A Vegetarian Diet Significantly Changes Plasma Kynurenine Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Clinical Data
2.3. Blood Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Biomarkers of Inflammation and Liver Function According to Diet
3.3. Vitamins According to Diet
3.4. Kynurenines According to Diet
3.5. Biomarkers of Inflammation, Liver Function, Vitamins, and Kynurenines in Relation to Smoking
4. Discussion
4.1. Biomarkers of Diet
4.2. Biomakers of Liver Status According to Diet
4.3. Biomarkers of Inflammation According to Diet
4.4. Vitamin B6 and B2 According to Diet
4.5. Tryptophan and Kynurenines According to Diet
4.6. Effect of Smoking on Biomarkers and Kynurenines
4.7. Kynurenines and Mood Disorders
4.8. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaluzna-Czaplinska, J.; Gatarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjorklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, O.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Verma, K.; Chandra, M.; Prasad, D.N.; Debnath, C.; Mohanty, H.; Kohli, E.; Reddy, M.P.K. Alteration in cerebral blood flow, kynurenines with respect to mood profile in freshly recruited armed forces personnel. J. Psychiatr. Res. 2022, 149, 155–161. [Google Scholar] [CrossRef]
- Kim, S. Overview of Cotinine Cutoff Values for Smoking Status Classification. Int. J. Environ. Res. Public Health. 2016, 13, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Gritz, E.R.; Baer-Weiss, V.; Benowitz, N.L.; Van Vunakis, H.; Jarvik, M.E. Plasma nicotine and cotinine concentrations in habitual smokeless tobacco users. Clin. Pharmacol. Ther. 1981, 30, 201–209. [Google Scholar] [CrossRef]
- O’Gorman, A.; Gibbons, H.; Brennan, L. Metabolomics in the identification of biomarkers of dietary intake. Comput. Struct. Biotechnol. J. 2013, 4, e201301004. [Google Scholar] [CrossRef] [Green Version]
- Midttun, O.; Hustad, S.; Ueland, P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1371–1379. [Google Scholar] [CrossRef]
- Midttun, O.; Kvalheim, G.; Ueland, P.M. High-throughput, low-volume, multianalyte quantification of plasma metabolites related to one-carbon metabolism using HPLC-MS/MS. Anal. Bioanal. Chem. 2013, 405, 2009–2017. [Google Scholar] [CrossRef]
- Hustad, S.; McKinley, M.C.; McNulty, H.; Schneede, J.; Strain, J.J.; Scott, J.M.; Ueland, P.M. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin. Chem. 2002, 48, 1571–1577. [Google Scholar] [CrossRef]
- Kochlik, B.; Gerbracht, C.; Grune, T.; Weber, D. The Influence of Dietary Habits and Meat Consumption on Plasma 3-Methylhistidine-A Potential Marker for Muscle Protein Turnover. Mol. Nutr. Food Res. 2018, 62, e1701062. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr. Nutr. Rep. 2022, 11, 56–68. [Google Scholar] [CrossRef]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C.; Public Policy Committee of the American Association for the Study of Liver D. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Salvaggio, A.; Periti, M.; Miano, L.; Tavanelli, M.; Marzorati, D. Body mass index and liver enzyme activity in serum. Clin. Chem. 1991, 37, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Prati, D.; Taioli, E.; Zanella, A.; Torre, E.D.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S.; et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef]
- Mazidi, M.; Kengne, A.P. Higher adherence to plant-based diets are associated with lower likelihood of fatty liver. Clin. Nutr. 2019, 38, 1672–1677. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Bellissimo, N.; de Zepetnek, J.O.T.; Rouhani, M.H. Association of vegetarian diet with inflammatory biomarkers: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2017, 20, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Schorgg, P.; Barnighausen, T.; Rohrmann, S.; Cassidy, A.; Karavasiloglou, N.; Kuhn, T. Vitamin B6 Status among Vegetarians: Findings from a Population-Based Survey. Nutrients 2021, 13, 1627. [Google Scholar] [CrossRef]
- Lumeng, L.; Brashear, R.E.; Li, T.K. Pyridoxal 5’-phosphate in plasma: Source, protein-binding, and cellular transport. J. Lab. Clin. Med. 1974, 84, 334–343. [Google Scholar]
- Lumeng, L.; Lui, A.; Li, T.K. Plasma content of B6 vitamers and its relationship to hepatic vitamin B6 metabolism. J. Clin. Invest. 1980, 66, 688–695. [Google Scholar] [CrossRef]
- Masse, P.G.; Boudreau, J.; Tranchant, C.C.; Ouellette, R.; Ericson, K.L. Type 1 diabetes impairs vitamin B6 metabolism at an early stage of women’s adulthood. Appl. Physiol. Nutr. Metab. 2012, 37, 167–175. [Google Scholar] [CrossRef]
- Leklem, J.E. Vitamin B-6: A status report. J. Nutr. 1990, 120 (Suppl. 11), 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Hodge, A.M.; MacInnis, R.J.; Bassett, J.K.; Ueland, P.M.; Midttun, Ø.; Ulvik, A.; Rinaldi, S.; Meyer, K.; Navionis, A.S.; et al. Inflammation-Related Marker Profiling of Dietary Patterns and All-cause Mortality in the Melbourne Collaborative Cohort Study. J. Nutr. 2021, 151, 2908–2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. Landmark 2015, 20, 1116–1143. [Google Scholar]
- Sandøy, T.A.; Lund, I.O.; Bye, E.K. Alcohol and Other Psychoactive Substances—Public Health Report Norwegian Institute of Public Health; Norwegian Institute of Public Health: Oslo, Norway, 2014. [Google Scholar]
- Iriti, M.; Vigentini, I. Tryptophan-ethylester, the false (unveiled) melatonin isomer in red wine. Int. J. Tryptophan Res. 2015, 8, 27–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, A.J.; Butler, I.J. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J. Clin. Investig. 1989, 84, 200–204. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [Green Version]
- Abeysekera, K.W.M.; Fernandes, G.S.; Hammerton, G.; Portal, A.J.; Gordon, F.H.; Heron, J.; Hickman, M. Prevalence of steatosis and fibrosis in young adults in the UK: A population-based study. Lancet Gastroenterol. Hepatol. 2020, 5, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2002, 2, 372–377. [Google Scholar] [CrossRef]
- Jang, E.S.; Jeong, S.H.; Hwang, S.H.; Kim, H.Y.; Ahn, S.Y.; Lee, J.; Lee, S.H.; Park, Y.S.; Hwang, J.H.; Kim, J.W.; et al. Effects of coffee, smoking, and alcohol on liver function tests: A comprehensive cross-sectional study. BMC Gastroenterol. 2012, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theofylaktopoulou, D.; Midttun, O.; Ulvik, A.; Ueland, P.M.; Tell, G.S.; Vollset, S.E.; Nygård, O.; Eussen, S.J.P.M. A community-based study on determinants of circulating markers of cellular immune activation and kynurenines: The Hordaland Health Study. Clin. Exp. Immunol. 2013, 173, 121–130. [Google Scholar] [CrossRef]
- Myint, A.M.; Kim, Y.K.; Verkerk, R.; Scharpe, S.; Steinbusch, H.; Leonard, B. Kynurenine pathway in major depression: Evidence of impaired neuroprotection. J. Affect. Disord. 2007, 98, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, P.M.; McCann, A.; Midttun, O.; Ulvik, A. Inflammation, vitamin B6 and related pathways. Mol. Aspects Med. 2017, 53, 10–27. [Google Scholar] [CrossRef]
- Zadori, D.; Klivenyi, P.; Szalardy, L.; Fulop, F.; Toldi, J.; Vecsei, L. Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: Novel therapeutic strategies for neurodegenerative disorders. J. Neurol. Sci. 2012, 322, 187–191. [Google Scholar] [CrossRef]
- Marx, W.; McGuinness, A.J.; Rocks, T.; Ruusunen, A.; Cleminson, J.; Walker, A.J.; Gomes-da-Costa, S.; Lane, M.; Sanches, M.; Diaz, A.P.; et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: A meta-analysis of 101 studies. Mol. Psychiatry 2021, 26, 4158–4178. [Google Scholar] [CrossRef] [PubMed]
Omnivore Diet n = 124 | Vegetarian Diet n = 34 | p Value | |
---|---|---|---|
Age, years, median (IQR) | 24 (22–28) | 24 (22–28) | 0.65 1 |
BMI, kg/m 2, median (IQR) | 22 (21–24) | 22 (21–23) | 0.88 1 |
Users of oral contraceptives, n (%) | 71 (55%) | 17 (50%) | 0.60 2 |
Regular Users of Supplements, n (%) | |||
Omega 3 fatty acids | 59 (48%) | 11 (33%) | 0.14 2 |
Multivitamins/minerals | 27 (22%) | 8 (24%) | 0.85 2 |
Alcohol, number of units/week, median (IQR) | 2.0 (0.5–4.0) | 2.0 (0.8–3.0) | 0.99 1 |
Smokers 3, n (%) | 9 (7%) | 9 (27%) | 0.002 2 |
Median, (IQR) | Omnivore Diet N = 124 | Vegetarian Diet N = 34 | p Value 1 |
---|---|---|---|
Biomarkers of Diet (Plasma) | |||
1-Methylhistidine, µmol/L | 3.62 (3.02–3.98) | 2.71 (2.46–3.07) | <0.001 |
3-Methylhistidine, µmol/L | 2.76 (1.16–7.15) | 0.33 (0.29–0.40) | <0.001 |
Trimethylamine-N-oxide, µmol/L | 2.72 (2.02–4.05) | 1.86 (1.42–2.59) | <0.001 |
Biomarkers of Inflammation | |||
Serum-C-Reactive Protein, mg/L | 1.0 (1.0–2.0) | 0.8 (0.5–2.3) | 0.07 |
Plasma neopterin, nmol/L | 11.3 (8.9–14.7) | 12.9 (10.0–14.4) | 0.31 |
Biomarkers of Liver Status (Serum) | |||
Alanine transaminase, U/L 2 | 20 (16–23) | 15 (12–19) | <0.001 |
Alkaline phosphatase, U/L 2 | 59 (51–66) | 57 (46–70) | 0.54 |
Gamma-glutamyl transferase, U/L 2 | 14 (12–20) | 13 (10–15) | 0.04 |
Total bilirubin, µmol/L 2 | 8 (5–11) | 7 (5–9) | 0.31 |
Albumin, g/L | 47 (45–48) | 46 (45–48) | 0.47 |
Median, (IQR) | Omnivore Diet N = 124 | Vegetarian Diet N = 34 | p Value 1 |
---|---|---|---|
Vitamins (Plasma) | |||
Pyridoxal 5-phosphate, nmol/L | 63.4 (49.1–98.5) | 68.9 (55.6–127.3) | 0.20 |
Pyridoxal, nmol/L | 11.6 (9.1–15.6) | 16.2 (10.9–36.8) | 0.001 |
4-Pyridoxic acid, nmol/L | 21.8 (16.3–28.9) | 27.4 (18.3–49.2) | 0.02 |
Pyridoxal 5-phosphate/Pyridoxal ratio | 5.8 (4.7–6.8) | 4.0 (3.7–5.1) | <0.001 |
PAr 2 | 28.7 (21.9–36.1) | 31.0 (23.7–39.3) | 0.14 |
Riboflavin, nmol/L | 8.2 (5.8–13.0) | 10.1 (6.3–18.1) | 0.20 |
Flavin mononucleotide, nmol/L | 12.0 (9.2–16.4) | 11.0 (7.5–13.5) | 0.05 |
Tryptophan/Kynurenine Metabolites (Plasma) | |||
Tryptophan, µmol/L | 70.9 (61.6–81.9) | 66.6 (60.2–75.1) | 0.13 |
Kynurenine, µmol/L | 1.47 (1.32–1.65) | 1.33 (1.18–1.48) | 0.001 |
3-Hydroxykynurenine, nmol/L | 42.8 (35.4–52.2) | 33.3 (30.1–40.3) | <0.001 |
Kynurenic acid, nmol/L | 46.4 (36.2–60.4) | 35.4 (38.7–41.4) | <0.001 |
Anthranilic acid, nmol/L | 12.8 (10.5–15.8) | 11.7 (9.8–13.8) | 0.09 |
3-Hydroxyanthranilic acid, nmol/L | 47.6 (39.2–60.8) | 31.8 (26.8–40.8) | <0.001 |
Xanthurenic acid, nmol/L | 19.1 (14.1–27.2) | 10.9 (9.8–17.1) | <0.001 |
Picolinic acid, nmol/L | 58.2 (46.1–73.6) | 47.6 (37.3–58.9) | 0.003 |
Quinolinic acid, nmol/L | 338 (283–394) | 298 (245–330) | 0.008 |
Nicotinamide, nmol/L | 194 (144–242) | 154 (115–182) | <0.001 |
HKr 3 | 33 (28–38) | 34 (29–43) | 0.23 |
Kynurenic acid/Quinolinic acid 4 | 13 (10–18) | 11 (10–16) | 0.10 |
Independent Variables | Pyridoxal 5-Phosphate, nmol/L | Pyridoxal, nmol/L | 4-Pyridoxic Acid, nmol/L | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95%CI for B | p Value | B | 95%CI for B | p Value | B | 95%CI for B | p Value | |
Omnivore vs. vegetarian diet | 22.2 | 1.9, 42.4 | 0.03 | 11.9 | 7.1, 16.6 | <0.001 | 16.5 | 8.7, 24.3 | <0.001 |
Use of micronutrient supplements 2 | 32.8 | 11.8, 53.9 | 0.002 | 8.2 | 3.2, 13.1 | 0.001 | 17.1 | 9.0, 25.3 | <0.001 |
Serum C-Reactive Protein 3 | −3.6 | −7.8, −0.5 | 0.09 | −0.3 | −1.3, 13.0 | 0.51 | −0 | −2, 1 | 0.61 |
Plasma cotinine 3 | −0 | −0, 0 | 0.71 | 0 | −0, 0 | 0.82 | 0 | −0, 0 | 0.65 |
Independent Variables | Kynurenine, µmol/L | 3-Hydroxykynurenine, nmol/L | Kynurenic Acid, nmol/L | ||||||
B | 95%CI for B | p value | B | 95%CI for B | p value | B | 95%CI for B | p value | |
Omnivore vs. vegetarian diet | −0.2 | −0.3, −0.1 | 0.003 | −10 | −15, −4 | <0.001 | −12 | −19, −6 | <0.001 |
Use of micronutrient supplements 2 | 0.1 | −0.1, 0.2 | 0.34 | 0.6 | −5, 6 | 0.84 | 4 | −3, 11 | 0.25 |
Serum C-Reactive Protein 3 | −0 | −0, 0.2 | 0.75 | 1 | 0, 2 | 0.04 | −3 | −4, −1 | <0.001 |
Plasma cotinine 3 | 0 | 0, 0 | 0.08 | −0 | −0, 0 | 0.09 | −0 | −0, 0 | 0.30 |
Independent Variables | Anthranilic Acid, nmol/L | 3-Hydroxyanthranilic Acid, nmol/L | Xanthurenic Acid, nmol/L | ||||||
B | 95%CI for B | p value | B | 95%CI for B | p value | B | 95%CI for B | p value | |
Omnivore vs. vegetarian diet | −2 | −4, 0.1 | 0.06 | −17 | −24, −9 | <0.001 | −8 | −12, −4 | <0.001 |
Use of micronutrient supplements 2 | 0.5 | −1.5, 2.5 | 0.62 | 6 | −2, 14 | 0.14 | 2 | −2, 6 | 0.36 |
Serum C-Reactive Protein 3 | −0.1 | −0.5, 0.3 | 0.52 | −0 | −2, 1 | 0.86 | 0 | −1, 1 | 0.68 |
Plasma cotinine 3 | −0 | −0, 0 | 0.62 | −0 | −0, 0 | 0.35 | −0 | −0, 0 | 0.09 |
Independent Variables | Picolinic Acid, nmol/L | Quinolinic Acid, nmol/L | Nicotinamide, nmol/L | ||||||
B | 95%CI for B | p value | B | 95%CI for B | p value | B | 95%CI for B | p value | |
Omnivore vs. vegetarian diet | −15 | −25, −6 | 0.002 | −38 | −104, 27 | 0.25 | −65 | −118, −11 | 0.02 |
Use of micronutrient supplements 2 | 4 | −6, 14 | 0.38 | 44 | −24, 113 | 0.20 | 5 | −50, 60 | 0.86 |
Serum C-Reactive Protein 3 | −2 | −4, −0.5 | 0.01 | 16 | 3, 30 | 0.02 | −3 | −14, 8 | 0.62 |
Plasma cotinine 3 | −0 | −0, 0 | 0.65 | −0.1 | −0.1, 0 | 0.27 | −0 | −0.1, 0 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjørke-Monsen, A.-L.; Varsi, K.; Ulvik, A.; Sakkestad, S.T.; Ueland, P.M. A Vegetarian Diet Significantly Changes Plasma Kynurenine Concentrations. Biomolecules 2023, 13, 391. https://doi.org/10.3390/biom13020391
Bjørke-Monsen A-L, Varsi K, Ulvik A, Sakkestad ST, Ueland PM. A Vegetarian Diet Significantly Changes Plasma Kynurenine Concentrations. Biomolecules. 2023; 13(2):391. https://doi.org/10.3390/biom13020391
Chicago/Turabian StyleBjørke-Monsen, Anne-Lise, Kristin Varsi, Arve Ulvik, Sunniva Todnem Sakkestad, and Per Magne Ueland. 2023. "A Vegetarian Diet Significantly Changes Plasma Kynurenine Concentrations" Biomolecules 13, no. 2: 391. https://doi.org/10.3390/biom13020391
APA StyleBjørke-Monsen, A.-L., Varsi, K., Ulvik, A., Sakkestad, S. T., & Ueland, P. M. (2023). A Vegetarian Diet Significantly Changes Plasma Kynurenine Concentrations. Biomolecules, 13(2), 391. https://doi.org/10.3390/biom13020391