Role of Cytokine-Inducible SH2 Domain-Containing (CISH) Protein in the Regulation of Erythropoiesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Mouse Studies
2.2. Embryo Analysis
2.3. Blood Analysis
2.4. Bone Marrow and Spleen Harvest
2.5. FACS
2.6. Colony-Forming Assays
2.7. Gene Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Role of CISH in Developmental Erythropoiesis
3.2. Role of CISH in Steady-State Erythropoiesis
3.3. Role of CISH in EPO-Induced Erythropoiesis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojchowski, D.M.; Menon, M.P.; Sathyanarayana, P.; Fang, J.; Karur, V.; Houde, E.; Kapelle, W.; Bogachev, O. Erythropoietin-dependent erythropoiesis: New insights and questions. Blood Cells Mol. Dis. 2006, 36, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Kuhrt, D.; Wojchowski, D.M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 2015, 125, 3536–3541. [Google Scholar] [CrossRef] [PubMed]
- Trengove, M.C.; Ward, A.C. SOCS proteins in development and disease. Am. J. Exp. Clin. Immunol. 2013, 2, 1–29. [Google Scholar]
- Yoshimura, A.; Ohkubo, T.; Kiguchi, T.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Hara, T.; Miyajima, A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995, 14, 2816–2826. [Google Scholar] [CrossRef] [PubMed]
- Sobah, M.L.; Liongue, C.; Ward, A.C. SOCS proteins in immunity, inflammatory diseases and immune-related cancer. Front. Med. 2021, 8, 727987. [Google Scholar] [CrossRef] [PubMed]
- Verdier, F.; Chretien, S.; Muller, O.; Varlet, P.; Yoshimura, A.; Gisselbrecht, S.; Lacombe, C.; Mayeux, P. Proteasomes regulate erythropoietin receptor and STAT5 activation: Possible involvement of the ubiquitinated CIS protein. J. Biol. Chem. 1998, 273, 28185–28190. [Google Scholar] [CrossRef] [PubMed]
- Piessevaux, J.; De Ceuninck, L.; Catteeuw, D.; Peelman, F.; Tavernier, J. Elongin B/C recruitment regulates substrate binding by CIS. J. Biol. Chem. 2008, 283, 21334–21346. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Masuhara, M.; Mitsui, K.; Yokouchi, M.; Ohtsubo, M.; Misawa, H.; Miyajima, A.; Yoshimura, A. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997, 89, 3148–3154. [Google Scholar] [CrossRef]
- Ketteler, R.; Moghraby, C.S.; Hsiao, J.G.; Sandra, O.; Lodish, H.F.; Klingmuller, U. The cytokine-inducible Src homology domain-containing protein negatively regulates signaling by promoting apoptosis in erythroid progenitor cells. J. Biol. Chem. 2003, 278, 2654–2660. [Google Scholar] [CrossRef]
- Matsumoto, A.; Seki, Y.; Kubo, M.; Ohtsuka, S.; Suzuki, A.; Hayashi, I.; Tsuji, K.; Nakahata, T.; Okabe, M.; Yamada, S.; et al. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2 protein-1 (CIS1) transgenic mice. Mol. Cell. Biol. 1999, 19, 6396–6407. [Google Scholar] [CrossRef]
- Yang, X.O.; Zhang, H.; Kim, B.S.; Niu, X.; Peng, J.; Chen, Y.; Kerketta, R.; Lee, Y.H.; Chang, S.H.; Corry, D.B.; et al. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat. Immunol. 2013, 14, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.C.; Guittard, G.C.; Franco, Z.; Crompton, J.G.; Eil, R.L.; Patel, S.J.; Ji, Y.; Van Panhuys, N.; Klebanoff, C.A.; Sukumar, M.; et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J. Exp. Med. 2015, 212, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Delconte, R.B.; Kolesnik, T.B.; Dagley, L.F.; Rautela, J.; Shi, W.; Putz, E.M.; Stannard, K.; Zhang, J.G.; Teh, C.; Firth, M.; et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 2016, 17, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.; Souza-Fonseca-Guimaraes, F.; Yang, Y.; D’silva, D.; Kratina, T.; Dagley, L.; Hediyeh-Zadeh, S.; Rautela, J.; Masters, S.L.; Davis, M.J.; et al. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J. Exp. Med. 2020, 217, e20191421. [Google Scholar] [CrossRef]
- Naser, W.; Maymand, S.; Dlugolenski, D.; Basheer, F.; Ward, A.C. The role of cytokine-inducible SH2 domain-containing (CISH) protein in the regulation of basal and cytokine-mediated myelopoiesis. Int. J. Mol. Sci. 2023, 24, 12757. [Google Scholar] [CrossRef] [PubMed]
- Naser, W.; Maymand, S.; Rivera, L.R.; Connor, T.; Liongue, C.; Smith, C.M.; Aston-Mourney, K.; McCulloch, D.R.; McGee, S.L.; Ward, A.C. Cytokine-inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. FASEB J. 2022, 36, e22320. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.S.; Noor, S.M.; Fraser, F.W.; Sertori, R.; Liongue, C.; Ward, A.C. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish. J. Immunol. 2014, 192, 5739–5748. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Gertsenstein, M.; Vintersten, K.; Behringer, R. Staining whole mouse embryos for beta-galactosidase (lacZ) activity. CSH Protoc. 2007, 2007, pdb-prot4725. [Google Scholar]
- Liu, J.; Zhang, J.; Ginzburg, Y.; Li, H.; Xue, F.; De Franceschi, L.; Chasis, J.A.; Mohandas, N.; An, X. Quantitative analysis of murine terminal erythroid differentiation in vivo: Novel method to study normal and disordered erythropoiesis. Blood 2013, 121, e43–e49. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Richmond, T.D.; Chohan, M.; Barber, D.L. Turning cells red: Signal transduction mediated by erythropoietin. Trends Cell. Biol. 2005, 15, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, E.; van Dijk, T.; Parren-van Amelsvoort, M.; Grossmann, K.S.; Schaeper, U.; Toney-Earley, K.; Waltz, S.E.; Löwenberg, B.; von Lindern, M. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors. Blood 2004, 103, 4457–4465. [Google Scholar] [CrossRef][Green Version]
- Povinelli, B.J.; Nemeth, M.J. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells 2014, 32, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, M.D.; Allen, M.A.; Bensard, C.L.; Wang, X.; Schwinn, M.K.; Qin, B.; Long, H.W.; Daniels, D.L.; Hahn, W.C.; Dowell, R.D.; et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 2013, 153, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, M.; Kuhn, H.; Borchert, A. Systemic deficiency of mouse arachidonate 15-lipoxygenase induces defective erythropoiesis and transgenic expression of the human enzyme rescues this phenotype. FASEB J. 2020, 34, 14318–14335. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, A.F.; Brugnerotto, A.F.; Duarte, A.S.; Lanaro, C.; Costa, G.G.L.; Saad, S.T.O.; Costa, F.F. Global gene expression reveals a set of new genes involved in the modification of cells during erythroid differentiation. Cell Prolif. 2010, 43, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Moriggl, R.; Sexl, V.; Kenner, L.; Duntsch, C.; Stangl, K.; Gingras, S.; Hoffmeyer, A.; Bauer, A.; Piekorz, R.; Wang, D.; et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005, 7, 87–99. [Google Scholar] [CrossRef]
- Wierenga, A.T.; Vellenga, E.; Schuringa, J.J. Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol. Cell. Biol. 2008, 28, 6668–6680. [Google Scholar] [CrossRef]
- Debierre-Grockiego, F. Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 2004, 9, 717–728. [Google Scholar] [CrossRef]
RBC (×105/mm3) | Hb (g/dL) | HCT (%) | MCV (fL) | MCH (g/dL) | MCHC (%) | |
---|---|---|---|---|---|---|
WT | 11.3 ± 0.1 | 19.0 ± 0.2 | 55.7 ± 0.6 | 48.6 ± 0.1 | 16.8 ± 0.2 | 34.6 ± 0.4 |
KO | 11.3 ± 0.2 | 18.0 ± 0.3 * | 51.9 ± 1.4 * | 49.7 ± 0.2 *** | 16.7 ± 0.2 | 33.2 ± 0.3 * |
RBC (×105/mm3) | Hb (g/dL) | HCT (%) | MCV (fL) | MCH (g/dL) | MCHC (%) | |
---|---|---|---|---|---|---|
WT | 11.0 ± 0.1 | 18.4 ± 0.2 | 55.1 ± 0.5 | 48.8 ± 0.2 | 16.5 ± 0.2 | 34.4 ± 0.5 |
WT + EPO 4d | 11.9 ± 0.4 | 20.1 ± 0.7 # | 59.5 ± 1.5 # | 51.3 ± 0.6 ## | 17.2 ± 0.2 # | 33.1 ± 0.4 |
WT +EPO 6d | 12.8 ± 0.5 ## | 21.9 ± 2.2 ### | 68.0 ± 1.5 ## | 55.7 ± 0.2 ### | 17.7 ± 0.3 # | 31.7 ± 0.6 # |
WT + EPO 6 + 2d | 12.9 ± 0.6 ## | 21.6 ± 0.8 ### | 66.2 ± 2.0 ## | 54.3 ± 1.2 ### | 17.4 ± 0.3 # | 31.7 ± 0.2 # |
KO | 11.6 ± 0.6 | 16.7 ± 0.5 ** | 47.8 ± 2.4 * | 49.5 ± 0.2 * | 16.7 ± 0.1 | 33.0 ± 0.2 * |
KO + EPO 4d | 10.5 ± 0.8 | 17.1 ± 0.8 * | 49.4 ± 2.4 * | 52.5 ± 1.0 ## | 17.4 ± 0.3 # | 33.6 ± 0.3 |
KO + EPO 6d | 12.3 ± 0.9 | 19.7 ± 0.7 # | 60.8 ± 2.6 # | 55.0 ± 1.0 ### | 18.2 ± 0.7 # | 31.9 ± 0.2 # |
KO + EPO 6 + 2d | 13.0 ± 0.9 | 20.4 ± 0.8 # | 66.0 ± 2.7 ## | 54.0 ± 0.6 ### | 17.2 ± 0.1 # | 31.9 ± 0.3 ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maymand, S.; Lakkavaram, A.L.; Naser, W.; Rasighaemi, P.; Dlugolenski, D.; Liongue, C.; Stambas, J.; de Koning-Ward, T.F.; Ward, A.C. Role of Cytokine-Inducible SH2 Domain-Containing (CISH) Protein in the Regulation of Erythropoiesis. Biomolecules 2023, 13, 1510. https://doi.org/10.3390/biom13101510
Maymand S, Lakkavaram AL, Naser W, Rasighaemi P, Dlugolenski D, Liongue C, Stambas J, de Koning-Ward TF, Ward AC. Role of Cytokine-Inducible SH2 Domain-Containing (CISH) Protein in the Regulation of Erythropoiesis. Biomolecules. 2023; 13(10):1510. https://doi.org/10.3390/biom13101510
Chicago/Turabian StyleMaymand, Saeed, Asha L. Lakkavaram, Wasan Naser, Parisa Rasighaemi, Daniel Dlugolenski, Clifford Liongue, John Stambas, Tania F. de Koning-Ward, and Alister C. Ward. 2023. "Role of Cytokine-Inducible SH2 Domain-Containing (CISH) Protein in the Regulation of Erythropoiesis" Biomolecules 13, no. 10: 1510. https://doi.org/10.3390/biom13101510
APA StyleMaymand, S., Lakkavaram, A. L., Naser, W., Rasighaemi, P., Dlugolenski, D., Liongue, C., Stambas, J., de Koning-Ward, T. F., & Ward, A. C. (2023). Role of Cytokine-Inducible SH2 Domain-Containing (CISH) Protein in the Regulation of Erythropoiesis. Biomolecules, 13(10), 1510. https://doi.org/10.3390/biom13101510