Connexins, Innexins, and Pannexins: From Biology to Clinical Targets
Funding
Conflicts of Interest
References
- Kanno, Y.; Loewenstein, W.R. Intercellular diffusion. Science 1964, 143, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, W.R.; Kanno, Y. Studies on an epithelial (gland) cell junction. I. modifications of surface membrane permeability. J. Cell Biol. 1964, 22, 565–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenough, D.A.; Paul, D.L. Gap junctions. Colo. Spring. Harb. Perspect. Biol. 2009, 1, a002576. [Google Scholar] [CrossRef]
- Güiza, J.; Barría, I.; Sáez, J.C.; Vega, J.L. Innexins: Expression, regulation, and functions. Front. Physiol. 2018, 9, 1414. [Google Scholar] [CrossRef] [PubMed]
- Panchina, Y.; Kelmanson, I.; Matz, M.; Lukyanov, K.; Usman, N.; Lukyanov, S. A ubiquitous family of putative gap junction molecules. Curr. Biol. 2000, 10, R473–R474. [Google Scholar] [CrossRef] [Green Version]
- Qu, R.; Dong, L.; Zhang, J.; Yu, X.; Wang, L.; Zhu, S. Cryo-EM structure of human heptameric Pannexin 1 channel. Cell Res. 2020, 30, 446–448. [Google Scholar] [CrossRef]
- Srinivas, M.; Verselis, V.K.; White, T.W. Human diseases associated with connexin mutations. Biochim. Biophys. Acta Biomembr. 2018, 1860, 192–201. [Google Scholar] [CrossRef]
- Maslova, E.A.; Orishchenko, K.E.; Posukh, O.L. Functional evaluation of a rare variant c.516G>C (p.Trp172Cys) in the GJB2 (Connexin 26) gene associated with Nonsyndromic Hearing Loss. Biomolecules 2021, 11, 61. [Google Scholar] [CrossRef]
- Shao, Q.; Esseltine, J.L.; Huang, T.; Novielli-Kuntz, N.; Ching, J.E.; Sampson, J.; Laird, D.W. Connexin43 is dispensable for early stage human mesenchymal stem cell adipogenic differentiation but is protective against cell senescence. Biomolecules 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Au, A.; Shao, Q.; White, K.K.; Lucaciu, S.A.; Esseltine, J.L.; Barr, K.; Laird, D.W. Comparative analysis of Cx31 and Cx43 in differentiation-competent rodent keratinocytes. Biomolecules 2020, 10, 1443. [Google Scholar] [CrossRef]
- Solan, J.L.; Lampe, P.D. Src Regulation of Cx43 phosphorylation and gap junction turnover. Biomolecules 2020, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chenavas, S.; Kieken, F.; Trease, A.; Brownell, S.; Anbanandam, A.; Sorgen, P.L.; Spagnol, G. Calmodulin directly interacts with the Cx43 carboxyl-terminus and cytoplasmic loop containing three ODDD-linked mutants (M147T, R148Q, and T154A) that retain α-helical structure, but exhibit loss-of-function and cellular trafficking defects. Biomolecules 2020, 10, 1452. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.E.; Gourdie, R.G. Cx43 and the actin cytoskeleton: Novel roles and implications for cell-cell junction-based barrier function regulation. Biomolecules 2020, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Jara, O.; Minogue, P.J.; Berthoud, V.M.; Beyer, E.C. Do connexin mutants cause cataracts by perturbing glutathione levels and redox metabolism in the Lens? Biomolecules 2020, 10, 1418. [Google Scholar] [CrossRef]
- Mulkearns-Hubert, E.E.; Reizes, O.; Lathia, J.D. Connexins in cancer: Jekyll or Hyde? Biomolecules 2020, 10, 1654. [Google Scholar] [CrossRef]
- Talbot, J.; Dupuy, M.; Morice, S.; Rédini, F.; Verrecchia, F. Antagonistic functions of connexin 43 during the development of primary or secondary bone tumors. Biomolecules 2020, 10, 1240. [Google Scholar] [CrossRef]
- Acuña, R.A.; Varas-Godoy, M.; Berthoud, V.M.; Alfaro, I.E.; Retamal, M.A. Connexin-46 contained in extracellular vesicles enhance malignancy features in breast cancer cells. Biomolecules 2020, 10, 676. [Google Scholar] [CrossRef]
- Rusiecka, O.M.; Montgomery, J.; Morel, S.; Batista-Almeida, D.; Van Campenhout, R.; Vinken, M.; Girao, H.; Kwak, B.R. Canonical and non-canonical roles of connexin43 in cardioprotection. Biomolecules 2020, 10, 1225. [Google Scholar] [CrossRef]
- Valls-Lacalle, L.; Consegal, M.; Ruiz-Meana, M.; Benito, B.; Inserte, J.; Barba, I.; Ferreira-González, I.; Rodríguez-Sinovas, A. Connexin 43 deficiency is associated with reduced myocardial scar size and attenuated TGFβ1 signaling after transient coronary occlusion in conditional knock-out mice. Biomolecules 2020, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Gelabert, A.; García-Mendívil, L.; Vallejo-Gil, J.M.; Fresneda-Roldán, P.C.; Andelová, K.; Fañanás-Mastral, J.; Vázquez-Sancho, M.; Matamala-Adell, M.; Sorribas-Berjón, F.; Ballester-Cuenca, C.; et al. Automatic quantification of cardiomyocyte dimensions and connexin 43 lateralization in fluorescence images. Biomolecules 2020, 10, 1334. [Google Scholar] [CrossRef]
- Castorena-Gonzalez, J.A.; Li, M.; Davis, M.J. Effects of elevated downstream pressure and the role of smooth muscle cell coupling through connexin45 on lymphatic pacemaking. Biomolecules 2020, 10, 1424. [Google Scholar] [CrossRef] [PubMed]
- Molica, F.; Quercioli, A.; Montecucco, F.; Schindler, T.H.; Kwak, B.R.; Morel, S. A genetic polymorphism in the pannexin1 gene predisposes for the development of endothelial dysfunction with increasing BMI. Biomolecules 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas-Andrade, M.; Bechberger, J.; Wang, J.; Yeung, K.K.C.; Whitehead, S.N.; Hansen, R.S.; Naus, C.C. Danegaptide enhances astrocyte gap junctional coupling and reduces ischemic reperfusion brain Injury in mice. Biomolecules 2020, 10, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walrave, L.; Vinken, M.; Leybaert, L.; Smolders, I. Astrocytic connexin43 channels as candidate targets in epilepsy Treatment. Biomolecules 2020, 10, 1578. [Google Scholar] [CrossRef]
- Mesnil, M.; Defamie, N.; Naus, C.; Sarrouilhe, D. Brain disorders and chemical pollutants: A gap junction link? Biomolecules 2020, 11, 51. [Google Scholar] [CrossRef]
- Starich, T.; Greenstein, D. A limited and diverse set of suppressor mutations restore function to inx-8 mutant hemichannels in the caenorhabditis elegans somatic gonad. Biomolecules 2020, 10, 1655. [Google Scholar] [CrossRef]
- Timonina, K.; Kotova, A.; Zoidl, G. Role of an aromatic-aromatic interaction in the assembly and trafficking of the zebrafish panx1a membrane channel. Biomolecules 2020, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.J.; Palacios-Prado, N.; Sáez, J.C.; Lee, J. Identification of Cx45 as a major component of GJs in HeLa cells. Biomolecules 2020, 10, 1389. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aasen, T. Connexins, Innexins, and Pannexins: From Biology to Clinical Targets. Biomolecules 2021, 11, 155. https://doi.org/10.3390/biom11020155
Aasen T. Connexins, Innexins, and Pannexins: From Biology to Clinical Targets. Biomolecules. 2021; 11(2):155. https://doi.org/10.3390/biom11020155
Chicago/Turabian StyleAasen, Trond. 2021. "Connexins, Innexins, and Pannexins: From Biology to Clinical Targets" Biomolecules 11, no. 2: 155. https://doi.org/10.3390/biom11020155
APA StyleAasen, T. (2021). Connexins, Innexins, and Pannexins: From Biology to Clinical Targets. Biomolecules, 11(2), 155. https://doi.org/10.3390/biom11020155