Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development
Abstract
:1. Introduction
1.1. What Is Seaweed?
1.2. Nutritional Importance of Seaweed
1.3. Relevance of This Review
2. Seaweed Properties
2.1. Seaweed Nutritional Properties
2.1.1. Protein
2.1.2. Fatty Acids
2.1.3. Polysaccharides
2.1.4. Fibre
2.1.5. Minerals and Vitamins
2.2. Seaweed Bioactives Profile—Is Seaweed a Superfood?
2.3. Seaweed as a Techno-Functional Food Ingredient
2.4. Sensory Properties and Consumer Perception
2.5. Safety Aspects of Seaweed
2.5.1. Iodine
2.5.2. Heavy Metals
2.5.3. Allergens
2.5.4. Salt Content
3. The Processes
3.1. Post-Harvest Technologies for End-Product Optimization
3.2. Milling for Seaweed Powder
3.3. Green and Novel Technologies for Seaweed Processing
3.3.1. Extrusion
3.3.2. High Pressure Processing
3.3.3. Saltwater Based Fractionation of Seaweed for Biorefinery
3.3.4. Seaweed Fermentation
4. The Products
4.1. Seaweed Powder for Dough Products
4.2. Seaweed Snacks: Convenience Is Key to the Modern Consumer
4.3. Seaweed as a Supplementation in Dairy Products
4.4. Seaweed for Meat and Fishery Products
4.5. Seaweed for Gluten-Free Products
4.6. Seaweed Gastronomy
4.7. Nonfood Seaweed Products
4.7.1. Smart Packaging—Technologies to Produce Sustainable, Green Packaging Solutions
4.7.2. Seaweed in Cosmetics
5. Conclusions
5.1. Economic Importance of Seaweed
5.2. Strengths and Opportunities
5.3. Challenges and Aspirations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Troy, D.J. Chapter 1—Seaweed Sustainability—Food and Nonfood Applications. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1–6. [Google Scholar]
- Raja, K.; Kadirvel, V.; Subramaniyan, T. Seaweeds, an aquatic plant-based protein for sustainable nutrition—A review. Futur. Foods 2022, 5, 100142. [Google Scholar] [CrossRef]
- Yoshinaga, J.; Morita, M.; Yukawa, M.; Shiraishi, K.; Kawamura, H.; Arae, H.; Baker, S.; Barnes, R.M.; Dang, H.S.; De Regge, P.; et al. Certified Reference Material for Analytical Quality Assurance of Minor and Trace Elements in Food and Related Matrixes Based on a Typical Japanese Diet: Interlaboratory Study. J. AOAC Int. 2001, 84, 1202–1208. [Google Scholar] [CrossRef]
- Yang, Y.J.; Nam, S.-J.; Kong, G.; Kim, M.K. A case–control study on seaweed consumption and the risk of breast cancer. Br. J. Nutr. 2009, 103, 1345–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, J.; Lowe, B.; Anil, S.; Manivasagan, P.; Al Kheraif, A.A.; Kang, K.-H.; Kim, S.-K. Seaweed polysaccharides and their potential biomedical applications. Starch Stärke 2015, 67, 381–390. [Google Scholar] [CrossRef]
- Ramadhani, F.S.; Rostini, I.; Anna, Z.; Rochima, E. Characterization of Edible Film from Seaweed Flour (Eucheuma cottonii Weber-van Bosse, 1913) with Different Types of Plasticizer. World Sci. News 2019, 133, 23–33. [Google Scholar]
- Olsson, J.; Toth, G.B.; Albers, E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. J. Appl. Phycol. 2020, 32, 3305–3317. [Google Scholar] [CrossRef]
- Healy, L.E.; Zhu, X.; Pojic, M.; Poojary, M.M.; Curtin, J.; Tiwari, U.; Sullivan, C.; Tiwari, B.K. Impact of dry, particle-size fractionation on protein and amino acid content of three seaweed species. Int. J. Food Prop. 2022, 25, 2073–2088. [Google Scholar] [CrossRef]
- Bhuyar, P.; Sundararaju, S.; Rahim, M.H.A.; Unpaprom, Y.; Maniam, G.P.; Govindan, N. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Appl. Sci. 2021, 3, 485. [Google Scholar] [CrossRef]
- van der Spiegel, M.; Noordam, M.Y.; van der Fels-Klerx, H.J. Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa protein: Composition, structure and functional properties. Food Chem. 2019, 299, 125161. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M. Smart Functional Ingredients. Food Formul. Nov. Ingred. Process. Tech. 2021, 132, 5–26. [Google Scholar]
- Luigia, D. New protein sources: Novel foods. Encycl. Food Secur. Sustain. 2019, 276–279. [Google Scholar] [CrossRef]
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.; Ramos, O.; Vicente, A. Emergent food proteins–Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Černá, M. Chapter 24—Seaweed Proteins and Amino Acids as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 64, pp. 297–312. [Google Scholar]
- Denis, C.; Morançais, M.; Li, M.; Deniaud, E.; Gaudin, P.; Wielgosz-Collin, G.; Barnathan, G.; Jaouen, P.; Fleurence, J. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 2010, 119, 913–917. [Google Scholar] [CrossRef]
- Morgan, K.C.; Wright, J.L.C.; Simpson, F.J. Review of chemical constituents of the red algaPalmaria palmata (dulse). Econ. Bot. 1980, 34, 27–50. [Google Scholar] [CrossRef]
- Vinoj Kumar, V.; Kaladharan, P. Amino acids in the seaweeds as an alternate source of protein for animal feed. J. Mar. Biol. Assoc. India 2007, 49, 35–40. [Google Scholar]
- Cacabelos, R.; Tellado, I.; Cacabelos, P. Chapter 1—The Epigenetic Machinery in the Life Cycle and Pharmacoepigenetics. In Pharmacoepigenetics; Cacabelos, R., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 10, pp. 1–100. [Google Scholar]
- Ramos, M.V.; Monteiro, A.C.O.; Moreira, R.A.; Carvalho, A.D.F.A.F.U. Amino Acid Composition of some Brazilian Seaweed Species. J. Food Biochem. 2000, 24, 33–39. [Google Scholar] [CrossRef]
- Hoffmann, S.L.; Kohlstedt, M.; Jungmann, L.; Hutter, M.; Poblete-Castro, I.; Becker, J.; Wittmann, C. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab. Eng. 2021, 67, 293–307. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Nass, U. Agricultural Chemical Usage. 1990 to 2006 Field Crops Summary, Annual Publication from USDA Economics, Statistics and Market Information System; Albert, R., Ed.; Mann Library, Cornell University: Ithaca, NY, USA, 1991. [Google Scholar]
- Afonso, C.; Matos, J.; Guarda, I.; Gomes-Bispo, A.; Gomes, R.; Cardoso, C.; Gueifão, S.; Delgado, I.; Coelho, I.; Castanheira, I. Bioactive and nutritional potential of Alaria esculenta and Saccharina latissima. J. Appl. Phycol. 2020, 33, 501–513. [Google Scholar] [CrossRef]
- Hayes, M. Chapter 14—Seaweeds: A Nutraceutical and Health Food. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 365–387. [Google Scholar]
- Dominguez, H.; Loret, E.P. Ulva lactuca, a source of troubles and potential riches. Mar. Drugs 2019, 17, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci. Hum. Wellness 2019, 8, 252–263. [Google Scholar] [CrossRef]
- Bauer, S.; Jin, W.; Zhang, F.; Linhardt, R.J. The application of seaweed polysaccharides and their derived products with potential for the treatment of Alzheimer’s disease. Mar. Drugs 2021, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.W.; Roberts, K.T. Chapter 13—Dietary Fiber: Fulfilling the Promise of Added-Value Formulations. In Modern Biopolymer Science, Kasapis, S., Norton, I.T., Ubbink, J.B., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 399–448. [Google Scholar]
- Devillé, C.; Damas, J.; Forget, P.; Dandrifosse, G.; Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 2004, 84, 1030–1038. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Escrig, A.; Sánchez-Muniz, F.J. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000, 20, 585–598. [Google Scholar] [CrossRef]
- Patarra, R.F.; Paiva, L.; Neto, A.I.; Lima, E.; Baptista, J. Nutritional value of selected macroalgae. J. Appl. Phycol. 2011, 23, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Healy, L.E.; Sevindik, O.; Sun, D.-W.; Selli, S.; Kelebek, H.; Tiwari, B.K. Impacts of novel blanching treatments combined with commercial drying methods on the physicochemical properties of Irish brown seaweed Alaria esculenta. Food Chem. 2021, 369, 130949. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and human health: An update. Arch. Toxicol. 2012, 86, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.B.; Macken, A.; Morrison, L.; Morley, N. Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Mar. Pollut. Bull. 2004, 48, 902–909. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Subramani, K.; Shanmugam, M.; Seedevi, P.; Park, S.; Alfarhan, A.H.; Rajagopal, R.; Balasubramanian, B. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J. King Saud Univ. Sci. 2020, 32, 1206–1211. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Škrovánková, S. Chapter 28—Seaweed Vitamins as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 64, pp. 357–369. [Google Scholar]
- Nielsen, C.W.; Rustad, T.; Holdt, S.L. Vitamin C from seaweed: A review assessing seaweed as contributor to daily intake. Foods 2021, 10, 198. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem. 2015, 172, 326–334. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Duelund, L.; Petersen, M.A.; Hartmann, A.L.; Frøst, M.B. Umami taste, free amino acid composition, and volatile compounds of brown seaweeds. J. Appl. Phycol. 2019, 31, 1213–1232. [Google Scholar] [CrossRef]
- Noahsen, P.; Kleist, I.; Larsen, H.M.; Andersen, S. Intake of seaweed as part of a single sushi meal, iodine excretion and thyroid function in euthyroid subjects: A randomized dinner study. J. Endocrinol. Investig. 2020, 43, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- Jin, J.-O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022, 27, 6032. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Seaweed-based natural ingredients: Stability of phlorotannins during extraction, storage, passage through the gastrointestinal tract and potential incorporation into functional foods. Food Res. Int. 2020, 137, 109676. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol. 2015, 50, 24–31. [Google Scholar] [CrossRef]
- Zargarzadeh, M.; Amaral, A.J.R.; Custódio, C.A.; Mano, J.F. Biomedical applications of laminarin. Carbohydr. Polym. 2020, 232, 115774. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Carpena, M.; Pereira, A.G.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci. Technol. 2021, 117, 163–181. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. 17—Role of Marine Nutraceuticals in Cardiovascular Health. In Sustained Energy for Enhanced Human Functions and Activity; Bagchi, D., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 273–279. [Google Scholar]
- Kim, K.-J.; Lee, O.-H.; Lee, B.-Y. Fucoidan, a sulfated polysaccharide, inhibits adipogenesis through the mitogen-activated protein kinase pathway in 3T3-L1 preadipocytes. Life Sci. 2010, 86, 791–797. [Google Scholar] [CrossRef]
- Shafie, M.H.; Kamal, M.L.; Zulkiflee, F.F.; Hasan, S.; Uyop, N.H.; Abdullah, S.; Hussin, N.A.M.; Tan, Y.C.; Zafarina, Z. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J. Indian Chem. Soc. 2022, 99, 100613. [Google Scholar] [CrossRef]
- Skryplonek, K.; Henriques, M.; Gomes, D.; Viegas, J.; Fonseca, C.; Pereira, C.; Dmytrów, I.; Mituniewicz-Małek, A. Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. J. Dairy Sci. 2019, 102, 7838–7848. [Google Scholar] [CrossRef]
- Ratnayake, S.; Stockdale, V.; Grafton, S.; Munro, P.; Robinson, A.L.; Pearson, W.; McRae, J.; Bacic, A. Carrageenans as heat stabilisers of white wine. Aust. J. Grape Wine Res. 2019, 25, 439–450. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.T.; Meyer, A.S. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar. Drugs 2015, 13, 3340–3359. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Lai, T.; Tye, Y.; Rizal, S.; Chong, E.; Yap, S.; Hamzah, A.; Fazita, M.; Paridah, M. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym. Lett. 2018, 12, 296–317. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Turgeon, S.L. Chapter 7—Seaweed Carbohydrates. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 141–192. [Google Scholar]
- Cybercolloids. Marine Hydrocolloid Market. 2021. Available online: http://www.cybercolloids.net/information/technical-articles/marine-hydrocolloid-market-0 (accessed on 5 November 2021).
- Mamat, H.; Matanjun, P.; Ibrahim, S.; Md. Amin, S.F.; Abdul Hamid, M.; Rameli, A.S. The effect of seaweed composite flour on the textural properties of dough and bread. J. Appl. Phycol. 2014, 26, 1057–1062. [Google Scholar] [CrossRef]
- McHugh, D. A Guide to the Seaweed Industry FAO Fisheries Technical Paper 441 Rome; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Pangestuti, R.; Kim, S.-K. Chapter 6—Seaweed Proteins, Peptides, and Amino Acids. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 125–140. [Google Scholar]
- Milinovic, J.; Mata, P.; Diniz, M.; Noronha, J.P. Umami taste in edible seaweeds: The current comprehension and perception. Int. J. Gastron. Food Sci. 2021, 23, 100301. [Google Scholar] [CrossRef]
- Du, X.; Xu, Y.; Jiang, Z.; Zhu, Y.; Li, Z.; Ni, H.; Chen, F. Removal of the fishy malodor from Bangia fusco-purpurea via fermentation of Saccharomyces cerevisiae, Acetobacter pasteurianus, and Lactobacillus plantarum. J. Food Biochem. 2021, 45, e13728. [Google Scholar] [CrossRef]
- Losada-Lopez, C.; Dopico, D.C.; Faína-Medín, J.A. Neophobia and seaweed consumption: Effects on consumer attitude and willingness to consume seaweed. Int. J. Gastron. Food Sci. 2021, 24, 100338. [Google Scholar] [CrossRef]
- Wendin, K.; Undeland, I. Seaweed as food—Attitudes and preferences among Swedish consumers. A pilot study. Int. J. Gastron. Food Sci. 2020, 22, 100265. [Google Scholar] [CrossRef]
- Simone, L. Consumer Acceptability of Gulf of Maine Sugar Kelp Seaweed in Baked Bread; The University of Maine: Bangor, ME, USA, 2020. [Google Scholar]
- Al-Thawadi, S. Public perception of algal consumption as an alternative food in the Kingdom of Bahrain. Arab. J. Basic Appl. Sci. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Lamont, T.; McSweeney, M. Consumer Acceptability and chemical composition of whole-wheat breads incorporated with brown seaweed (Ascophyllum nodosum) or red seaweed (Chondrus crispus). J. Sci. Food Agric. 2021, 101, 1507–1514. [Google Scholar] [CrossRef]
- Prager, H.R. What Can Be Done to Increase Acceptance of Seaweed into the Western Diet? 2017. Available online: https://www.ntnu.edu/documents/139799/1273574286/TPD1273574505.Henry.Prager.pdf (accessed on 5 November 2021).
- Tanna, B.; Mishra, A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1613–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banach, J.; Hoek-van den Hil, E.; van der Fels-Klerx, H. Food safety hazards in the European seaweed chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef] [PubMed]
- Bouwhuis, M.A.; Sweeney, T.; Mukhopadhya, A.; McDonnell, M.J.; O’Doherty, J.V. Maternal laminarin supplementation decreases Salmonella Typhimurium shedding and improves intestinal health in piglets following an experimental challenge with S. Typhimurium post-weaning. Anim. Feed. Sci. Technol. 2017, 223, 156–168. [Google Scholar] [CrossRef]
- Hashimoto, S.; Morita, M. Analysis of PCDDs, PCDFs, planar and other PCBs in seaweed from Japanese coast. Chemosphere 1995, 31, 3887–3897. [Google Scholar] [CrossRef]
- Küpper, F.; Schweigert, N.; Gall, E.A.; Legendre, J.-M.; Vilter, H.; Kloareg, B. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 1998, 207, 163–171. [Google Scholar] [CrossRef]
- Sarkar, D. Datta, Rupali Biogeochemistry of Arsenic in Contaminated Soils of Superfund Sites. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/6015 (accessed on 5 November 2021).
- Rose, M.; Lewis, J.; Langford, N.; Baxter, M.; Origgi, S.; Barber, M.; MacBain, H.; Thomas, K. Arsenic in seaweed—Forms, concentration and dietary exposure. Food Chem. Toxicol. 2007, 45, 1263–1267. [Google Scholar] [CrossRef]
- Commission, E. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Luxemb. Off. J. Eur. Commun. 2002. Available online: https://www.legislation.gov.uk/eudr/2002/32/adopted (accessed on 7 February 2022).
- Shinagawa, A.; Shiomi, K.; Yamanakam, H.; Kikuchi, T. Selective determination of inorganic arsenic (III),(V) and organic arsenic in marine organisms. J. Jpn. Soc. Fish. Sci. 1983, 49, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M.; Baldisserotto, A.; Menotta, S.; Fedrizzi, G.; Rubini, S.; Gigliotti, D.; Valpiani, G.; Buzzi, R.; Manfredini, S.; Vertuani, S. Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere 2021, 263, 127983. [Google Scholar] [CrossRef]
- Khandaker, M.U.; Chijioke, N.O.; Heffny, N.A.B.; Bradley, D.A.; Alsubaie, A.; Sulieman, A.; Faruque, M.R.I.; Sayyed, M.I.; Al-Mugren, K.S. Elevated Concentrations of Metal(loids) in Seaweed and the Concomitant Exposure to Humans. Foods 2021, 10, 381. [Google Scholar] [CrossRef]
- O’donnell, M.; Mente, A.; Smyth, A.; Yusuf, S. Salt intake and cardiovascular disease: Why are the data inconsistent? Eur. Heart J. 2013, 34, 1034–1040. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M.; O’Grady, M.N.; Mohammed, H.O.; Kilcawley, K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef]
- Fraunhofer-Gesellschaf. Seaweed Instead of Salt for Your Diet. Available online: https://www.sciencedaily.com/releases/2016/07/160706091739.htm (accessed on 7 February 2022).
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Notowidjojo, L.; Ascobat, P.; Bardosono, S.; Tjahjana, J. The Potential of Seaweed Salt as an Alternative Low Natrium Salt: Safety and Sensory Test. World Nutr. J. 2021, 5, 47–52. [Google Scholar] [CrossRef]
- Kishida, R.; Yamagishi, K.; Muraki, I.; Sata, M.; Tamakoshi, A.; Iso, H.; Group, J.S. Frequency of seaweed intake and its association with cardiovascular disease mortality: The JACC Study. J. Atheroscler. Thromb. 2020, 27, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Nomura, K.; Nagashima, M.; Kamimura, N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoEshl mice deficient in apolipoprotein E expression. J. Nutr. Biochem. 2016, 32, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Healy, L.; Zhang, Z.; Maguire, J.; Sun, D.-W.; Tiwari, B.K. Novel postharvest processing strategies for value-added applications of marine algae. J. Sci. Food Agric. 2021, 101, 4444–4455. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, K.i.; Yosida, K.; Tamano, M.; Kuroiwa, T.; Kaise, T.; Maeda, S. Arsenic in the prepared edible brown alga hijiki, Hizikia fusiforme. Appl. Organomet. Chem. 2001, 15, 561–565. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. Quantification of iodine loss in edible Irish seaweeds during processing. J. Appl. Phycol. 2016, 28, 3527–3533. [Google Scholar] [CrossRef]
- Wang, H.-o.; Fu, Q.-q.; Chen, S.-j.; Hu, Z.-c.; Xie, H.-x. Effect of Hot-Water Blanching Pretreatment on Drying Characteristics and Product Qualities for the Novel Integrated Freeze-Drying of Apple Slices. J. Food Qual. 2018, 2018, 1347513. [Google Scholar] [CrossRef]
- Nielsen, C.W.; Holdt, S.L.; Sloth, J.J.; Marinho, G.S.; Sæther, M.; Funderud, J.; Rustad, T. Reducing the high iodine content of Saccharina latissima and improving the profile of other valuable compounds by water blanching. Foods 2020, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Breidt, F.; Hayes, J.; Fleming, H. Reduction of microflora of whole pickling cucumbers by blanching. J. Food Sci. 2000, 65, 1354–1358. [Google Scholar] [CrossRef]
- Katayama, M.; Sugawa-Katayama, Y.; Murakami, K. Pre-cooking of edible marine brown algae for reduction of arsenic contents. J. Food Nutr. Sci. 2015, 3, 84–87. [Google Scholar] [CrossRef]
- Phang, H.-K.; Chu, C.-M.; Kumaresan, S.; Rahman, M.M.; Yasir, S.M. Preliminary study of seaweed drying under a shade and in a natural draft solar dryer. Int. J. Sci. Eng. 2015, 8, 10–14. [Google Scholar]
- Djaeni, M.; Sari, D.A. Low temperature seaweed drying using dehumidified air. Procedia Environ. Sci. 2015, 23, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Chenlo, F.; Arufe, S.; Díaz, D.; Torres, M.D.; Sineiro, J.; Moreira, R. Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida. J. Appl. Phycol. 2018, 30, 1259–1270. [Google Scholar] [CrossRef]
- Rodriguez, T.V.; Rojas, A.; Campos, C.; Gerschenson, L. Effect of osmotic dehydration on the quality of air-dried Porphyra. LWT Food Sci. Technol. 2003, 36, 415–422. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Gálvez, A.; Heredia, V.; Pastén, A.; Di Scala, K. An edible red seaweed (Pyropia orbicularis): Influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments. J. Appl. Phycol. 2018, 30, 673–683. [Google Scholar] [CrossRef]
- Ali, M.K.M.; Sulaiman, J.; Yasir, S.M.; Ruslan, M. The effectiveness of sauna technique on the drying period and kinetics of seaweed Kappaphycus alvarezii using solar drier. Adv. Envitl Agri Sci. 2015, 1, 86–95. [Google Scholar]
- Tun Norbrillinda, M.; Mahanom, H.; Nur Elyana, N.; Nur Intan Farina, S. Optimization of spray drying process of Sargassum muticum color extract. Dry. Technol. 2016, 34, 1735–1744. [Google Scholar] [CrossRef]
- Neoh, Y.Y.; Matanjun, P.; Lee, J.S. Comparative study of drying methods on chemical constituents of Malaysian red seaweed. Dry. Technol. 2016, 34, 1745–1751. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Z.; Hinds, L.M.; Sun, D.-W.; Tiwari, B.K. Applications of Ultrasound to Enhance Fluidized Bed Drying of Ascophyllum Nodosum: Drying Kinetics and Product Quality Assessment. Ultrason. Sonochemistry 2020, 70, 105298. [Google Scholar] [CrossRef]
- Nadi, F. Bioactive compound retention in Echium amoenum Fisch. & CA Mey. petals: Effect of fluidized bed drying conditions. Int. J. Food Prop. 2017, 20, 2249–2260. [Google Scholar]
- Naik, R.R.; Wang, Y.; Selomulya, C. Spray-drying to improve the functionality of amaranth protein via ultrasonic-assisted Maillard conjugation with red seaweed polysaccharide. J. Cereal Sci. 2022, 108, 103578. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- Rose, C. Improved Method for Milling Seaweed. Patent WO2018154290A1, 30 August 2018. [Google Scholar]
- Kim, J.-M.; Shin, M. Effects of particle size distributions of rice flour on the quality of gluten-free rice cupcakes. LWT Food Sci. Technol. 2014, 59, 526–532. [Google Scholar] [CrossRef]
- Fellows, P.J. 4—Size Reduction. In Food Processing Technology, 4th ed.; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 291–328. [Google Scholar]
- Fellows, P.J. 3—Extraction and Separation of Food Components. In Food Processing Technology, 4th ed.; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 235–289. [Google Scholar]
- Robin, F.; Schuchmann, H.P.; Palzer, S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Fellows, P.J. 17—Extrusion Cooking. In Food Processing Technology, 4th ed.; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 753–780. [Google Scholar]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Singh, C.B.; Xavier, K.M.; Deshmukhe, G.; Gudipati, V.; Shitole, S.S.; Balange, A.K. Fortification of extruded product with brown seaweed (Sargassum tenerrimum) and its process optimization by response surface methodology. Waste Biomass Valorization 2018, 9, 755–764. [Google Scholar] [CrossRef]
- Sugiono, S.; Masruri, M.; Estiasih, T.; Widjanarko, S.B. Optimization of extrusion-assisted extraction parameters and characterization of alginate from brown algae (Sargassum cristaefolium). J. Food Sci. Technol. 2019, 56, 3687–3696. [Google Scholar] [CrossRef]
- Hopmann, C.; Adamy, M.; Cohnen, A. Introduction to Reactive Extrusion. In Reactive Extrusion; Wiley Online Library: Hoboken, NY, USA, 2017; pp. 1–10. [Google Scholar]
- Baron, R.; Vauchel, P.; Kaas, R.; Arhaliass, A.; Legrand, J. Dynamical modelling of a reactive extrusion process: Focus on residence time distribution in a fully intermeshing co-rotating twin-screw extruder and application to an alginate extraction process. Chem. Eng. Sci. 2010, 65, 3313–3321. [Google Scholar] [CrossRef] [Green Version]
- Research, G.V. Alginate Market Size, Share & Trends Analysis Report By Type (High M, High G), By Product (Sodium, Propylene Glycol), By Application (Pharmaceutical, Industrial), By Region, And Segment Forecasts, 2021–2028. Grand View Res. 2021, 12, 234. [Google Scholar]
- Research, G.V. Carrageenan Market Size, Share & Trends Analysis Report By Product (Kappa, Iota, Lambda), By Function (Thickener, Gelling Agent, Stabilizer), By Application, By Region, And Segment Forecasts, 2020–2027. Grand View Res. 2020, 10, 53–63. [Google Scholar]
- Farr, D. High pressure technology in the food industry. Trends Food Sci. Technol. 1990, 1, 14–16. [Google Scholar] [CrossRef]
- Fellows, P.J. 7—Minimal Processing Methods. In Food Processing Technology, 4th ed.; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 431–512. [Google Scholar]
- del Olmo, A.; Picon, A.; Nuñez, M. Preservation of five edible seaweeds by high pressure processing: Effect on microbiota, shelf life, colour, texture and antioxidant capacity. Algal Res. 2020, 49, 101938. [Google Scholar] [CrossRef]
- Jones, E.S.; Raikova, S.; Ebrahim, S.; Parsons, S.; Allen, M.J.; Chuck, C.J. Saltwater based fractionation and valorisation of macroalgae. J. Chem. Technol. Biotechnol. 2020, 95, 2098–2109. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, J.; Zhu, X.; Song, M.; Zhang, T.; Xin, F.; Dong, W.; Ma, J.; Jiang, M. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. Bioresour. Technol. 2018, 254, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, J.; Rosenberg, D.; Zhao, H.; Lengyel, G.; Nadel, D. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. J. Archaeol. Sci. Rep. 2018, 21, 783–793. [Google Scholar] [CrossRef]
- Galimberti, A.; Bruno, A.; Agostinetto, G.; Casiraghi, M.; Guzzetti, L.; Labra, M. Fermented food products in the era of globalization: Tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 2021, 70, 36–41. [Google Scholar] [CrossRef]
- Reboleira, J.; Silva, S.; Chatzifragkou, A.; Niranjan, K.; Lemos, M.F.L. Seaweed fermentation within the fields of food and natural products. Trends Food Sci. Technol. 2021, 116, 1056–1073. [Google Scholar] [CrossRef]
- Ferreira, C.A.M.; Félix, R.; Félix, C.; Januário, A.P.; Alves, N.; Novais, S.C.; Dias, J.R.; Lemos, M.F.L. A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing. Biomolecules 2021, 11, 461. [Google Scholar] [CrossRef]
- Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a Feasible Strategy for Enhancing Bioactivity of Herbal Medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Stanbury, P.; Whitaker, A.; Hall, S. An Introduction to Fermentation Processes. In Principles of Fermentation Technology, 3rd ed.; Stanbury, P.F., Whitaker, A., Hall, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 1–20. [Google Scholar]
- Marquez, G.P.B.; Santiañez, W.J.E.; Trono, G.C.; de la Rama, S.R.B.; Takeuchi, H.; Hasegawa, T. Chapter 16—Seaweeds: A Sustainable Fuel Source. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 421–458. [Google Scholar]
- Jayasinghe, P.; Pahalawattaarachchi, V.; Ranaweera, K. Seaweed extract as a natural food coloring agent in jelly desserts on chemical, microbial and sensory quality. Acad. Agric. J. 2016, 1, 65–69. [Google Scholar]
- Moroney, N.C.; O’Grady, M.N.; Lordan, S.; Stanton, C.; Kerry, J.P. Seaweed polysaccharides (laminarin and fucoidan) as functional ingredients in pork meat: An evaluation of anti-oxidative potential, thermal stability and bioaccessibility. Mar. Drugs 2015, 13, 2447–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, S.; Abu-Ghannam, N. Enhancement of the phytochemical and fibre content of beef patties with Himanthalia elongata seaweed. Int. J. Food Sci. Technol. 2013, 48, 2239–2249. [Google Scholar] [CrossRef]
- Cofrades, S.; López-López, I.; Ruiz-Capillas, C.; Triki, M.; Jiménez-Colmenero, F. Quality characteristics of low-salt restructured poultry with microbial transglutaminase and seaweed. Meat Sci. 2011, 87, 373–380. [Google Scholar] [CrossRef]
- Kirkholt, E.M.; Dikiy, A.; Shumilina, E. Changes in the Composition of Atlantic Salmon upon the Brown Seaweed (Saccharina latissima) Treatment. Foods 2019, 8, 625. [Google Scholar] [CrossRef] [Green Version]
- Arufe, S.; Della Valle, G.; Chiron, H.; Chenlo, F.; Sineiro, J.; Moreira, R. Effect of brown seaweed powder on physical and textural properties of wheat bread. Eur. Food Res. Technol. 2018, 244, 1–10. [Google Scholar] [CrossRef]
- Fradinho, P.; Raymundo, A.; Sousa, I.; Domínguez, H.; Torres, M.D. Edible brown seaweed in gluten-free pasta: Technological and nutritional evaluation. Foods 2019, 8, 622. [Google Scholar] [CrossRef] [Green Version]
- Xiren, G.K. The effects of using seaweed on the quality of Asian noodles. J. Food Process. Technol. 2013, 4, 2. [Google Scholar]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Waldron, D.S.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. An examination of the potential of seaweed extracts as functional ingredients in milk. Int. J. Dairy Technol. 2014, 67, 182–193. [Google Scholar] [CrossRef]
- Senthil, A.; Mamatha, B.; Vishwanath, P.; Bhat, K.; Ravishankar, G. Studies on development and storage stability of instant spice adjunct mix from seaweed (Eucheuma). J. Food Sci. Technol. 2011, 48, 712–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. World cuisine of seaweeds: Science meets gastronomy. Int. J. Gastron. Food Sci. 2018, 14, 55–65. [Google Scholar] [CrossRef]
- Heenan, S.P.; Dufour, J.-P.; Hamid, N.; Harvey, W.; Delahunty, C.M. The sensory quality of fresh bread: Descriptive attributes and consumer perceptions. Food Res. Int. 2008, 41, 989–997. [Google Scholar] [CrossRef]
- Rico, D.; Alonso de Linaje, A.; Herrero, A.; Asensio-Vegas, C.; Miranda, J.; Martínez-Villaluenga, C.; de Luis, D.A.; Martin-Diana, A.B. Carob by-products and seaweeds for the development of functional bread. J. Food Process. Preserv. 2018, 42, e13700. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Amoriello, M.; Ceccarelli, D.; Ciccoritti, R. Powdered seaweeds as a valuable ingredient for functional breads. Eur. Food Res. Technol. 2021, 247, 2431–2443. [Google Scholar] [CrossRef]
- Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L.R.; Hosokawa, M.; Miyashita, K. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem. 2009, 115, 501–508. [Google Scholar] [CrossRef]
- Skonberg, D.I.; Fader, S.; Perkins, L.B.; Perry, J.J. Lactic acid fermentation in the development of a seaweed sauerkraut-style product: Microbiological, physicochemical, and sensory evaluation. J. Food Sci. 2021, 86, 334–342. [Google Scholar] [CrossRef]
- Kumar, R.; Chambers, E.; Chambers, D.H.; Lee, J. Generating new snack food texture ideas using sensory and consumer research tools: A case study of the Japanese and South Korean snack food markets. Foods 2021, 10, 474. [Google Scholar] [CrossRef]
- Lai, W.T.; Khong, N.M.H.; Lim, S.S.; Hee, Y.Y.; Sim, B.I.; Lau, K.Y.; Lai, O.M. A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends Food Sci. Technol. 2017, 59, 148–160. [Google Scholar] [CrossRef]
- Corsetto, P.A.; Montorfano, G.; Zava, S.; Colombo, I.; Ingadottir, B.; Jonsdottir, R.; Sveinsdottir, K.; Rizzo, A.M. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants 2020, 9, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soegiarto, A. Utilization and Farming of Seaweeds in Indonesia. In Culture and Use of Algae in Southeast Asia, Proceedings of the Symposium on Culture and Utilization of Algae in Southeast Asia, Tigbauan, Iloilo, Philippines, 8–11 December 1981; Aquaculture Department, Southeast Asian Fisheries Development Center: Tigbauan, Iloilo, Philippines, 1990; pp. 9–19. [Google Scholar]
- Zhu, Y.; Bhandari, B.; Prakash, S. Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocoll. 2018, 84, 292–302. [Google Scholar] [CrossRef]
- Abdul Razak, S.; Baharuddin, A.; Mohd Amin, N.; Mat Johari, A.; Mohammad Parid, D. Optimisation of stabiliser combinations in instant ice cream mix powder formulation via mixture design methodology. Int. Food Res. J. 2019, 26, 1689–1698. [Google Scholar]
- O’Sullivan, A.M.; O’Grady, M.N.; O’Callaghan, Y.C.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 2016, 37, 293–299. [Google Scholar] [CrossRef]
- del Olmo, A.; Picon, A.; Nuñez, M. Probiotic dynamics during the fermentation of milk supplemented with seaweed extracts: The effect of milk constituents. LWT 2019, 107, 249–255. [Google Scholar] [CrossRef]
- del Olmo, A.; Picon, A.; Nuñez, M. Cheese supplementation with five species of edible seaweeds: Effect on microbiota, antioxidant activity, colour, texture and sensory characteristics. Int. Dairy J. 2018, 84, 36–45. [Google Scholar] [CrossRef]
- Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M.; Rafipour, F. Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product. J. Food Sci. Technol. 2019, 56, 3777–3789. [Google Scholar] [CrossRef]
- Ribeiro, I.S.; Shirahigue, L.D.; Ferraz de Arruda Sucasas, L.; Anbe, L.; da Cruz, P.G.; Gallo, C.R.; Carpes, S.T.; Marques, M.J.; Oetterer, M. Shelf life and quality study of minced tilapia with nori and hijiki seaweeds as natural additives. Sci. World J. 2014, 2014, 485287. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, J.; Vivanco, J.P.; Aubourg, S.P. Lipid and sensory quality of canned Atlantic salmon (Salmo salar): Effect of the use of different seaweed extracts as covering liquids. Eur. J. Lipid Sci. Technol. 2014, 116, 596–605. [Google Scholar] [CrossRef]
- López-López, I.; Bastida, S.; Ruiz-Capillas, C.; Bravo, L.; Larrea, M.T.; Sánchez-Muniz, F.; Cofrades, S.; Jiménez-Colmenero, F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009, 83, 492–498. [Google Scholar] [CrossRef]
- Agregán, R.; Franco, D.; Carballo, J.; Tomasevic, I.; Barba, F.J.; Gómez, B.; Muchenje, V.; Lorenzo, J.M. Shelf life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Res. Int. 2018, 112, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Cofrades, S.; Benedí, J.; Garcimartin, A.; Sánchez-Muniz, F.; Jimenez-Colmenero, F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res. Int. 2017, 99, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Sholichah, E.; Kumalasari, R.; Indrianti, N.; Ratnawati, L.; Restuti, A.; Munandar, A. Physicochemical, Sensory, and Cooking Qualities of Gluten-free Pasta Enriched with Indonesian Edible Red Seaweed (Kappaphycus Alvarezii). J. Food Nutr. Res. 2020, 9, 187–192. [Google Scholar] [CrossRef]
- Kawasaki, H.; Shimomura, K. Temporal design of taste and flavor: Practical collaboration between chef and scientist. Flavour 2015, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Mouritsen, O.G. The emerging science of gastrophysics and its application to the algal cuisine. Flavour 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, P.L.H.; Day, L. Food Products and Ingredients. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Gomes, L.R.; Simões, C.D.; Silva, C. Demystifying thickener classes food additives though molecular gastronomy. Int. J. Gastron. Food Sci. 2020, 22, 100262. [Google Scholar] [CrossRef]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci. Technol. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Farhoodi, M. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. Food Eng. Rev. 2016, 8, 35–51. [Google Scholar] [CrossRef]
- Sharma, V.; Shukla, R.K.; Saxena, N.; Parmar, D.; Das, M.; Dhawan, A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 2009, 185, 211–218. [Google Scholar] [CrossRef]
- Asharani, P.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102. [Google Scholar] [CrossRef] [PubMed]
- Echegoyen, Y.; Nerín, C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 2013, 62, 16–22. [Google Scholar] [CrossRef]
- Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 544–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee, E.S.; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, e05327. [Google Scholar] [CrossRef] [Green Version]
- Poulose, N.; Sajayan, A.; Ravindran, A.; Sreechithra, T.; Vardhan, V.; Selvin, J.; Kiran, G.S. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. J. Photochem. Photobiol. B Biol. 2020, 205, 111816. [Google Scholar] [CrossRef]
- Doh, H.; Dunno, K.D.; Whiteside, W.S. Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll. 2020, 105, 105744. [Google Scholar] [CrossRef]
- Geraldes, V.; Pinto, E. Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals 2021, 14, 63. [Google Scholar] [CrossRef]
- Fitton, J.H.; Irhimeh, M.; Teas, J. 14 Marine Algae and Polysaccharides with Therapeutic Applications. Mar. Nutraceuticals Funct. Foods 2008, 345. [Google Scholar] [CrossRef]
- Lawrence, K.P.; Gacesa, R.; Long, P.F.; Young, A.R. Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid palythine. Br. J. Dermatol. 2018, 178, 1353–1363. [Google Scholar] [CrossRef] [Green Version]
- Prima, N.; Andriyono, S. Techniques of additional Kappaphycus alvarezii on seaweed face mask production. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Gothenburg, Sweden, 8–12 October 2021; p. 012021. [Google Scholar]
- Wang, L.; Jayawardena, T.U.; Yang, H.-W.; Lee, H.-G.; Jeon, Y.-J. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants 2020, 9, 724. [Google Scholar] [CrossRef]
- Valderrama, D. Social and Economic Dimensions of Seaweed Farming: A global review. In Proceedings of the Sixteenth Biennial Conference of the International Institute of Fisheries Economics and Trade, Dar es Salaam, Tanzania, 16–20 July 2012. [Google Scholar]
- Msuya, F.E. The impact of seaweed farming on the social and economic structure of seaweed farming communities in Zanzibar, Tanzania. ETI Bioinform. 2006, 1, 27. [Google Scholar]
- Rimmer, M.A.; Larson, S.; Lapong, I.; Purnomo, A.H.; Pong-Masak, P.R.; Swanepoel, L.; Paul, N.A. Seaweed aquaculture in Indonesia contributes to social and economic aspects of livelihoods and community wellbeing. Sustainability 2021, 13, 10946. [Google Scholar] [CrossRef]
- Koesling, M.; Kvadsheim, N.P.; Halfdanarson, J.; Emblemsvåg, J.; Rebours, C. Environmental impacts of protein-production from farmed seaweed: Comparison of possible scenarios in Norway. J. Clean. Prod. 2021, 307, 127301. [Google Scholar] [CrossRef]
- The European Commission. Blue bioeconomy—Towards a Strong and Sustainable EU Algae Sector. Communication 2022. Available online: https://oceans-and-fisheries.ec.europa.eu/news/towards-strong-and-sustainable-eu-algae-sector-conclusions-public-consultation-2021-02-11_en (accessed on 7 February 2022).
- Araújo, R.; Peteiro, C. Algae as Food and Food Supplements in Europe; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
Seaweed Phylum | Species | Protein Content (g kg−1 dw) |
---|---|---|
Chlorophyta | Cladophora rupestris | 184 |
Ulva intestinalis | 90 | |
Ulva lactuca | 93 | |
Rhodophyta (Red) | Ahnfeltia plicata | 201 |
Chondrus crispus | 103 | |
Delesseria sanguinea | 183 | |
Phaeophyceae (Brown) | Ascophyllum nodosum | 59 |
Fucus serratus | 71 | |
Laminaria digitata | 66 |
Species | Glutamic Acid | Aspartic Acid | Glycine | Alanine | Leucine |
---|---|---|---|---|---|
Alaria esculenta | 55.34 | 40.48 | 36.22 | 35.64 | 24.69 |
Laminaria digitata | 23.78 | 15.42 | 14.54 | 13.42 | 12.78 |
Saccharina latissima | 18.40 | 19.41 | 10.59 | 9.98 | 12.55 |
Raw Material | Key Products |
---|---|
Tree exudates | Gum Arabic, Tragacanth, Karaya |
Seed flours | Guar Gum, Locust Bean Gum, Tara, Cassia Tora |
Plant fragments | Pectin, Cellulose |
Fermentation biomass | Xanthan, Curdlan, Gellan |
Seaweed extracts | Carrageenan, Agar, Alginate |
Animal origin | Gelatin, Chitosan, Isinglass |
Drying Method | Conditions | Seaweed Species | Final Moisture Content (MC)/Ratio (MR) | Results | Drying Kinetics Model | Reference |
---|---|---|---|---|---|---|
Dehumidified air assisted tray drying | T: 40 to 70 °C; V: 5 and 7 m/s; DT: 100 to 3000 min | Eucheuma cottonii | MC: 15% (w.b.) | Higher air temperature and air velocity resulted in faster water removal. Moreover, temperatures below 70 °C resulted in a reasonable seaweed quality | Page model | [101] |
Solar drying and shade drying | Solar DT: 5 days; Shade DT: 8 days; | N/A | MC Solar: 24–61% (d.b.); MC shade: 40–48% (d.b.) | Samples dried unevenly. Henderson and Pabis model was adopted | Henderson and Pabis model | [100] |
Hot air drying | T: 35 to 75 °C; RH: 30%; V: 2 m/s; DT: 120 to 240 min | Ascophylum nodosum, Undaria pinnatifida | MR: 0.03 | Temperature affected drying time and color significantly. Conventional air drying can be considered adequate for A. nodosum, but not for U. pinnatifida. | Page model | [102] |
Osmotic dehydration assisted hot air drying | T: 30 °C; RH: 14%; DT: 2 h | Porphyra columbina | MC: 7.9% (d.b.) | Osmotic dehydration, as a pretreatment for air-dried seaweeds, did not seem to improve the final product quality | Page model | [103] |
Vacuum drying | T: 40–80 °C; P: 15 kPa; DT: 180 to 800 min | Pyropia orbicularis | MR < 0.1 | Vacuum drying at 70 °C had the highest total phenolic, carotenoid and phycoerythrin and phycocyanin content, lightness as well as antioxidant capacity. | Weibull model | [104] |
Sauna treatment assisted solar drying | T: 35–40 °C; RH: 32–80%; DT: 2 days | Kappaphyccus alvarezii | MC: 35% (d.b.) | Sauna treated seaweed reduced the drying time by 57.9% | Page model | [105] |
Spray drying | T: 140–180 °C; FFR: 3–5 rpm; | Sargassum muticum | MC: 1.83–3.83% (d.b.) | Good-quality, stable seaweed powder with acceptable properties was spray dried at 140 °C and 3 rpm, with 4% of maltodextrin. | N/A | [106] |
Freeze drying | T: −86 °C; DT: 48 h | Kappaphycus alvarezii | MC: 11% (d.b.) | Freeze drying did not show any benefit to retaining any seaweed chemical compositions | N/A | [107] |
Ultrasound assisted fluidized bed drying | US: Fre: 26 kHz; P: 170 W; V: 6.7 m/s; DT: 110 min USP: Fre: 20 kHz; P: 500 W; DT: 80 min | Ascophylum nodosum | MC: 10% (d.b.) | Airborne ultrasound dried recovered the best total phenolic content as well as colour, however, no benefit in reducing drying time. Ultrasound pretreatment had the lowest drying energy consumption. | Page model | [108] |
Fluidized bed drying | T: 40–60 °C; V: 0.5–1 m/s | Echium amoenum | N/A | The optimal drying conditions were air velocity of 0.86 m/s at 60 °C in terms of highest bioactive compound content, and minimum drying time. | N/A | [109] |
Spray drying | Pretreated with USP T: inlet 175 °C/outlet 80 °C | Gracilaria secundata combined with amaranth protein | N/A | Spray drying can be used as an alternative to freeze-drying when producing conjugates with observed improvement in water holding capacity. | N/A | [110] |
Food Product | Seaweed Species | Seaweed Processing | Impact | Reference |
---|---|---|---|---|
Jelly | Gracilaria verricosa, Ulva lactuca & Sargussum wightti |
|
| [137] |
Pork | Laminaria digitata & Fucus vesiculosus |
|
| [138] |
Beef | Himanthalia elongata |
|
| [139] |
Chicken | Himanthalia elongata | Powdered seaweed employed: 3% dry matter |
| [140] |
Salmon | Saccharina Latissima |
|
| [141] |
Bread | Fucus vesiculosus |
|
| [142] |
Gluten-free pasta | Laminaria ochroleuca |
|
| [143] |
Noodle | Gracilaria seaweed |
|
| [144] |
Milk | Ascophyllum nodosum & Fucus vesiculosus |
|
| [145] |
Spice | Kappaphycus alverezii |
|
| [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Healy, L.E.; Zhu, X.; Pojić, M.; Sullivan, C.; Tiwari, U.; Curtin, J.; Tiwari, B.K. Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023, 13, 386. https://doi.org/10.3390/biom13020386
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules. 2023; 13(2):386. https://doi.org/10.3390/biom13020386
Chicago/Turabian StyleHealy, Laura E., Xianglu Zhu, Milica Pojić, Carl Sullivan, Uma Tiwari, James Curtin, and Brijesh K. Tiwari. 2023. "Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development" Biomolecules 13, no. 2: 386. https://doi.org/10.3390/biom13020386
APA StyleHealy, L. E., Zhu, X., Pojić, M., Sullivan, C., Tiwari, U., Curtin, J., & Tiwari, B. K. (2023). Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules, 13(2), 386. https://doi.org/10.3390/biom13020386