Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Somatic Measurements
2.3. Whole-Body Cryotherapy Procedure
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.1.1. Somatic Characteristics and Medical Qualification
3.1.2. Level of Physical Activity
3.1.3. Evaluation of Nutrition
3.2. Influence of Repeated Exposition to Cryogenic Temperatures on Level of Biochemical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanek, A.; Fazeli, B.; Bartuś, S.; Sutkowska, E. The Role of Endothelium in Physiological and Pathological States: New Data. BioMed Res. Int. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, C.; de Nigris, F.; Williams-Ignarro, S.; Pignalosa, O.; Sica, V.; Ignarro, L.J. Nitric oxide and atherosclerosis: An update. Nitric Oxid. 2006, 15, 265–279. [Google Scholar] [CrossRef]
- Cziráki, A.; Lenkey, Z.; Sulyok, E.; Szokodi, I.; Koller, A. L-Arginine-Nitric Oxide-Asymmetric Dimethylarginine Pathway and the Coronary Circulation: Translation of Basic Science Results to Clinical Practice. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Bjork, L.; Jenkins, N.T.; Witkowski, S.; Hagberg, J.M. Circulating biomarkers of Nitro-Oxidative Stress Biomarkers in Active and Inactive Men. Int. J. Sports Med. 2012, 33, 279–284. [Google Scholar]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [Green Version]
- Tengan, C.H.; Rodrigues, G.S.; Godinho, R.O. Nitric oxide in skeletal muscle: Role on mitochondrial biogenesis and function. Int. J. Mol. Sci 2012, 13, 17160–17184. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.S.; Meissner, G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef]
- Willeit, P.; Freitag, D.F.; Laukkanen, J.A.; Chowdhury, S.; Gobin, R.; Mayr, M.; Di Angelantonio, E.; Chowdhury, R. Asymmetric dimethylarginine and cardiovascular risk: Systematic review and meta-analysis of 22 prospective studies. J. Am. Heart Assoc. 2015, 4, e001833. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, X.; Shang, R.; Chen, Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxid. Biol. Chem. 2018, 78, 113–120. [Google Scholar] [CrossRef]
- Dowsett, L.; Higgins, E.; Alanazi, S.; Alshuwayer, N.A.; Leiper, F.C.; Leiper, J. ADMA: A Key Player in the Relationship between Vascular Dysfunction and Inflammation in Atherosclerosis. J. Clin. Med. 2020, 9, 3026. [Google Scholar] [CrossRef]
- Baszczuk, A.; Kopczyński, Z. Hyperhomocysteinemia in patients with cardiovascular disease. Postepy Hig. Med. Dosw. 2014, 68, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Stühlinger, M.C.; Tsao, P.S.; Her, J.H.; Kimoto, M.; Balint, R.F.; Cooke, J.P. Homocysteine impairs the nitric oxide synthase pathway: Role of asymmetric dimethylarginine. Circulation 2001, 104, 2569–2575. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Hou, C.; Sun, F.; Dong, J.; Chu, X.; Guo, Y. Gender differences in risk factors for high plasma homocysteine levels based on a retrospective checkup cohort using a generalized estimating equation analysis. Lipids Health Dis. 2021, 20, 31. [Google Scholar] [CrossRef]
- Lechner, M.; Lirk, P.; Rieder, J. Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Semin. Cancer Biol. 2005, 15, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, I.; Soto, M.E.; Castrejón-Tellez, V.; Rubio-Ruiz, M.E.; Manzano Pech, L.; Guarner-Lans, V. Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. Oxid. Med. Cell Longev. 2020. [Google Scholar] [CrossRef]
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-Body Cryotherapy: Possible Application in Obesity and Diabesity. In Rehabilitation Interventions in the Patient with Obesity, 1st ed.; Capodaglio, P., Ed.; Springer Nature: Cham, Switzerland, 2020; Chapter 11; pp. 173–188. [Google Scholar] [CrossRef]
- Stanek, A.; Cholewka, A.; Wielkoszynski, T.; Romuk, E.; Sieroń, A. Decreased Oxidative Stress in Male Patients with active phase Ankylosing Spondylitis who underwent Whole-Body Cryotherapy in Closed Cryochamber. Oxid. Med. Cell Longev. 2018. [Google Scholar] [CrossRef]
- Stanek, A.; Romuk, E.; Wielkoszyński, T.; Bartuś, S.; Cieślar, G.; Cholewka, A. Decreased lipid profile and oxidative stress in healthy subjects who underwent whole-body cryotherapy in closed cryochamber with subsequent kinesiotherapy. Oxid. Med. Cell Longev. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozłowska, M.; Kortas, J.; Żychowska, M.; Antosiewicz, J.; Żuczek, K.; Perego, S.; Lombardi, G.; Ziemann, E. Beneficial effects of whole-body cryotherapy on glucose homeostasis and amino acid profile are associated with a reduced myostatin serum concentration. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications. J. Them. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef]
- Charkoudian, N. Skin blood flow in adult human thermoregulation: How it works, when it does not, and why. Mayo Clin. Proc. 2003, 78, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Cholewka, A.; Stanek, A.; Wójcik, M.; Sieroń-Stołtny, K.; Drzazga, Z. Does local cryotherapy improve thermal diagnosis similar to whole body cryotherapy in the case of spine diseases. J. Them. Anal. Calorim. 2017, 127, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Hodges, G.J.; Zhao, K.; Kosiba, W.A.; Johnson, J.M. The involvement of nitric oxide in the cutaneous vasoconstrictor response to local cooling in humans. J. Physiol. 2006, 574, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Westerlund, T.; Oksa, J.; Smolander, J.; Mikkelsson, M. Thermal responses during and after whole-body cryotherapy (−110 °C). J. Therm. Biol. 2003, 28, 601–608. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [Green Version]
- Rymaszewska, J.; Urbanska, K.M.; Szczesniak, D.; Stanczykiewicz, B.; Trypka, E.; Zablocka, A. The Improvement of Memory Deficits after Whole-Body Cryotherapy—The First Report. Cryo Lett. 2018, 39, 190–195. [Google Scholar]
- Kujawski, S.; Newton, J.L.; Morten, K.J.; Zalewski, P. Whole-body cryostimulation application with age: A review. J. Them. Biol. 2021, 96. [Google Scholar] [CrossRef]
- Day, N.E.; McKeown, N.; Wong, M.Y.; Welch, A.; Bingham, S. Epidemiological assessment of diet: A comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int. J. Epidemiol. 2001, 30, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Sarkin, J.; Campbell, J.; Gross, L.; Roby, J.; Bazzo, S.; Sallis, J.; Calfas, K. Seven-day physical activity recall. Med. Sci. Sports Exerc. 1997, 29, 89–103. [Google Scholar]
- Gochman, E.; Mahajna, J.; Shenzer, P.; Dahan, A.; Blatt, A.; Elyakim, R.; Reznick, A.Z. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans. Acta Histochem. 2012, 114, 827–835. [Google Scholar] [CrossRef]
- Król, M.; Kepinska, M. Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 22, 56. [Google Scholar] [CrossRef]
- Yang, A.L.; Tsai, S.J.; Jiang, M.J.; Jen, C.J.; Chen, H.I. Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J. Biomed. Sci. 2002, 9, 149–155. [Google Scholar] [CrossRef]
- Lind, M.; Hayes, A.; Caprnda, M.; Petrovic, D.; Rodrigo, L.; Kruzliak, P.; Zulli, A. Inducible nitric oxide synthase: Good or bad? Biomed. Pharm. 2017, 93, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Rymaszewska, J.; Lion, K.M.; Pawlik-Sobecka, L.; Pawlowski, T.; Szczesniak, D.; Trypka, E.; Rymaszewska, J.E.; Zablocka, A.; Stanczykiewicz, B. Efficacy of the Whole-Body Cryotherapy as Add-on Therapy to Pharmacological Treatment of Depression—A Randomized Controlled Trial. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Rymaszewska, J.; Lion, K.M.; Stanczykiewicz, B.; Rymaszewska, J.E.; Trypka, E.; Pawlik-Sobecka, L.; Kokot, I.; Placzkowska, S.; Zablocka, A.; Szczesniak, D. The improvement of cognitive deficits after whole-body cryotherapy—A randomised controlled trial. Exp. Gerontol. 2021, 146. [Google Scholar] [CrossRef]
- Stanek, A.; Wielkoszyński, T.; Bartuś, S.; Cholewka, A. Whole-Body Cryostimulation Improves Inflammatory Endothelium Parameters and Decreases Oxidative Stress in Healthy Subjects. Antioxidants 2020, 9, 1308. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, A.; Olek, R.A.; Grzywacz, T.; Antosiewicz, J.; Kujach, S.; Łuszczyk, M.; Smaruj, M.; Sledziewska, E.; Laskowski, R. Whole-body cryostimulation as an efective method of reducing low-grade inflammation in obese men. J. Physiol. Sci. 2013, 63, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Dulian, K.; Laskowski, R.; Grzywacz, T.; Kujach, S.; Flis, D.J.; Smaruj, M.; Ziemann, E. The whole body cryostimulation modifies irisin concentration and reduces inflammation in middle aged, obese men. Cryobiology 2015, 71, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2007, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Zielenkiewicz, M.; Paczek, L. Inflammatory Markers Change with Age, but do not Fall Beyond Reported Normal Ranges. Arch. Immunol. Ther. Exp. 2015, 64, s00005–s00015. [Google Scholar] [CrossRef] [Green Version]
- Reuben, D.B.; Judd-Hamilton, L.; Harris, T.B.; Seeman, T.E. The associations between physical activity and inflammatory markers in high-functioning older persons: MacArthur Studies of Successful Aging. J. Am. Geriatr. Soc. 2003, 51, 1125–1130. [Google Scholar] [CrossRef]
- Lubkowska, A.; Szygula, Z.; Klimek, A.T.; Torii, M. Do session of cryostimulation have influence on white blood cells count, level of IL6 and total oxidative and antioxidative status in healthy men? Eur. J. Appl. Physiol. 2010, 109, 67–72. [Google Scholar] [CrossRef]
- Lubkowska, A.; Szygula, Z.; Chlubek, D.; Banfi, G. The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men. Scand. J. Clin. Lab. Invest. 2011, 71, 419–425. [Google Scholar] [CrossRef]
- Ziemann, E.; Olek, R.A.; Kujach, S.; Grzywacz, T.; Antosiewicz, J.; Garsztka, T.; Laskowski, R. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J. Athl. Train. 2012, 47, 664–672. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Sproull, J.; Szygula, Z. Whole-Body Cryotherapy Is an Effective Method of Reducing Abdominal Obesity in Menopausal Women with Metabolic Syndrome. J. Clin. Med. 2020, 9, 2797. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Melegati, G.; Barassi, A.; Dogliotti, G.; Melzi d’Eril, G.; Dugue, B.; Corsi, M.M. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J. Them. Biol. 2009, 34, 55–59. [Google Scholar] [CrossRef]
- Ziemann, E.; Olek, R.A.; Grzywacz, T.; Kaczor, J.J.; Antosiewicz, J.; Skrobot, W.; Kujach, S.; Laskowski, R. Whole-body cryostimulation as an effective way of reducing exercise-induced inflammation and blood cholesterol in young men. Eur. Cytokine Netw. 2013, 25, 14–23. [Google Scholar] [CrossRef]
- Pournot, H.; Bieuzen, F.; Louis, J.; Mounier, R.; Fillard, J.R.; Barbiche, E.; Hausswirth, C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Jurecka, A.; Woźniak, A.; Szpinda, M.; Augustyńska, B.; Woźniak, B. The effect of submaximal exercise preceded by single whole-body cryotherapy on the markers of oxidative stress and inflammation in blood of volleyball players. Oxid. Med. Cell Longev. 2013, 2013, 409567. [Google Scholar] [CrossRef] [Green Version]
- Buckley, D.I.; Fu, R.; Freeman, M.; Rogers, K.; Helfand, M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the U. S. Preventive Services Task Force. Ann. Intern. Med. 2009, 151, 483–495. [Google Scholar] [PubMed] [Green Version]
- Stanek, A.; Sieroń-Stołtny, K.; Romuk, E.; Cholewka, A.; Wielkoszyński, T.; Cieślar, G.; Kwiatek, S.; Sieroń, A.; Kawczyk-Krupka, A. Whole-Body Cryostimulation as an Effective Method of Reducing Oxidative Stress in Healthy Men. Adv. Clin. Exp. Med. 2016, 25, 1281–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubkowska, A.; Dolegowska, B.; Szygula, Z. Whole-body cryostimulation—Potential beneficial treatment for improving antioxidant capacity in healthy men—Significance of the number of sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciak, G.; Szymura, J.; Szygula, Z.; Gradek, J.; Wiecek, M. The Effect of Repeated Whole-Body Cryotherapy on Sirt1 and Sirt3 Concentrations and Oxidative Status in Older and Young Men Performing Different Levels of Physical Activity. Antioxidants 2020, 10, 37. [Google Scholar] [CrossRef]
- Augustyn, G.; Wiecek, M.; Szymura, J.; Szygula, Z. Effects of whole-body cryotherapy on concentrations of selected sirtuins and oxidative status of the blood among training and untrained senior men. In In Proceedings of the III Polish Congress of Cryotherapy Society (PTK), 30th Anniversary of the First Cryogenic Chamber in Poland, Wrocław, Poland, 16 May 2005. [Google Scholar]
Variables | Total | RUN | UTR | p Value |
---|---|---|---|---|
Body height (cm) | 171.95 ± 7.87 | 175.20 ± 6.37 | 168.70 ± 8.17 | 0.06 |
Body mass (kg) | 76.96 ± 7.16 | 76.33 ± 6.32 | 77.59 ± 8.21 | 0.70 |
Total body fat (%) | 23.87 ± 5.35 | 21.33 ± 4.36 | 26.40 ± 5.20 | 0.01 |
Body mass index (kg/m2) | 26.08 ± 2.20 | 24.87 ± 1.28 | 27.28 ± 2.32 | 0.01 |
Erythrocytes (106/µL) | 4.84 ± 0.48 | 4.75 ± 0.55 | 4.93 ± 0.41 | 0.42 |
Haemoglobin (g/dL) | 14.85 ± 1.20 | 14.52 ± 1.17 | 15.18 ± 1.19 | 0.23 |
Haematocrit (%) | 43.36 ± 3.21 | 42.47 ± 3.02 | 44.25 ± 3.30 | 0.22 |
ESR (mm/h) | 8.11 ± 7.56 | 6.70 ± 6.52 | 9.67 ± 8.69 | 0.41 |
Leucocytes (103/µL) | 6.48 ± 1.49 | 6.31 ± 1.53 | 6.65 ± 1.51 | 0.62 |
Platelets (103/µL) | 236.55 ± 53.73 | 242.10 ± 40.60 | 231.00 ± 66.16 | 0.29 |
Fasting glucose (mg/dL) | 96.65 ± 9.07 | 93.31 ± 6.96 | 100.36 ± 10.06 | 0.09 |
Glycated haemoglobin (%) | 5.30 ± 0.33 | 5.43 ± 0.13 | 5.17 ± 0.42 | 0.18 |
TC (mg/dL) | 201.06 ± 39.29 | 206.15 ± 38.82 | 195.41 ± 41.43 | 0.57 |
HDL (mg/dL) | 63.09 ± 16.94 | 70.73 ± 11.38 | 54.61 ± 18.60 | 0.03 |
LDL (mg/dL) | 121.53 ± 34.38 | 119.45 ± 34.58 | 123.83 ± 36.09 | 0.79 |
TG (mg/dL) | 82.98 ± 28.89 | 80.69 ± 28.50 | 85.52 ± 30.83 | 0.68 |
AIP | 0.11 ± 0.22 | 0.04 ± 0.17 | 0.20 ± 0.24 | 0.11 |
Total protein (g/L) | 71.57 ± 3.39 | 71.68 ± 3.98 | 71.45 ± 2.88 | 0.88 |
Fibrinogen (g/L) | 2.71 ± 0.54 | 2.46 ± 0.57 | 2.97 ± 0.37 | 0.02 |
ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | WBC | Total | RUN | UTR | PA | WBC | PA × WBC | ||
iNOS | T1 | Mean ± SD | 3.46 ± 0.25 | 3.48 ± 0.23 | 3.45 ± 0.27 | F | 0.16 | 5.95 | 0.22 |
(ng/mL) | ΔT2vsT1 | Mean (95% CI) | −0.04 (−0.18, 0.11) | −0.08 (−0.30, 0.14) | 0.01 (−0.22, 0.24) | p | 0.69 | <0.01 | 0.88 |
ΔT3vsT1 | Mean (95% CI) | 0.38 (0.17, 0.59) | 0.42 (0.08, 0.75) | 0.34 (0.03, 0.66) | η2 | 0.01 | 0.25 | 0.01 | |
ΔT4vsT1 | Mean (95% CI) | 0.13 (−0.15, 0.40) | 0.15 (−0.23, 0.54) | −0.39 (0.59, −0.70) | 1-β | 0.07 | 0.94 | 0.09 | |
ADMA | T1 | Mean ± SD | 0.52 ± 0.16 | 0.55 ± 0.16 | 0.50 ± 0.16 | F | 0.08 | 1.25 | 1.01 |
(µmol/L) | ΔT2vsT1 | Mean (95% CI) | 0.01 (−0.05, 0.08) | −0.04 (−0.10, 0.03) | 0.06 (−0.05, 0.18) | p | 0.78 | 0.30 | 0.40 |
ΔT3vsT1 | Mean (95% CI) | 0.05 (−0.01, 0.12) | 0.05 (−0.04, 0.15) | 0.06 (−0.06, 0.18) | η2 | <0.01 | 0.06 | 0.05 | |
ΔT4vsT1 | Mean (95% CI) | 0.04 (−0.03, 0.11) | 0.03 (−0.06, 0.12) | 0.05 (−0.07, 0.17) | 1-β | 0.06 | 0.31 | 0.26 | |
3-NTR | T1 | Mean ± SD | 159.30 ± 86.86 | 170.40 ± 50.29 | 148.20 ± 114.57 | F | 0.68 | 1.13 | 0.43 |
(nmol/L) | ΔT2vsT1 | Mean (95% CI) | −5.20 (−15.70, 5.30) | −5.20(−26.53, 16.13) | −5.20 (−14.65, 4.25) | p | 0.42 | 0.35 | 0.73 |
ΔT3vsT1 | Mean (95% CI) | −13.70 (−31.78, 4.38) | −9.20 (−30.95, 12.55) | −18.20 (−51.60, 15.20) | η2 | 0.04 | 0.06 | 0.02 | |
ΔT4vsT1 | Mean (95% CI) | −9.40 (−29.13, 10.33) | −2.00 (−34.04, 30.04) | −16.80 (−45.63, 12.03) | 1-β | 0.12 | 0.29 | 0.13 | |
HCY | T1 | Mean ± SD | 14.07 ± 3.04 | 12.84 ± 1.84 | 15.30 ± 3.57 | F | 2.75 | 0.11 | 0.75 |
(µmol/L) | ΔT2vsT1 | Mean (95% CI) | 0.02 (−1.22, 1.25) | 0.28 (−1.09, 1.65) | −0.25 (−2.6, 2.12) | p | 0.11 | 0.951 | 0.528 |
ΔT3vsT1 | Mean (95% CI) | −0.10 (−1.62, 1.42) | 0.57 (−1.37, 2.51) | −0.77 (−3.42, 1.88) | η2 | 0.13 | 0.01 | 0.04 | |
ΔT4vsT1 | Mean (95% CI) | −0.30 (−1.88, 1.27) | −0.51 (−1.56, 0.54) | −0.10 (−3.42, 3.22) | 1-β | 0.35 | 0.07 | 0.20 |
ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | WBC | Total | RUN | UTR | PA | WBC | PA × WBC | ||
CRP | T1 | Mean ± SD | 1.84 ± 1.93 | 2.12 ± 2.66 | 1.57 ± 0.79 | F | 0.02 | 0.83 | 0.94 |
(mg/L) | ΔT2vsT1 | Mean (95% CI) | 0.70 (−0.74, 2.13) | −0.12 (−2.23, 1.99) | 1.51 (−0.70, 3.72) | p | 0.89 | 0.48 | 0.43 |
ΔT3vsT1 | Mean (95% CI) | −1.23 (0.97, 2.36) | −0.59 (−2.53, 1.36) | 0.33 (−1.07, 1.73) | η2 | <0.01 | 0.04 | 0.05 | |
ΔT4vsT1 | Mean (95% CI) | −0.93 (1.11, 2.18) | 0.06 (−2.01, 2.14) | 0.12 (−0.79, 1.02) | 1-β | 0.05 | 0.22 | 0.24 | |
IL-6 | T1 | Mean ± SD | 1.76 ± 1.05 | 1.34 ± 0.98 | 2.18 ± 0.98 *,RUN | F | 17.72 | 1.39 | 0.70 |
(pg/mL) | ΔT2vsT1 | Mean (95% CI) | −0.02 (−0.52, 0.49) | −0.23 (−0.83, 0.37) | 0.19 (−0.72, 1.11) | p | <0.01 | 0.26 | 0.56 |
ΔT3vsT1 | Mean (95% CI) | −0.06 (−0.60, 0.49) | −0.20 (−0.88, 0.47) | 0.09 (0.90, 1.08) | η2 | 0.50 | 0.07 | 0.04 | |
ΔT4vsT1 | Mean (95% CI) | −0.41 (−0.94, 0.12) | −0.32 (−1.00, 0.36) | −0.51 (−1.47, 0.45) | 1-β | 0.98 | 0.35 | 0.19 | |
IL-1β | T1 | Mean ± SD | 1.55 ± 0.62 | 1.60 ± 0.54 | 1.49 ± 0.71 | F | 5.39 | 0.10 | 0.46 |
(pg/mL) | ΔT2vsT1 | Mean (95% CI) | −0.08 (−0.45, 0.28) | −0.03 (−0.62, 0.96) | −0.13 (−0.68, 0.42) | p | 0.03 | 0.96 | 0.71 |
ΔT3vsT1 | Mean (95% CI) | 0.01 (−0.43, 0.45) | 0.17 (−0.62, 0.96) | −0.15 (−0.69, 0.39) | η2 | 0.23 | 0.01 | 0.03 | |
ΔT4vsT1 | Mean (95% CI) | −0.02 (−0.46, 0.42) | 0.16 (−0.67, 0.98) | −0.20 (−0.69, 0.30) | 1-β | 0.59 | 0.07 | 0.14 | |
IL-10 | T1 | Mean ± SD | 4.13 ± 1.79 | 4.30 ± 1.34 | 3.96 ± 2.21 | F | 0.13 | 2.24 | 0.06 |
(pg/mL) | ΔT2vsT1 | Mean (95% CI) | −0.92 (−1.95, 0.12) | −1.11 (−2.75, 0.54) | −0.73 (−2.32, 0.87) | p | 0.72 | 0.09 | 0.98 |
ΔT3vsT1 | Mean (95% CI) | −1.02 (−2.14, 0.10) | −1.14 (−2.64, 0.36) | −0.90 (−2.88, 1.08) | η2 | 0.01 | 0.11 | <0.01 | |
ΔT4vsT1 | Mean (95% CI) | 0.04 (−1.56, 1.64) | 0.04 (−1.87, 1.96) | 0.04 (−2.96, 3.03) | 1-β | 0.06 | 0.54 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiecek, M.; Szygula, Z.; Gradek, J.; Kusmierczyk, J.; Szymura, J. Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules 2021, 11, 1041. https://doi.org/10.3390/biom11071041
Wiecek M, Szygula Z, Gradek J, Kusmierczyk J, Szymura J. Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules. 2021; 11(7):1041. https://doi.org/10.3390/biom11071041
Chicago/Turabian StyleWiecek, Magdalena, Zbigniew Szygula, Joanna Gradek, Justyna Kusmierczyk, and Jadwiga Szymura. 2021. "Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men" Biomolecules 11, no. 7: 1041. https://doi.org/10.3390/biom11071041
APA StyleWiecek, M., Szygula, Z., Gradek, J., Kusmierczyk, J., & Szymura, J. (2021). Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules, 11(7), 1041. https://doi.org/10.3390/biom11071041