Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata
Abstract
:1. Introduction
Cytokine | Number of Studies Showing Increase | Number of Studies with No Significant Change | Number of Studies Showing Decrease | Polymorphism | Clinical Correlation/ Treatment Response | Present Study | |
---|---|---|---|---|---|---|---|
Th17 | IL-17 | 11 [15,16,18,19,20,21,22,24,25,26,27] | 3 [39,40,41] | IL17 GG genotype (rs763780; A7488G) [34] | IL-17 consistently elevated; effective treatments have effects on IL-17 [42] Targeting IL-17 may indirectly reduce IL-23 expression [43] Activation coincides with flares; IL-17 as driver of inflammasome cascade [44] 4 case reports of pts treated with inhibitor developing AA [45] | ||
IL-17A | 6 [17,19,20,22,23,26] | No response to secukinumab [46] | Increased | ||||
IL-21 | 2 [15,19] | Genomic regions for activation associated with AA [33] | Janus kinase inhibitors [47] | No significant change | |||
IL-22 | 2 [15,24] | 2 [24,40] | No significant change | ||||
IL-23 | 2 [19,48] | 2 [22,24] | AA genotype of IL23R (rs10889677) [35] | No response to ustekinumab [49] Efficacy of ustekinumab may be mediated by IL-23 antagonism [43] | Increased | ||
IL-17F | 1 [19] | ||||||
Th1 | IFN-γ | 13 [9,22,24,25,26,27,40,50,51,52,53,54,55] | 2 [19,24] | Blockade prevents disease, ruxolitinib—hair regrowth [56] JAK inhibitors [43] | Increased | ||
IL-2 | 8 [9,17,18,22,27,39,52,53] | 1 [40] | 1 [26] | Genomic regions for activation associated with AA [33] | Janus kinase inhibitors [47] Blockade prevents disease [56] | ||
IL-12 | 2 [40,53] | CC genotype IL12B (rs3212227) [35] | No response to ustekinumab [49] Downregulation with corticosteroid treatment [32] | ||||
TNF-α | 7 [15,18,19,24,48,52,55] | 1 [53] | Case report; worsening AA with infliximab [57] No improvement with TNF-α antagonists [58] | Increased | |||
Th2 | IL-4 | 4 [9,25,39,59] | 3 [18,40,53] | 1 [22] | Gene intron 3 VNTR polymorphism associated with increased risk of AA [60] | Role for IL-4Rα antagonist (implicated in atopic dermatitis, which has similar genetic framework to AA) [43] | |
IL-5 | 1 [18] | 1 [40,61] | |||||
IL-13 | 3 [25,27,51] | 2 [40,53] | 1 [24] | rs20541 (IL-13) susceptibility loci in AA [62] | Potential role for dupilumab; increased mRNA in lesional vs. non-lesional scalp [43] | ||
other | IL-1 | 1 [24] | No significant change | ||||
IL-6 | 6 [15,19,26,48,50,53] | 1 [63] | No significant change | ||||
IL-7 | 1 [64] | Janus kinase inhibitors [47] | |||||
IL-9 | 1 [25] | 1 [53] | |||||
IL-10 | 3 [19,22,53] | 4 [17,27,40,63] | 1 [65] | No significant change | |||
IL-15 | 2 [26,39] | Janus kinase inhibitors [47] Blockade prevents disease [56] | |||||
IL-16 | Exon rs11073001 promoter region rs17875491 [66] | ||||||
IL-18 | 1 [67] | 2 [40,53] | |||||
IL-25 | 1 [19] | ||||||
IL-31 | 1 [19] | ||||||
IL-32 | Downregulation with corticosteroid treatment [32] | ||||||
IL-33 | 1 [19] | ||||||
TGF-β | 1 [24] | 2 [18,27] | No significant change | ||||
CXCL1 | rs3117604, −429C/T [68] | ||||||
CXCL2 | rs3806792, −264T/C [68] | ||||||
CCL-18 | Downregulation with corticosteroid treatment [32] |
2. Methods
2.1. Patient Recruitment
2.2. Detection of Serum Cytokines
2.3. Statistical Analysis
3. Results
3.1. Significant Inheritance-Specific Upregulation of Th17-Produced Cytokine IL-17A Is Revealed in AA Patients and Their Healthy Relatives vs. Unaffected Non-Relative Controls
3.2. Significant Inheritance-Specific Upregulation of the Th17 Promoting Cytokine IL-23 Is Revealed in AA Patients and Their Healthy Relatives vs. Unaffected Non-Relative Controls
3.3. No Differences Are Observed for T Reg Cytokines
3.4. Significant Inheritance-Specific Upregulation of the Th1-Produced Cytokines IFNγ and TNFα Is Revealed in AA Patients and Their Healthy Relatives vs. Unaffected Non-Relative Controls
3.5. Healthy Control with Elevated IL-17A and IL-23 Cytokine Levels Converted to Clinical AA 12 Months after Initial Blood Draw
3.6. Unbiased Hierarchical Clustering of AA-Associated Cytokines Demonstrates That Unaffected Non-Relative Controls Cluster Distinctly from AA Patients and Their Relatives
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Safavi, K.H.; Muller, S.A.; Suman, V.J.; Moshell, A.N.; Melton, L.J., 3rd. Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin. Proc. 1995, 70, 628–633. [Google Scholar] [CrossRef]
- Madani, S.; Shapiro, J. Alopecia areata update. J. Am. Acad. Dermatol. 2000, 42, 549–566; quiz 567–570. [Google Scholar] [CrossRef]
- Alexis, A.F.; Dudda-Subramanya, R.; Sinha, A.A. Alopecia areata: Autoimmune basis of hair loss. Eur. J. Dermatol. 2004, 14, 364–370. [Google Scholar]
- Dudda-Subramanya, R.; Alexis, A.F.; Siu, K.; Sinha, A.A. Alopecia areata: Genetic complexity underlies clinical heterogeneity. Eur. J. Dermatol. 2007, 17, 367–374. [Google Scholar] [CrossRef]
- Wasserman, D.; Guzman-Sanchez, D.A.; Scott, K.; McMichael, A. Alopecia areata. Int. J. Dermatol. 2007, 46, 121–131. [Google Scholar] [CrossRef]
- Gilhar, A.; Kalish, R.S. Alopecia areata: A tissue specific autoimmune disease of the hair follicle. Autoimmun. Rev. 2006, 5, 64–69. [Google Scholar] [CrossRef]
- Hoffmann, R.; Wenzel, E.; Huth, A.; van der Steen, P.; Schaufele, M.; Henninger, H.P.; Happle, R. Cytokine mRNA levels in Alopecia areata before and after treatment with the contact allergen diphenylcyclopropenone. J. Investig. Dermatol. 1994, 103, 530–533. [Google Scholar] [CrossRef]
- Shellow, W.V.; Edwards, J.E.; Koo, J.Y. Profile of alopecia areata: A questionnaire analysis of patient and family. Int. J. Dermatol. 1992, 31, 186–189. [Google Scholar] [CrossRef]
- Teraki, Y.; Imanishi, K.; Shiohara, T. Cytokines in alopecia areata: Contrasting cytokine profiles in localized form and extensive form (alopecia universalis). Acta Derm. Venereol. 1996, 76, 421–423. [Google Scholar] [CrossRef]
- Coda, A.B.; Qafalijaj Hysa, V.; Seiffert-Sinha, K.; Sinha, A.A. Peripheral blood gene expression in alopecia areata reveals molecular pathways distinguishing heritability, disease and severity. Genes Immun. 2010, 11, 531–541. [Google Scholar] [CrossRef]
- Bertolini, M.; Gilhar, A.; Paus, R. Alopecia areata as a model for T cell-dependent autoimmune diseases. Exp. Dermatol. 2012, 21, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 2007, 13, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.D.; Kuchroo, V.K. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity 2015, 43, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, Y.; Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Investig. 2006, 116, 1218–1222. [Google Scholar] [CrossRef]
- Atwa, M.A.; Youssef, N.; Bayoumy, N.M. T-helper 17 cytokines (interleukins 17, 21, 22, and 6, and tumor necrosis factor-alpha) in patients with alopecia areata: Association with clinical type and severity. Int. J. Dermatol. 2016, 55, 666–672. [Google Scholar] [CrossRef]
- Tomaszewska, K.A.; Kozlowska, M.; Kaszuba, A.; Lesiak, A.; Narbutt, J.; Zalewska-Janowska, A.M. Increased serum levels of interleukin-17 in patients with alopecia areata and non-segmental vitiligo. Postep. Dermatol. Alergol. 2022, 39, 195–199. [Google Scholar] [CrossRef]
- Aljabali, M.A.; Kuts, L. Serum Levels of Il-2 and Il-17a Are Related to Clinical Type and Severity of Alopecia Areata. Wiad. Lek. 2022, 75, 263–267. [Google Scholar] [CrossRef]
- Alzolibani, A.A.; Rasheed, Z.; Bin Saif, G.; Al-Dhubaibi, M.S.; Al Robaee, A.A. Altered expression of intracellular Toll-like receptors in peripheral blood mononuclear cells from patients with alopecia areata. BBA Clin. 2016, 5, 134–142. [Google Scholar] [CrossRef]
- Bain, K.A.; McDonald, E.; Moffat, F.; Tutino, M.; Castelino, M.; Barton, A.; Cavanagh, J.; Ijaz, U.Z.; Siebert, S.; McInnes, I.B.; et al. Alopecia areata is characterized by dysregulation in systemic type 17 and type 2 cytokines, which may contribute to disease-associated psychological morbidity. Br. J. Dermatol. 2020, 182, 130–137. [Google Scholar] [CrossRef]
- El-Morsy, E.H.; Eid, A.A.; Ghoneim, H.; Al-Tameemi, K.A. Serum level of interleukin-17A in patients with alopecia areata and its relationship to age. Int. J. Dermatol. 2015, 55, 869–874. [Google Scholar] [CrossRef]
- Elela, M.A.; Gawdat, H.I.; Hegazy, R.A.; Fawzy, M.M.; Abdel Hay, R.M.; Saadi, D.; Shaker, O. B cell activating factor and T-helper 17 cells: Possible synergistic culprits in the pathogenesis of Alopecia Areata. Arch Dermatol. Res. 2016, 308, 115–121. [Google Scholar] [CrossRef]
- Gautam, R.K.; Singh, Y.; Gupta, A.; Arora, P.; Khurana, A.; Chitkara, A. The profile of cytokines (IL-2, IFN-gamma, IL-4, IL-10, IL-17A, and IL-23) in active alopecia areata. J. Cosmet. Dermatol. 2020, 19, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Hatif, S.T.; Hussein, T.A.; Muhieldden, A.A.R. Evaluation of IL17-A Serum Levels in Iraqi Patients with Alopecia areata and Alopecia universalis. Biochem. Cell Arch. 2020, 20, 6419–6425. [Google Scholar]
- Loh, S.H.; Moon, H.N.; Lew, B.L.; Sim, W.Y. Role of T helper 17 cells and T regulatory cells in alopecia areata: Comparison of lesion and serum cytokine between controls and patients. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, R.P.; Ramassamy, S.; Rajappa, M.; Chandrashekar, L. Therapeutic outcome of diphencyprone and its correlation with serum cytokine profile in alopecia areata. J. Dermatol. Treat. 2022, 33, 324–328. [Google Scholar] [CrossRef]
- Tabara, K.; Kozlowska, M.; Jedrowiak, A.; Bienias, W.; Kaszuba, A. Serum concentrations of selected proinflammatory cytokines in children with alopecia areata. Postep. Dermatol. Alergol. 2019, 36, 63–69. [Google Scholar] [CrossRef]
- Tembhre, M.K.; Sharma, V.K. T-helper and regulatory T-cell cytokines in the peripheral blood of patients with active alopecia areata. Br. J. Dermatol. 2013, 169, 543–548. [Google Scholar] [CrossRef]
- Han, Y.M.; Sheng, Y.Y.; Xu, F.; Qi, S.S.; Liu, X.J.; Hu, R.M.; Miao, Y.; Huang, G.Q.; Yang, Q.P. Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata. J. Dermatol. 2015, 42, 981–988. [Google Scholar] [CrossRef]
- Jabbari, A.; Cerise, J.E.; Chen, J.C.; Mackay-Wiggan, J.; Duvic, M.; Price, V.; Hordinsky, M.; Norris, D.; Clynes, R.; Christiano, A.M. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. EBioMedicine 2016, 7, 240–247. [Google Scholar] [CrossRef]
- Alli, R.; Nguyen, P.; Boyd, K.; Sundberg, J.P.; Geiger, T.L. A mouse model of clonal CD8+ T lymphocyte-mediated alopecia areata progressing to alopecia universalis. J. Immunol. 2012, 188, 477–486. [Google Scholar] [CrossRef]
- Biran, R.; Zlotogorski, A.; Ramot, Y. The genetics of alopecia areata: New approaches, new findings, new treatments. J. Dermatol. Sci. 2015, 78, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Forstbauer, L.M.; Brockschmidt, F.F.; Moskvina, V.; Herold, C.; Redler, S.; Herzog, A.; Hillmer, A.M.; Meesters, C.; Heilmann, S.; Albert, F.; et al. Genome-wide pooling approach identifies SPATA5 as a new susceptibility locus for alopecia areata. Eur. J. Hum. Genet. EJHG 2012, 20, 326–332. [Google Scholar] [CrossRef]
- Petukhova, L.; Duvic, M.; Hordinsky, M.; Norris, D.; Price, V.; Shimomura, Y.; Kim, H.; Singh, P.; Lee, A.; Chen, W.V.; et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010, 466, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, N.; Akcali, C.; Pehlivan, S.; Kirtak, N.; Inaloz, S. Investigation of interleukin-12, interleukin-17 and interleukin-23 receptor gene polymorphisms in alopecia areata. J. Int. Med. Res. 2015, 43, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei-Panah, P.S.; Moravvej, H.; Delpasand, S.; Jafari, M.; Sepehri, S.; Abgoon, R.; Ludwig, R.J.; Akbarzadeh, R. IL12B and IL23R polymorphisms are associated with alopecia areata. Genes Immun. 2020, 21, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Farinas, M.; Ungar, B.; Noda, S.; Shroff, A.; Mansouri, Y.; Fuentes-Duculan, J.; Czernik, A.; Zheng, X.; Estrada, Y.D.; Xu, H.; et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J. Allergy Clin. Immunol. 2015, 136, 1277–1287. [Google Scholar] [CrossRef]
- Bhanusali, D.G.; Sachdev, A.; Olson, M.A.; Gerlach, J.A.; Sinha, A.A. PTPN22 profile indicates a novel risk group in Alopecia areata. Hum. Immunol. 2014, 75, 81–87. [Google Scholar] [CrossRef]
- Dey-Rao, R.; Seiffert-Sinha, K.; Sinha, A.A. Genome-wide expression analysis suggests unique disease-promoting and disease-preventing signatures in Pemphigus vulgaris. Genes Immun. 2013, 14, 487–499. [Google Scholar] [CrossRef]
- Askin, O.; Yucesoy, S.N.; Coskun, E.; Engin, B.; Serdaroglu, S. Evaluation of the level of serum Interleukins (IL-2, IL-4, IL-15 andIL-17) and its relationship with disease severity in patients with alopecia areata. Bras. Dermatol. 2021, 96, 551–557. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, Y.; Zhang, X.; Qi, S.; Li, S.; Ye, Y.; Yang, J.; Caulloo, S.; McElwee, K.J.; Zhang, X. Serum level of IL-4 predicts response to topical immunotherapy with diphenylcyclopropenone in alopecia areata. Exp. Dermatol. 2020, 29, 231–238. [Google Scholar] [CrossRef]
- Morsy, H.; Maher, R.; Negm, D. Correlation between serum IL-17A level and SALT score in patients with alopecia areata before and after NB-UVB therapy. J. Cosmet. Dermatol. 2018, 17, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Ramot, Y.; Marzani, B.; Pinto, D.; Sorbellini, E.; Rinaldi, F. IL-17 inhibition: Is it the long-awaited savior for alopecia areata? Arch. Dermatol. Res. 2018, 310, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.; Guttman-Yassky, E. Cytokine Targeted Therapeutics for Alopecia Areata: Lessons from Atopic Dermatitis and Other Inflammatory Skin Diseases. J. Investig. Dermatol. Symp. Proc. 2018, 19, S62–S64. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Lambert, J.; Grine, L.; Van Gele, M.; De Schepper, S.; van Geel, N. The many faces of interleukin-17 in inflammatory skin diseases. Br. J. Dermatol. 2016, 175, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Antoury, L.; Maloney, N.; Cheng, K. Development of alopecia in patients treated with interleukin-17 inhibitors. Dermatol. Ther. 2020, 33, e14527. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Nia, J.K.; Hashim, P.W.; Mansouri, Y.; Alia, E.; Taliercio, M.; Desai, P.N.; Lebwohl, M.G. Efficacy and safety of secukinumab treatment in adults with extensive alopecia areata. Arch. Dermatol. Res. 2018, 310, 607–614. [Google Scholar] [CrossRef]
- Zheng, C.; Tosti, A. Alopecia Areata: New Treatment Options Including Janus Kinase Inhibitors. Dermatol. Clin. 2021, 39, 407–415. [Google Scholar] [CrossRef]
- Bilgic, O.; Sivrikaya, A.; Unlu, A.; Altinyazar, H.C. Serum cytokine and chemokine profiles in patients with alopecia areata. J. Dermatol. Treat. 2016, 27, 260–263. [Google Scholar] [CrossRef]
- Ortolan, L.S.; Kim, S.R.; Crotts, S.; Liu, L.Y.; Craiglow, B.G.; Wambier, C.; Paschoal, R.S.; King, B.A.; Jabbari, A. IL-12/IL-23 neutralization is ineffective for alopecia areata in mice and humans. J. Allergy Clin. Immunol. 2019, 144, 1731–1734 e1731. [Google Scholar] [CrossRef]
- Tomaszewska, K.; Kozlowska, M.; Kaszuba, A.; Lesiak, A.; Narbutt, J.; Zalewska-Janowska, A. Increased Serum Levels of IFN-gamma, IL-1beta, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo. Oxid. Med. Cell. Longev. 2020, 2020, 5693572. [Google Scholar] [CrossRef]
- Song, T.; Pavel, A.B.; Wen, H.C.; Malik, K.; Estrada, Y.; Gonzalez, J.; Hashim, P.W.; Nia, J.K.; Baum, D.; Kimmel, G.; et al. An integrated model of alopecia areata biomarkers highlights both TH1 and TH2 upregulation. J. Allergy Clin. Immunol. 2018, 142, 1631–1634 e1613. [Google Scholar] [CrossRef]
- Kasumagic-Halilovic, E.; Prohic, A.; Cavaljuga, S. Tumor necrosis factor-alpha in patients with alopecia areata. Indian J. Dermatol. 2011, 56, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Barahmani, N.; Lopez, A.; Babu, D.; Hernandez, M.; Donley, S.E.; Duvic, M. Serum T helper 1 cytokine levels are greater in patients with alopecia areata regardless of severity or atopy. Clin. Exp. Dermatol. 2010, 35, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Arca, E.; Musabak, U.; Akar, A.; Erbil, A.H.; Tastan, H.B. Interferon-gamma in alopecia areata. Eur. J. Dermatol. 2004, 14, 33–36. [Google Scholar]
- Omar, S.I.; Hamza, A.M.; Eldabah, N.; Habiba, D.A. IFN-alpha and TNF-alpha serum levels and their association with disease severity in Egyptian children and adults with alopecia areata. Int. J. Dermatol. 2021, 60, 1397–1404. [Google Scholar] [CrossRef]
- Xing, L.; Dai, Z.; Jabbari, A.; Cerise, J.E.; Higgins, C.A.; Gong, W.; de Jong, A.; Harel, S.; DeStefano, G.M.; Rothman, L.; et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 2014, 20, 1043–1049. [Google Scholar] [CrossRef]
- Fabre, C.; Dereure, O. Worsening alopecia areata and de novo occurrence of multiple halo nevi in a patient receiving infliximab. Dermatology 2008, 216, 185–186. [Google Scholar] [CrossRef]
- Bolduc, C.; Bissonnette, R. Safety and efficacy of adalimumab for the treatment of severe alopecia areata: Case series of three patients. J. Cutan. Med. Surg. 2012, 16, 257–260. [Google Scholar] [CrossRef]
- Attia, E.A.; El Shennawy, D.; Sefin, A. Serum Interleukin-4 and Total Immunoglobulin E in Nonatopic Alopecia Areata Patients and HLA-DRB1 Typing. Dermatol. Res. Pr. 2010, 2010, 503587. [Google Scholar] [CrossRef]
- Kalkan, G.; Karakus, N.; Bas, Y.; Takci, Z.; Ozuguz, P.; Ates, O.; Yigit, S. The association between Interleukin (IL)-4 gene intron 3 VNTR polymorphism and alopecia areata (AA) in Turkish population. Gene 2013, 527, 565–569. [Google Scholar] [CrossRef]
- Gong, Y.; Luo, L.; Li, L.; He, X.; Lu, W.; Sha, X.; Mao, Y. Diphenylcyclopropenone plays an effective therapeutic role by up-regulating the TSLP/OX40L/IL-13 pathway in severe alopecia areata. Exp. Dermatol. 2021, 30, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Jagielska, D.; Redler, S.; Brockschmidt, F.F.; Herold, C.; Pasternack, S.M.; Garcia Bartels, N.; Hanneken, S.; Eigelshoven, S.; Refke, M.; Barth, S.; et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J. Investig. Dermatol. 2012, 132, 2192–2197. [Google Scholar] [CrossRef]
- Ataseven, A.; Saral, Y.; Godekmerdan, A. Serum cytokine levels and anxiety and depression rates in patients with alopecia areata. Eurasian J. Med. 2011, 43, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, E.H.C.; Petukhova, L.; Chang, Y.; Lee, E.Y.; Christiano, A.M. Blockade of IL-7 signaling suppresses inflammatory responses and reverses alopecia areata in C3H/HeJ mice. Sci. Adv. 2021, 7, eabd1866. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, S.; Jin, W.; Gao, Y. Th1/Th2 PB balance and CD200 expression of patients with active severe alopecia areata. Exp. Ther. Med. 2017, 13, 2883–2887. [Google Scholar] [CrossRef]
- Eitan, L.N.A.; Alghamdi, M.A.; Al Momani, R.O.; Aljamal, H.A.; Elsy, B.; Mohammed, H.M.; Abdalla, A.M. Genetic Association between Interleukin Genes and Alopecia Areata in Jordanian Patients. Oman. Med. J. 2022, 37, e421. [Google Scholar] [CrossRef]
- Lee, D.; Hong, S.K.; Park, S.W.; Hur, D.Y.; Shon, J.H.; Shin, J.G.; Hwang, S.W.; Sung, H.S. Serum levels of IL-18 and sIL-2R in patients with alopecia areata receiving combined therapy with oral cyclosporine and steroids. Exp. Dermatol. 2010, 19, 145–147. [Google Scholar] [CrossRef]
- Kim, S.K.; Chung, J.H.; Park, H.J.; Kang, S.W.; Lim, D.J.; Byun, S.H.; Baek, D.G.; Ko, H.Y.; Lew, B.L.; Baik, H.H.; et al. Polymorphisms in the promoter regions of the CXCL1 and CXCL2 genes contribute to increased risk of alopecia areata in the Korean population. Genet. Mol. Res. 2015, 14, 9667–9674. [Google Scholar] [CrossRef]
- Drolet, A.M.; Thivierge, M.; Turcotte, S.; Hanna, D.; Maynard, B.; Stankova, J.; Rola-Pleszczynski, M. Platelet-activating factor induces Th17 cell differentiation. Mediat. Inflamm. 2011, 2011, 913802. [Google Scholar] [CrossRef]
- Chen, Y.; Langrish, C.L.; McKenzie, B.; Joyce-Shaikh, B.; Stumhofer, J.S.; McClanahan, T.; Blumenschein, W.; Churakovsa, T.; Low, J.; Presta, L.; et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Investig. 2006, 116, 1317–1326. [Google Scholar] [CrossRef]
- Benwell, R.K.; Lee, D.R. Essential and synergistic roles of IL1 and IL6 in human Th17 differentiation directed by TLR ligand-activated dendritic cells. Clin. Immunol. 2010, 134, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Walmsley, R.P. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys. Ther. 1997, 77, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Bettelli, E.; Oukka, M.; Kuchroo, V.K. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 2007, 8, 345–350. [Google Scholar] [CrossRef]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201, 233–240. [Google Scholar] [CrossRef]
- Hunter, C.A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 2005, 5, 521–531. [Google Scholar] [CrossRef]
- Lee, G.R. The Balance of Th17 versus Treg Cells in Autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef]
- Hoffmann, R. The potential role of cytokines and T cells in alopecia areata. J. Investig. Dermatol. Symp. Proc. 1999, 4, 235–238. [Google Scholar] [CrossRef]
- Pesce, B.; Ribeiro, C.H.; Larrondo, M.; Ramos, V.; Soto, L.; Catalan, D.; Aguillon, J.C. TNF-alpha Affects Signature Cytokines of Th1 and Th17 T Cell Subsets through Differential Actions on TNFR1 and TNFR2. Int. J. Mol. Sci. 2022, 23, 9306. [Google Scholar] [CrossRef]
- Iwamoto, S.; Iwai, S.; Tsujiyama, K.; Kurahashi, C.; Takeshita, K.; Naoe, M.; Masunaga, A.; Ogawa, Y.; Oguchi, K.; Miyazaki, A. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J. Immunol. 2007, 179, 1449–1457. [Google Scholar] [CrossRef]
- Burger, D. Cell contact interactions in rheumatology, The Kennedy Institute for Rheumatology, London, UK, 1–2 June 2000. Arthritis Res. 2000, 2, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Veldhoen, M.; Hocking, R.J.; Flavell, R.A.; Stockinger, B. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 2006, 7, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Gregoriou, S.; Papafragkaki, D.; Kontochristopoulos, G.; Rallis, E.; Kalogeromitros, D.; Rigopoulos, D. Cytokines and other mediators in alopecia areata. Mediat. Inflamm. 2010, 2010, 928030. [Google Scholar] [CrossRef] [PubMed]
- Kasumagic-Halilovic, E.; Prohic, A.; Karamehic, J. Serum concentrations of interferon-gamma (IFN-g) in patients with alopecia areata: Correlation with clinical type and duration of the disease. Med. Arch. 2010, 64, 212–214. [Google Scholar]
- Kinori, M.; Bertolini, M.; Funk, W.; Samuelov, L.; Meyer, K.C.; Emelianov, V.U.; Hasse, S.; Paus, R. Calcitonin gene-related peptide (CGRP) may award relative protection from interferon-gamma-induced collapse of human hair follicle immune privilege. Exp. Dermatol. 2012, 21, 223–226. [Google Scholar] [CrossRef]
- Kryczek, I.; Bruce, A.T.; Gudjonsson, J.E.; Johnston, A.; Aphale, A.; Vatan, L.; Szeliga, W.; Wang, Y.; Liu, Y.; Welling, T.H.; et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: Mechanism and pathological relevance in psoriasis. J. Immunol. 2008, 181, 4733–4741. [Google Scholar] [CrossRef]
- Kryczek, I.; Wei, S.; Gong, W.; Shu, X.; Szeliga, W.; Vatan, L.; Chen, L.; Wang, G.; Zou, W. Cutting edge: IFN-gamma enables APC to promote memory Th17 and abate Th1 cell development. J. Immunol. 2008, 181, 5842–5846. [Google Scholar] [CrossRef]
- van der Steen, P.; Traupe, H.; Happle, R.; Boezeman, J.; Strater, R.; Hamm, H. The genetic risk for alopecia areata in first degree relatives of severely affected patients. An estimate. Acta Derm. Venereol. 1992, 72, 373–375. [Google Scholar] [CrossRef]
- Morhenn, V.B. Cell-mediated autoimmune diseases of the skin: Some hypotheses. Med. Hypotheses 1997, 49, 241–245. [Google Scholar] [CrossRef]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef]
- Toussirot, E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm. Allergy Drug Targets 2012, 11, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Kunz, M. Current treatment of psoriasis with biologics. Curr. Drug Discov. Technol. 2009, 6, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kurzeja, M.; Rudnicka, L.; Olszewska, M. New interleukin-23 pathway inhibitors in dermatology: Ustekinumab, briakinumab, and secukinumab. Am. J. Clin. Dermatol. 2011, 12, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Robins, D.N. Case reports: Alopecia universalis: Hair growth following initiation of simvastatin and ezetimibe therapy. J. Drugs Dermatol. JDD 2007, 6, 946–947. [Google Scholar]
- Waskiel-Burnat, A.; Osinska, M.; Salinska, A.; Blicharz, L.; Goldust, M.; Olszewska, M.; Rudnicka, L. The Role of Serum Th1, Th2, and Th17 Cytokines in Patients with Alopecia Areata: Clinical Implications. Cells 2021, 10, 3397. [Google Scholar] [CrossRef] [PubMed]
- Aleisa, A.; Lim, Y.; Gordon, S.; Her, M.J.; Zancanaro, P.; Abudu, M.; Deverapalli, S.C.; Madani, A.; Rosmarin, D. Response to ustekinumab in three pediatric patients with alopecia areata. Pediatr. Dermatol. 2019, 36, e44–e45. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Ungar, B.; Noda, S.; Suprun, M.; Shroff, A.; Dutt, R.; Khattri, S.; Min, M.; Mansouri, Y.; Zheng, X.; et al. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J. Allergy Clin. Immunol. 2016, 137, 301–304. [Google Scholar] [CrossRef]
- Subramanya, R.D.; Coda, A.B.; Sinha, A.A. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics 2010, 96, 146–153. [Google Scholar] [CrossRef]
Classification of Study Subjects | n | Sex | Age (year) | |||
---|---|---|---|---|---|---|
Male | Female | Mean Age ± St. Deviation | Range | |||
Alopecia Areata (AA) | All AA | 64 | 19 | 45 | 36 ± 17.78 | 2–71 |
Alopecia Totalis (AT) | 16 | 5 | 11 | 27 ± 13.47 | 5–45 | |
Alopecia Universalis (AU) | 16 | 5 | 11 | 44 ± 18.69 | 11–66 | |
Alopecia Areata Transitory (AAT) | 15 | 4 | 11 | 37 ± 20.81 | 5–71 | |
Alopecia Areata Persistent (AAP) | 17 | 5 | 12 | 34 ± 14.26 | 2–58 | |
Controls | Unaffected Relatives (UR) | 16 | 4 | 12 | 41 ± 17.84 | 6–68 |
Unaffected Non-Relative (UNR) Controls | 16 | 9 | 7 | 31 ± 8.16 | 27–48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Acker, M.M.; Schwartz, R.R.; Andrews, K.; Seiffert-Sinha, K.; Sinha, A.A. Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata. Biomolecules 2023, 13, 1285. https://doi.org/10.3390/biom13091285
Van Acker MM, Schwartz RR, Andrews K, Seiffert-Sinha K, Sinha AA. Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata. Biomolecules. 2023; 13(9):1285. https://doi.org/10.3390/biom13091285
Chicago/Turabian StyleVan Acker, Monica M., Rebekah R. Schwartz, Kelly Andrews, Kristina Seiffert-Sinha, and Animesh A. Sinha. 2023. "Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata" Biomolecules 13, no. 9: 1285. https://doi.org/10.3390/biom13091285
APA StyleVan Acker, M. M., Schwartz, R. R., Andrews, K., Seiffert-Sinha, K., & Sinha, A. A. (2023). Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata. Biomolecules, 13(9), 1285. https://doi.org/10.3390/biom13091285