Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Isolation
2.2. SSR Identification and Evaluation
2.3. HRM-PCR Amplification and Data Analysis
3. Results
3.1. SSR-HRM Optimization and Evaluation
3.2. SSR Fingerprint Construction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raymond, O.; Gouzy, J.; Just, J.; Badouin, H.; Verdenaud, M.; Lemainque, A.; Vergne, P.; Moja, S.; Choisne, N.; Pont, C.; et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Hagag, H.A.; Bazaid, S.A.; Abdel-Hameed, E.-S.S.; Salman, M. Cytogenetic, cytotoxic and GC-MS studies on concrete and absolute oils from Taif rose, Saudi Arabia. Cytotechnology 2014, 66, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose Flowers-A Delicate Perfume or a Natural Healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.H.; Du, X.Y.; Zhong, M.C.; Fang, W.; Suo, Z.Q.; Wang, D.; Dong, X.; Jiang, X.D.; Hu, J.Y. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China. Hortic. Res. 2022, 9, uhab051. [Google Scholar] [CrossRef] [PubMed]
- Zang, F.; Ma, Y.; Tu, X.; Huang, P.; Wu, Q.; Li, Z.; Liu, T.; Lin, F.; Pei, S.; Zang, D.; et al. A high-quality chromosome-level genome of wild Rosa rugosa. DNA Res. 2021, 28, dsab017. [Google Scholar] [CrossRef]
- Yang, C.; Ma, Y.; Cheng, B.; Zhou, L.; Yu, C.; Luo, L.; Pan, H.; Zhang, Q. Molecular Evidence for Hybrid Origin and Phenotypic Variation of Rosa Section Chinenses. Genes 2020, 11, 996. [Google Scholar] [CrossRef]
- Xia, A.N.; Tang, X.J.; Dong, G.Z.; Lei, S.M.; Liu, Y.G.; Tian, X.M. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS. Lebensm. Wiss. Technol. 2021, 151, 112153. [Google Scholar] [CrossRef]
- Xiao, Z.; Luo, J.; Niu, Y.; Wu, M. Characterization of key aroma compounds from different rose essential oils using gas chromatography-mass spectrometry, gas chromatography-olfactometry and partial least squares regression. Nat. Prod. Res. 2018, 32, 1567–1572. [Google Scholar] [CrossRef]
- Dobreva, A.; Nedeltcheva-Antonova, D. Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules 2023, 28, 1281. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Chu, Y.; Feng, L. BOX38, a DNA Marker for Selection of Essential Oil Yield of Rosa × rugosa. Biomolecules 2023, 13, 439. [Google Scholar] [CrossRef]
- Veluru, A.; Bhat, K.V.; Raju, D.V.S.; Prasad, K.V.; Tolety, J.; Bharadwaj, C.; Mitra, S.; Banyal, N.; Singh, K.P.; Panwar, S. Characterization of Indian bred rose cultivars using morphological and molecular markers for conservation and sustainable management. Physiol. Mol. Biol. Plants 2020, 26, 95–106. [Google Scholar] [CrossRef] [PubMed]
- De Vere, N.; Rich, T.C.; Trinder, S.A.; Long, C. DNA barcoding for plants. Methods Mol. Biol. 2015, 1245, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.M.F.; Lau, H.Y.; Abu-Bakar, N. Integration of advanced technologies for plant variety and cultivar identification. J. Biosci. 2021, 46, 91. [Google Scholar] [CrossRef]
- Al-Khalifah, N.S.; Shanavaskhan, A.E. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers. Methods Mol. Biol. 2017, 1638, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.S. SSR genotyping. Methods Mol. Biol. 2015, 1245, 77–89. [Google Scholar] [CrossRef]
- Gomes, S.; Breia, R.; Carvalho, T.; Carnide, V.; Martins-Lopes, P. Microsatellite High-Resolution Melting (SSR-HRM) to Track Olive Genotypes: From Field to Olive Oil. J. Food Sci. 2018, 83, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Han, C.; Zhou, J.; Hu, R.; Jiang, X.; Wu, F.; Tian, K.; Nie, G.; Zhang, X. Fingerprint identification of white clover cultivars based on SSR molecular markers. Mol. Biol. Rep. 2020, 47, 8513–8521. [Google Scholar] [CrossRef]
- Parthiban, S.; Govindaraj, P.; Senthilkumar, S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech 2018, 8, 144. [Google Scholar] [CrossRef]
- Liang, C.; Wan, T.; Xu, S.; Li, B.; Li, X.; Feng, Y.; Cai, Y. Molecular identification and genetic analysis of cherry cultivars using capillary electrophoresis with fluorescence-labeled SSR markers. 3 Biotech 2018, 8, 16. [Google Scholar] [CrossRef]
- Nishio, S.; Kunihisa, M.; Taniguchi, F.; Kajiya-Kanegae, H.; Moriya, S.; Takeuchi, Y.; Sawamura, Y. Development of SSR Databases Available for Both NGS and Capillary Electrophoresis in Apple, Pear and Tea. Plants 2021, 10, 2796. [Google Scholar] [CrossRef]
- Distefano, G.; Caruso, M.; La Malfa, S.; Gentile, A.; Wu, S.B. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR—An example in citrus. PLoS ONE 2012, 7, e44202. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiong, C.; He, X.; Lu, Z.; Zhang, X.; Chen, X.; Sun, W. Using SSR-HRM to Identify Closely Related Species in Herbal Medicine Products: A Case Study on Licorice. Front. Pharmacol. 2018, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Chedid, E.; Rizou, M.; Kalaitzis, P. Application of high resolution melting combined with DNA-based markers for quantitative analysis of olive oil authenticity and adulteration. Food Chem. X 2020, 6, 100082. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, C.; Liu, Q.; Zhang, X.; Yue, B.; Hancock, J. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 2018, 34, 681–683. [Google Scholar] [CrossRef]
- Botezatu, I.V.; Kondratova, V.N.; Shelepov, V.P.; Lichtenstein, A.V. DNA melting analysis: Application of the “open tube” format for detection of mutant KRAS. Anal. Biochem. 2011, 419, 302–308. [Google Scholar] [CrossRef]
- Wahyuningsih, H.; Cayami, F.K.; Bahrudin, U.; Sobirin, M.A.; Mundhofir, F.E.; Faradz, S.M.; Hisatome, I. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance. Yonago Acta Med. 2017, 60, 24–30. [Google Scholar]
- Kim, N.; Kwon, J.S.; Kang, W.H.; Yeom, S.I. High-Resolution Melting (HRM) Genotyping. Methods Mol. Biol. 2023, 2638, 337–349. [Google Scholar] [CrossRef]
- Dehbashi, S.; Tahmasebi, H.; Alikhani, M.Y.; Keramat, F.; Arabestani, M.R. Optimization and development of high-resolution melting curve analysis (HRMA) assay for detection of New Delhi metallo-β-lactamase (NDM) producing Pseudomonas aeruginosa. AIMS Microbiol. 2022, 8, 178–192. [Google Scholar] [CrossRef]
- Rojas, M.F.; König, G.A.; Vagnozzi, A.E.; Vera, F.S.; Scolaro, L.A.; Craig, M.I. Optimization and application of a high-resolution melting protocol in the characterization of avian infectious laryngotracheitis virus. Rev. Argent. Microbiol. 2021, 53, 89–97. [Google Scholar] [CrossRef]
- Saygili, I.; Kandemir, N.; Kinay, A.; Aytac, S.; Ayan, A.K. SSR marker-based genetic characterization of Turkish oriental tobaccos. Mol. Biol. Rep. 2022, 49, 11351–11358. [Google Scholar] [CrossRef]
- Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 2000, 109, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Keinan, A.; Clark, A.G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 2012, 336, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Nevame Adedze, Y.M.; Chofong, G.N.; Gandeka, M.; Deng, Z.; Teng, L.; Zhang, X.; Sun, G.; Si, L.; Li, W. Identification of high-efficiency SSR markers for assessing watermelon genetic purity. J. Genet. 2018, 97, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Ipek, A.; Barut, E. SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochem. Genet. 2011, 49, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sahoo, J.P.; Swain, B.; Nanda, S.; Mishra, T.K.; Dwibedi, S.K.; Jena, B.; Pradhan, B.; Parida, M.R.; Jena, P.K.; et al. Biochemical and SSR based molecular characterization of elite rice varieties for straw lignocellulose. Mol. Biol. Rep. 2023, 50, 5535–5545. [Google Scholar] [CrossRef]
- Wang, C.; Ma, X.; Tang, L. Isolation and characterization of twelve polymorphic microsatellite markers in the endangered Hopea hainanensis (Dipterocarpaceae). Ecol. Evol. 2021, 11, 4–10. [Google Scholar] [CrossRef]
Cultivars | Accession Name a | Botanical Name b |
---|---|---|
high-oil-yield cultivars | ||
1 | Plena_alba | R. rugosa ‘plena’ f. alba |
2 | Fenghua | R. rugosa ‘Fenghua’ |
3 | Xihu1 | R. rugosa ‘Xihu1’ |
4 | Xihu3 | R. rugosa ‘Xihu3’ |
5 | Danbanhong | R. rugosa ‘Danbanhong’ |
6 | Liangyehong | R. rugosa ‘Liangyehong’ |
7 | Pingyin11 | R. rugosa ‘Pingyin11′ |
8 | Plena | R. rugosa ‘plena’ |
low-oil-yield cultivars | ||
9 | XiHu2 | R. rugosa ‘Xihu2’ |
10 | Pingyin | R. rugosa ‘Pingyin’ |
11 | Russia | R. centifolia ‘Xiangshui’ |
12 | Banchongban | R. rugosa ’Banchongban‘ |
13 | Damask_Oil | R. damascena ‘Oil’ |
14 | Kushui | R. rugosa ‘Kushui’ |
15 | HANSA | R. rugosa ‘HANSA’ |
16 | Daguo | R. rugosa ‘Daguo’ |
17 | Zizhi_DH | R. rugosa ‘Zizhi_dahong’ |
18 | Zizhi | R. rugosa ‘Zizhi’ |
19 | Tuwei | R. rugosa ‘Tuwei’ |
Group | DNA Template (ng) | Tm (°C) | Primers (µL) | Specificity | Reproducibility |
---|---|---|---|---|---|
1 | 20 | 56 | 0.5 | - | - |
2 | 20 | 60 | 0.25 | B | B |
3 | 20 | 64 | 0.75 | A | A |
4 | 50 | 56 | 0.25 | - | - |
5 | 50 | 60 | 0.75 | B | C |
6 | 50 | 64 | 0.5 | B | C |
7 | 100 | 56 | 0.75 | - | - |
8 | 100 | 60 | 0.5 | - | - |
9 | 100 | 64 | 0.25 | B | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, N.; Feng, L.; Wang, J. Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis. Biomolecules 2023, 13, 1468. https://doi.org/10.3390/biom13101468
Xu X, Wang N, Feng L, Wang J. Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis. Biomolecules. 2023; 13(10):1468. https://doi.org/10.3390/biom13101468
Chicago/Turabian StyleXu, Xiaoyu, Nan Wang, Liguo Feng, and Jianwen Wang. 2023. "Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis" Biomolecules 13, no. 10: 1468. https://doi.org/10.3390/biom13101468
APA StyleXu, X., Wang, N., Feng, L., & Wang, J. (2023). Simple Sequence Repeat Fingerprint Identification of Essential-Oil-Bearing Rosa rugosa via High-Resolution Melting (HRM) Analysis. Biomolecules, 13(10), 1468. https://doi.org/10.3390/biom13101468