | 277 | 1.000 | Probably damaging | Rank 4 | 0.980 | 0.938 | 0.91 |
p.D384H | / | 277 | 1.000 | Probably damaging | Rank 0 | 0.973 | 0.973 | 1.21 |
p.A488V | / | 277 | 0.999 | Probably damaging | Rank 0 | 0.974 | 0.975 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, T.K.; Ji, J.; Liu, Q.; Yao, Y.; Wang, W.-Y.; Cao, Y.; Chen, C.-B.; Lin, J.-W.; Dong, G.; Cen, L.-P.; et al. Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2. Biomolecules 2024, 14, 14. https://doi.org/10.3390/biom14010014
Ng TK, Ji J, Liu Q, Yao Y, Wang W-Y, Cao Y, Chen C-B, Lin J-W, Dong G, Cen L-P, et al. Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2. Biomolecules. 2024; 14(1):14. https://doi.org/10.3390/biom14010014
Chicago/Turabian StyleNg, Tsz Kin, Jie Ji, Qingping Liu, Yao Yao, Wen-Ying Wang, Yingjie Cao, Chong-Bo Chen, Jian-Wei Lin, Geng Dong, Ling-Ping Cen, and et al. 2024. "Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2" Biomolecules 14, no. 1: 14. https://doi.org/10.3390/biom14010014
APA StyleNg, T. K., Ji, J., Liu, Q., Yao, Y., Wang, W.-Y., Cao, Y., Chen, C.-B., Lin, J.-W., Dong, G., Cen, L.-P., Huang, C., & Zhang, M. (2024). Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2. Biomolecules, 14(1), 14. https://doi.org/10.3390/biom14010014