Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target?
Abstract
:1. Introduction
2. Cellular Adaptivity of SC—The Molecular Activation of the Repair Phenotype
- The initiation of an immune response with the macrophage recruitment and activation of myelin autophagy. There is a marked downregulation of myelin related proteins, including Myelin Protein Zero (MPZ), peripheral myelin protein (PMP22), Early Growth Response 2 (EGR2, also known as krox20), Connexin-32, Myelin Basic Protein (MBP), Myelin-associated glycoprotein (MAG) and periaxin [7]. There is an upregulated production of monocyte chemotractants, Interleukin-1β (IL-1β), Tumour Necrosis Factor-α (TNF-α) and inducible Nitric Oxide Sythase (i-NOS) [8,9]. Both activated macrophages and SCs remove and phagocytose the axonal and myelin debris [10] Macrophages also play a role in converting SCs to a regenerative phenotype via secreted Interleukin-1 (IL-1), which induces SC nerve growth factor (NGF) secretion. The Macrophage secretion of Transforming Growth Factor-β (TGF-β) and Insulin-like growth factor 1 (IGF-1) encourages mitotic activity in SC, reaching a peak 3–4 days after injury [11].
- The rSC upregulation and secretion of neurotrophic agents (glial derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and vascular endothelial growth factor (VEGF) supports neuronal survival and growth [12].
- rSC proliferate and undergo morphological changes with significant elongation (three-fold) to form the bands of Büngner, which remodel and prepare the basal lamina for the regenerating axon [13].
2.1. c-Jun
2.2. STAT3
2.3. Merlin/YAP
2.4. Epigenetic Signalling/Chromatin Remodelling
2.5. Other Pathways
3. Failure of Regeneration—The Loss of the Repair Phenotype
4. The Chronically Denervated SC as a Therapeutic Target
4.1. Pharmaceutical Intervention
4.2. Genetic Engineering
4.3. Cellular Therapy
4.4. Other Novel Interventions
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, C.; Peek, A.L.; Power, D.; Heneghan, N.R. Psychological consequences of traumatic upper limb peripheral nerve injury: A systematic review. Hand Ther. 2017, 22, 35–45. [Google Scholar] [CrossRef]
- Jain, D.K.; Bhardwaj, P.; Venkataramani, H.; Sabapathy, S.R. An epidemiological study of traumatic brachial plexus injury patients treated at an Indian centre. Indian J. Plast. Surg. 2012, 45, 498–503. [Google Scholar] [CrossRef]
- Hong, T.S.; Tian, A.; Sachar, R.; Ray, W.Z.; Brogan, D.M.; Dy, C.J. Indirect Cost of Traumatic Brachial Plexus Injuries in the United States. J. Bone Jt. Surg.-Am. Vol. 2019, 101, E80. [Google Scholar] [CrossRef] [PubMed]
- Aegineta, P. The seven books of Paulus Aegineta; Sydenham Society: Sydenham, UK, 1844; Volume 4. [Google Scholar]
- Grinsell, D.; Keating, C.P. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. BioMed Res. Int. 2014, 2014, 698256. [Google Scholar] [CrossRef] [PubMed]
- Sardella-Silva, G.; Mietto, B.S.; Ribeiro-Resende, V.T. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021, 11, 1887–1900. [Google Scholar] [CrossRef] [PubMed]
- Jessen, K.R.; Mirsky, R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front. Cell Neurosci. 2019, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Tofaris, G.K.; Patterson, P.H.; Jessen, K.R.; Mirsky, R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 6696–6703. [Google Scholar] [CrossRef]
- Ruohonen, S.; Khademi, M.; Jagodic, M.; Taskinen, H.S.; Olsson, T.; Roytta, M. Cytokine responses during chronic denervation. J. Neuroinflamm. 2005, 2, 26. [Google Scholar] [CrossRef]
- Reichert, F.; Saada, A.; Rotshenker, S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. J. Neurosci. 1994, 14, 3231–3245. [Google Scholar] [CrossRef]
- Taskinen, H.S.; Röyttä, M. The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol. 1997, 93, 252–259. [Google Scholar] [CrossRef]
- Jessen, K.R.; Arthur-Farraj, P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019, 67, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, J.A.; Pilch, K.S.; van der Lans, M.; Fazal, S.V.; Benito, C.; Wagstaff, L.J.; Mirsky, R.; Jessen, K.R. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J. Neurosci. 2017, 37, 9086–9099. [Google Scholar] [CrossRef] [PubMed]
- Bosse, F.; Hasenpusch-Theil, K.; Kury, P.; Muller, H.W. Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. J. Neurochem. 2006, 96, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Groh, J.; Wettmarshausen, J.; Martini, R. Nonuniform molecular features of myelinating Schwann cells in models for CMT1: Distinct disease patterns are associated with NCAM and c-Jun upregulation. Glia 2014, 62, 736–750. [Google Scholar] [CrossRef]
- Jessen, K.R.; Mirsky, R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front. Cell. Neurosci. 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 2012, 75, 633–647. [Google Scholar] [CrossRef]
- De Felipe, C.; Hunt, S.P. The differential control of c-jun expression in regenerating sensory neurons and their associated glial cells. J. Neurosci. 1994, 14, 2911–2923. [Google Scholar] [CrossRef]
- Stewart, H.J. Expression of c-Jun, Jun B, Jun D and cAMP response element binding protein by Schwann cells and their precursors in vivo and in vitro. Eur. J. Neurosci. 1995, 7, 1366–1375. [Google Scholar] [CrossRef]
- Shy, M.E.; Shi, Y.; Wrabetz, L.; Kamholz, J.; Scherer, S.S. Axon-Schwann cell interactions regulate the expression of c-jun in Schwann cells. J. Neurosci. Res. 1996, 43, 511–525. [Google Scholar] [CrossRef]
- Moreau, N.; Boucher, Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int. J. Mol. Sci. 2020, 21, 9115. [Google Scholar] [CrossRef]
- Fontana, X.; Hristova, M.; Da Costa, C.; Patodia, S.; Thei, L.; Makwana, M.; Spencer-Dene, B.; Latouche, M.; Mirsky, R.; Jessen, K.R.; et al. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol. 2012, 198, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, L.J.; Gomez-Sanchez, J.A.; Fazal, S.V.; Otto, G.W.; Kilpatrick, A.M.; Michael, K.; Wong, L.Y.N.; Ma, K.H.; Turmaine, M.; Svaren, J.; et al. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring schwann cell c-jun. eLife 2021, 10, e62232. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Ohazama, A.; Maeda, T.; Seo, K. The Sonic Hedgehog signaling pathway regulates inferior alveolar nerve regeneration. Neurosci. Lett. 2018, 671, 114–119. [Google Scholar] [CrossRef]
- Martinez, J.A.; Kobayashi, M.; Krishnan, A.; Webber, C.; Christie, K.; Guo, G.; Singh, V.; Zochodne, D.W. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen. Exp. Neurol. 2015, 271, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Kim, H.; Lee, H.; Grove, M.; Smith, G.M.; Son, Y.-J. Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J. Neurosci. 2017, 37, 10955–10970. [Google Scholar] [CrossRef] [PubMed]
- Gambarotta, G.; Ronchi, G.; Geuna, S.; Perroteau, I. Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regen. Res. 2014, 9, 1183. [Google Scholar] [CrossRef]
- Eggers, R.; de Winter, F.; Hoyng, S.A.; Roet, K.C.; Ehlert, E.M.; Malessy, M.J.; Verhaagen, J.; Tannemaat, M.R. Lentiviral vector-mediated gradients of GDNF in the injured peripheral nerve: Effects on nerve coil formation, Schwann cell maturation and myelination. PLoS ONE 2013, 8, e71076. [Google Scholar] [CrossRef]
- Parkinson, D.B.; Dong, Z.; Bunting, H.; Whitfield, J.; Meier, C.; Marie, H.; Mirsky, R.; Jessen, K.R. Transforming growth factor β (TGFβ) mediates Schwann cell death in vitro and in vivo: Examination of c-Jun activation, interactions with survival signals, and the relationship of TGFβ-mediated death to Schwann cell differentiation. J. Neurosci. 2001, 21, 8572–8585. [Google Scholar] [CrossRef]
- Taveggia, C.; Zanazzi, G.; Petrylak, A.; Yano, H.; Rosenbluth, J.; Einheber, S.; Xu, X.; Esper, R.M.; Loeb, J.A.; Shrager, P.; et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005, 47, 681–694. [Google Scholar] [CrossRef]
- Syed, N.; Reddy, K.; Yang, D.P.; Taveggia, C.; Salzer, J.L.; Maurel, P.; Kim, H.A. Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J. Neurosci. 2010, 30, 6122–6131. [Google Scholar] [CrossRef]
- Fricker, F.R.; Bennett, D.L. The role of neuregulin-1 in the response to nerve injury. Future Neurol. 2011, 6, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.Y.; Kulhanek, D.J.; Eckenstein, F.P. Differential Patterns of ERK and STAT3 Phosphorylation after Sciatic Nerve Transection in the Rat. Exp. Neurol. 2000, 166, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Benito, C.; Davis, C.M.; Gomez-Sanchez, J.A.; Turmaine, M.; Meijer, D.; Poli, V.; Mirsky, R.; Jessen, K.R. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration. J. Neurosci. 2017, 37, 4255–4269. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, Z.; Dong, Q. LncRNA SNHG16 promotes Schwann cell proliferation and migration to repair sciatic nerve injury. Ann. Transl. Med. 2021, 9, 1349–1352. [Google Scholar] [CrossRef]
- Mindos, T.; Dun, X.P.; North, K.; Doddrell, R.D.; Schulz, A.; Edwards, P.; Russell, J.; Gray, B.; Roberts, S.L.; Shivane, A.; et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J. Cell Biol. 2017, 216, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Orkwis, J.A.; Harris, G.M. Cell shape and matrix stiffness impact Schwann cell plasticity via YAP/TAZ and Rho GTPases. Int. J. Mol. Sci. 2021, 22, 4821. [Google Scholar] [CrossRef]
- Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412. [Google Scholar] [CrossRef]
- Hung, H.A.; Sun, G.; Keles, S.; Svaren, J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J. Biol Chem. 2015, 290, 6937–6950. [Google Scholar] [CrossRef]
- Ma, K.H.; Hung, H.A.; Srinivasan, R.; Xie, H.; Orkin, S.H.; Svaren, J. Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. J. Neurosci. 2015, 35, 8640–8652. [Google Scholar] [CrossRef]
- Ma, K.H.; Hung, H.A.; Svaren, J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J. Neurosci. 2016, 36, 9135–9147. [Google Scholar] [CrossRef]
- Ramesh, R.; Manurung, Y.; Ma, K.H.; Blakely, T.; Won, S.; Wyatt, E.; Awatramani, R.; Svaren, J. JUN Regulation of Injury-induced Enhancers in Schwann Cells. J. Neurosci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.H.; Duong, P.; Moran, J.J.; Junaidi, N.; Svaren, J. Polycomb repression regulates Schwann cell proliferation and axon regeneration after nerve injury. Glia 2018, 66, 2487–2502. [Google Scholar] [CrossRef] [PubMed]
- Duong, P.; Ma, K.H.; Ramesh, R.; Moran, J.J.; Won, S.; Svaren, J. H3K27 demethylases are dispensable for activation of Polycomb-regulated injury response genes in peripheral nerve. J. Biol. Chem. 2021, 297, 100852. [Google Scholar] [CrossRef]
- Brugger, V.; Duman, M.; Bochud, M.; Munger, E.; Heller, M.; Ruff, S.; Jacob, C. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat. Commun. 2017, 8, 14272. [Google Scholar] [CrossRef]
- Wu, F.; Jiao, C.; Yang, Y.; Liu, F.; Sun, Z. Nerve conduit based on HAP/PDLLA/PRGD for peripheral nerve regeneration with sustained release of valproic acid. Cell Biol. Int. 2021, 45, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xing, D.; Peng, Z.; Rao, T. Enhanced Rat Sciatic Nerve Regeneration through Silicon Tubes Implanted with Valproic Acid. J. Reconstr. Microsurg. 2008, 24, 267–276. [Google Scholar] [CrossRef]
- Lahm, A.; Paolini, C.; Pallaoro, M.; Nardi, M.C.; Jones, P.; Neddermann, P.; Sambucini, S.; Bottomley, M.J.; Lo Surdo, P.; Carfi, A.; et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. USA 2007, 104, 17335–17340. [Google Scholar] [CrossRef]
- Gomis-Coloma, C.; Velasco-Aviles, S.; Gomez-Sanchez, J.A.; Casillas-Bajo, A.; Backs, J.; Cabedo, H. Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells. J. Cell Biol. 2018, 217, 1249–1268. [Google Scholar] [CrossRef]
- Jacob, C.; Christen, C.N.; Pereira, J.A.; Somandin, C.; Baggiolini, A.; Lotscher, P.; Ozcelik, M.; Tricaud, N.; Meijer, D.; Yamaguchi, T.; et al. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci. 2011, 14, 429–436. [Google Scholar] [CrossRef]
- Velasco-Aviles, S.; Patel, N.; Casillas-Bajo, A.; Frutos-Rincon, L.; Velasco, E.; Gallar, J.; Arthur-Farraj, P.; Gomez-Sanchez, J.A.; Cabedo, H. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair. Elife 2022, 11, e72917. [Google Scholar] [CrossRef]
- Gomez-Sanchez, J.A.; Patel, N.; Martirena, F.; Fazal, S.V.; Mutschler, C.; Cabedo, H. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int. J. Mol. Sci. 2022, 23, 2996. [Google Scholar] [CrossRef] [PubMed]
- Nocera, G.; Jacob, C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol. Life Sci. 2020, 77, 3977–3989. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ren, K.Y.; Wang, Y.H.; Kou, Y.H.; Zhang, P.X.; Peng, J.P.; Deng, L.; Zhang, H.B.; Jiang, B.G. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury. Artif. Cells Nanomed. Biotechnol. 2015, 43, 383–389. [Google Scholar] [CrossRef]
- Parrinello, S.; Napoli, I.; Ribeiro, S.; Wingfield Digby, P.; Fedorova, M.; Parkinson, D.B.; Doddrell, R.D.; Nakayama, M.; Adams, R.H.; Lloyd, A.C. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Furusho, M.; Dupree, J.L.; Bansal, R. Role of ERK1/2 MAPK Signaling in the Maintenance of Myelin and Axonal Integrity in the Adult CNS. J. Neurosci. 2014, 34, 16031–16045. [Google Scholar] [CrossRef]
- Napoli, I.; Noon, L.; Ribeiro, S.; Kerai, A.P.; Parrinello, S.; Rosenberg, L.H.; Collins, M.; Harrisingh, M.C.; White, I.J.; Woodhoo, A.; et al. A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and Peripheral Nerve Regeneration in vivo. Neuron 2012, 73, 729–742. [Google Scholar] [CrossRef]
- Harrisingh, M.C.; Perez-Nadales, E.; Parkinson, D.B.; Malcolm, D.S.; Mudge, A.W.; Lloyd, A.C. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J. 2004, 23, 3061–3071. [Google Scholar] [CrossRef]
- Holmes, W.; Young, J.Z. Nerve regeneration after immediate and delayed suture. J. Anat. 1942, 77, 63–96.10. [Google Scholar] [CrossRef]
- Fu, S.Y.; Gordon, T. Contributing factors to poor functional recovery after delayed nerve repair: Prolonged denervation. J. Neurosci. 1995, 15, 3886–3895. [Google Scholar] [CrossRef]
- Vuorinen, V.; Siironen, J.; Röyttä, M. Axonal regeneration into chronically denervated distal stump. Acta Neuropathol. 1995, 89, 209–218. [Google Scholar] [CrossRef]
- Sulaiman, O.A.R.; Gordon, T. Effects of Short-and Long-Term Schwann Cell Denervation on Peripheral Nerve Regeneration, Myelination, and Size. Glia 2000, 32, 234–246. [Google Scholar] [CrossRef]
- Jonsson, S.; Wiberg, R.; McGrath, A.M.; Novikov, L.N.; Wiberg, M.; Novikova, L.N.; Kingham, P.J. Effect of Delayed Peripheral Nerve Repair on Nerve Regeneration, Schwann Cell Function and Target Muscle Recovery. PLoS ONE 2013, 8, e56484. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, G.; Cillino, M.; Gambarotta, G.; Fornasari, B.E.; Raimondo, S.; Pugliese, P.; Tos, P.; Cordova, A.; Moschella, F.; Geuna, S. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J. Neurosurg. 2017, 127, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.B.; Laranjeira, S.G.; Eriksson, T.M.; Jessen, K.R.; Mirsky, R.; Quick, T.J.; Phillips, J.B. Characterising cellular and molecular features of human peripheral nerve degeneration. Acta Neuropathol. Commun. 2020, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, S.; Bradley, K.C. Endoneurial tube shrinkage in the distal segment of a severed nerve. J. Comp. Neurol. 1950, 93, 411–420. [Google Scholar] [CrossRef]
- Terenghi, G.; Calder, J.S.; Birch, R.; Hall, S.M. A Morphological Study of Schwann Cells and Axonal Regeneration in Chronically Transected Human Peripheral Nerves. J. Hand Surg. 1998, 23, 583–587. [Google Scholar] [CrossRef]
- Hoke, A.; Gordon, T.; Zochodne, D.W.; Sulaiman, O.A. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp. Neurol 2002, 173, 77–85. [Google Scholar] [CrossRef]
- Gordon, T.; Wood, P.; Sulaiman, O.A.R. Long-Term Denervated Rat Schwann Cells Retain Their Capacity to Proliferate and to Myelinate Axons in vitro. Front. Cell. Neurosci. 2019, 12, 511–522. [Google Scholar] [CrossRef]
- Heinen, A.; Beyer, F.; Tzekova, N.; Hartung, H.P.; Kury, P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp. Neurol. 2015, 271, 25–35. [Google Scholar] [CrossRef]
- Sulaiman, O.A.; Gordon, T. Role of chronic Schwann cell denervation in poor functional recovery after nerve injuries and experimental strategies to combat it. Neurosurgery 2009, 65, A105–A114. [Google Scholar] [CrossRef]
- Gold, B.G.; Densmore, V.; Shou, W.; Matzuk, M.M.; Gordon, H.S. Immunophilin FK506-Binding Protein 52 (Not FK506-Binding Protein 12) Mediates the Neurotrophic Action of FK506. J. Pharmacol. Exp. Ther. 1999, 289, 1202–1210. [Google Scholar] [PubMed]
- Yadav, A.; Huang, T.C.; Chen, S.H.; Ramasamy, T.S.; Hsueh, Y.Y.; Lin, S.P.; Lu, F.I.; Liu, Y.H.; Wu, C.C. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFkappaB to promote axonal regeneration and remyelination. J. Neuroinflamm. 2021, 18, 238. [Google Scholar] [CrossRef] [PubMed]
- Tuffaha, S.H.; Singh, P.; Budihardjo, J.D.; Means, K.R.; Higgins, J.P.; Shores, J.T.; Salvatori, R.; Höke, A.; Lee, W.P.A.; Brandacher, G. Therapeutic augmentation of the growth hormone axis to improve outcomes following peripheral nerve injury. Expert Opin. Ther. Targets 2016, 20, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Quan, A.; Budihardjo, J.; Xiang, S.; Wang, H.; Kiron, K.; Cashman, C.; Lee, W.P.A.; Hoke, A.; Tuffaha, S.; et al. Growth Hormone Improves Nerve Regeneration, Muscle Re-innervation, and Functional Outcomes After Chronic Denervation Injury. Sci. Rep. 2019, 9, 3117. [Google Scholar] [CrossRef] [PubMed]
- Hanwright, P.J.; Qiu, C.; Rath, J.; Zhou, Y.; von Guionneau, N.; Sarhane, K.A.; Harris, T.G.W.; Howard, G.P.; Malapati, H.; Lan, M.J.; et al. Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair. Biomaterials 2022, 280, 121244. [Google Scholar] [CrossRef] [PubMed]
- Monnier, D.; Boutillier, A.L.; Giraud, P.; Chiu, R.; Aunis, D.; Feltz, P.; Zwiller, J.; Loeffler, J.P. Insulin-like growth factor-I stimulates c-fos and c-jun transcription in PC12 cells. Mol. Cell Endocrinol. 1994, 104, 139–145. [Google Scholar] [CrossRef]
- Tesamorelin to Improve Functional Outcomes after Peripheral Nerve Injury. Available online: https://ClinicalTrials.gov/show/NCT03150511 (accessed on 7 May 2022).
- Huang, L.; Quan, X.; Liu, Z.; Ma, T.; Wu, Y.; Ge, J.; Zhu, S.; Yang, Y.; Liu, L.; Sun, Z.; et al. c-Jun gene-modified Schwann cells: Upregulating multiple neurotrophic factors and promoting neurite outgrowth. Tissue Eng. Part A 2015, 21, 1409–1421. [Google Scholar] [CrossRef]
- Elsayed, H.; Faroni, A.; Ashraf, M.R.; Osuji, J.; Wunderley, L.; Zhang, L.; Elsobky, H.; Mansour, M.; Zidan, A.S.; Reid, A.J. Development and Characterisation of an in vitro Model of Wallerian Degeneration. Front. Bioeng. Biotechnol. 2020, 8, 784. [Google Scholar] [CrossRef]
- Walsh, S.K.; Gordon, T.; Addas, B.M.; Kemp, S.W.; Midha, R. Skin-derived precursor cells enhance peripheral nerve regeneration following chronic denervation. Exp. Neurol. 2010, 223, 221–228. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Lu, L.; Liu, Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J. Nanobiotechnol. 2022, 20, 159–191. [Google Scholar] [CrossRef]
- Willand, M.P.; Nguyen, M.A.; Borschel, G.H.; Gordon, T. Electrical Stimulation to Promote Peripheral Nerve Regeneration. Neurorehabil. Neural Repair 2016, 30, 490–496. [Google Scholar] [CrossRef]
- Elzinga, K.; Tyreman, N.; Ladak, A.; Savaryn, B.; Olson, J.; Gordon, T. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 2015, 269, 142–153. [Google Scholar] [CrossRef]
Reference | Model | Findings |
---|---|---|
Holmes W and Young 1942 [59] | Rabbit, delayed tibial/peroneal cross suture model. Histological analysis with denervation periods up to 17 months. | Reduced advancement of regenerating axons through the distal stump with increasing denervation periods. |
Sunderland and Bradley, 1950 [66] | Common Brushtail Possum (Trichosurus vulpecula). Denervation of ulnar and median nerves for varying periods up to 485 days. Histological observation. | Prolonged denervation causes progressive peripheral nerve atrophy in the form of endoneurial tube shrinkage. |
Fu and Gordon 1995 [60] | Rat, delayed tibial/peroneal cross suture model. Electrophysiological and histological analysis with denervation up to one year. | Prolonged denervation decreases regenerating axon count and resultant muscle force. |
Vuoronin et al., 1995 [61] | Rat, delayed tibial/peroneal cross suture model. Denervation between 3–16 months. Histological and ultrastructural analysis. | Denervation results in loss of SC columns with majority replaced by fibroblasts and collagen fibrils by one year. Prolonged denervation leads to decreased axonal regeneration. |
Terenghi et al., 1998 [67] | Human biopsies of peripheral nerve at various lengths of denervation (8–53 months). Histological analysis with light and electron microscopy. | Endoneurial tube shrinkage and collagen deposition with extended denervation. All axons regenerating through denervated specimens co-localize with S100+ SC. SC remain in the distal stump for up to 53 months arranged in bands of Büngner. |
Sulaiman and Gordon, 2000 [62] | Rat, delayed tibial/peroneal cross suture model. Denervation between 0–24 weeks. Outcomes; Fluorogold motor neuron back labelling, electron microscopy and histological analysis. | Few axons regenerate when denervation goes beyond 4 weeks. Although fibres are larger with thicker myelin sheaths than control. |
Hoke et al., 2002 [68] | Rat, delayed tibial/peroneal cross suture model. 1- and 6-month denervation groups. mRNA and protein analysis for GDNF. | Reconnection of the distal stump led to significantly increased GDNF expression in the 1-month group but not in the 6 month group, suggesting either a reduced capacity for SC to respond to renervation or a reduced number of GDNF producing SC. |
Jonsson et al., 2013 [63] | Rat model of sciatic nerve injury with delayed allograft repair (from donor rat) at 1/3/6 months. Outcomes: Retrograde axonal tracing (fluoro-ruby), SC extraction for in vitro co-culture and rT-PCR. Gastrocnemius muscle weights. | Prolonged denervation reduces S100 expression in the distal stump and reduced numbers of SC are present. Denervated SC retain capacity for proliferation in vitro and improve neurite outgrowth in a co-culture model. Regeneration through denervated stumps leads to reduced muscle weight, fibre size and axon count. |
Ronchi et al., 2017 [64] | Rat, delayed median/ulnar cross suture model. Control, 3- and 6-month distal stump denervation groups. Outcomes: rT-PCR of distal stumps for neuroregulin-1, MBP, S100, p75 and GFAP. Grip strength assessment and electron microscopy for ultrastructural analysis. | Denervation of 3 or 6 months completely prevented functional recovery and smaller axon numbers and density were also seen in denervated groups. NRG1, MBP and GFAP were downregulated in denervated stumps. P75 was upregulated across all groups. |
Gordon et al., 2019 [69] | Rat model of denervation with sciatic nerve injury and denervation for 7 days, 7 and 17 weeks. SC extracted from denervated nerves and assess in an in vitro co-culture model. | Fewer SC were able to be isolated from denervated stumps, but denervation did not affect SC ability to myelinate DRG neurite in vitro. Proliferative capacity of SC was reduced 30% in the 17-week group. |
Wilcox et al., 2020 [65] | Human healthy and denervated nerve samples. rT-PCR and immunohistochemistry to assess SC c-Jun and P75-NTR | Chronic denervation in human peripheral nerve mirrors rodent models with decreased c-Jun and p75-NTR expression. |
Wagstaff et al., 2021 [23] | Mouse sciatic nerve model of chronic denervation with 1- and 10-week groups. IHC, retrograde tracing, mRNA and protein analysis outcomes. | Chronic denervation over 10 weeks leads to supressed c-Jun expression and reduced axonal regeneration. Restoration of c-Jun removes the denervated SC phenotype. c-Jun activation is linked to Shh activation and the provision of Shh agonists can restore c-Jun expression. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McMorrow, L.A.; Kosalko, A.; Robinson, D.; Saiani, A.; Reid, A.J. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target? Biomolecules 2022, 12, 1128. https://doi.org/10.3390/biom12081128
McMorrow LA, Kosalko A, Robinson D, Saiani A, Reid AJ. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target? Biomolecules. 2022; 12(8):1128. https://doi.org/10.3390/biom12081128
Chicago/Turabian StyleMcMorrow, Liam A., Adrian Kosalko, Daniel Robinson, Alberto Saiani, and Adam J. Reid. 2022. "Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target?" Biomolecules 12, no. 8: 1128. https://doi.org/10.3390/biom12081128