Real-World Diagnostic Accuracy and Use of Immunohistochemical Markers in Lung Cancer Diagnostics
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Scanned Cases
2.3. Statistics
3. Results
3.1. Cohort Characteristics
3.2. Diagnostic Accuracy
3.3. Use of Diagnostic IHC Markers
3.4. Sample Usefulness
3.5. N2 Metastases
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J. Thorac. Oncol. 2018, 13, 323–358. [Google Scholar] [PubMed] [Green Version]
- Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; Devore, R.F.; Gaudreault, J.; Damico, L.A.; et al. Randomized Phase II Trial Comparing Bevacizumab Plus Carboplatin and Paclitaxel with Carboplatin and Paclitaxel Alone in Previously Untreated Locally Advanced or Metastatic Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2004, 22, 2184–2191. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.; Hanna, N.; Fossella, F.; Sugarman, K.; Blatter, J.; Peterson, P.; Simms, L.; Shepherd, F.A. The Differential Efficacy of Pemetrexed According to NSCLC Histology: A Review of Two Phase III Studies. Oncologist 2009, 14, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingemans, A.-M.; Früh, M.; Ardizzoni, A.; Besse, B.; Faivre-Finn, C.; Hendriks, L.; Lantuejoul, S.; Peters, S.; Reguart, N.; Rudin, C.; et al. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Radkiewicz, C.; Dickman, P.W.; Johansson, A.L.V.; Wagenius, G.; Edgren, G.; Lambe, M. Sex and survival in non-small cell lung cancer: A nationwide cohort study. PLoS ONE 2019, 14, e0219206. [Google Scholar] [CrossRef]
- Lindquist, K.E.; Ciornei, C.; Westbom-Fremer, S.; Gudinaviciene, I.; Ehinger, A.; Mylona, N.; Urdar, R.; Lianou, M.; Svensson, F.; Seidal, T.; et al. Difficulties in diagnostics of lung tumours in biopsies: An interpathologist concordance study evaluating the international diagnostic guidelines. J. Clin. Pathol. 2021, in press. [Google Scholar] [CrossRef]
- Yatabe, Y.; Dacic, S.; Borczuk, A.C.; Warth, A.; Russell, P.A.; Lantuejoul, S.; Beasley, M.B.; Thunnissen, E.; Pelosi, G.; Rekhtman, N.; et al. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J. Thorac. Oncol. 2019, 14, 377–407. [Google Scholar] [CrossRef] [Green Version]
- WHO. Thoracic tumours. In WHO Classification of Tumours Editorial Board, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Funkhouser, W.K., Jr.; Hayes, D.N.; Moore, D.T.; Funkhouser, W.K., III; Fine, J.P.; Jo, H.; Nikolaishvilli-Feinberg, N.; Eeva, M.; Grilley-Olson, J.E.; Banks, P.M.; et al. Interpathologist Diagnostic Agreement for Non-Small Cell Lung Carcinomas Using Current and Recent Classifications. Arch. Pathol. Lab. Med. 2018, 142, 1537–1548. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Xie, F.; Mao, X.; Ma, H.; Sun, J. The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: A meta-analysis. Thorac. Cancer 2020, 11, 1191–1201. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.; Park, D. Transthoracic Needle Biopsy: How to Maximize Diagnostic Accuracy and Minimize Complications. Tuberc. Respir. Dis. 2020, 83, S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Msc, C.C.; Bai, C.; Lee, K.; Chou, Y.; Pan, S.; Wang, Y. Evaluation of the diagnostic accuracy of bronchial brushing cytology in lung cancer: A meta-analysis. Cancer Cytopathol. 2021, 129, 739–749. [Google Scholar] [CrossRef]
- Ozkaya, S.; Tuna, T.; Dirican, A.; Findik, S.; Atici, A.G.; Erkan, L. Diagnostic efficacy of computed tomography-guided transthoracic needle aspiration and biopsy in patients with pulmonary disease. OncoTargets Ther. 2013, 6, 1553–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, M.-C.; Kim, J.O.; Jung, S.S.; Park, H.S.; Lee, J.E.; Moon, J.Y.; Chung, C.U.; Kang, D.H.; Park, D.I. CT-Guided Percutaneous Transthoracic Needle Biopsy Using the Additional Laser Guidance System by a Pulmonologist with 2 Years of Experience in CT-Guided Percutaneous Transthoracic Needle Biopsy. Tuberc. Respir. Dis. 2018, 81, 330–338. [Google Scholar] [CrossRef]
- Ao, M.-H.; Zhang, H.; Sakowski, L.; Sharma, R.; Illei, P.B.; Gabrielson, E.; Askin, F.; Li, Q.K. The utility of a novel triple marker (combination of TTF1, napsin A, and p40) in the subclassification of non–small cell lung cancer. Hum. Pathol. 2014, 45, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.; Go, H.; Kim, M.-Y.; Jeon, Y.K.; Chung, J.-H.; Chung, O.H. A comprehensive immunohistochemistry algorithm for the histological subtyping of small biopsies obtained from non-small cell lung cancers. Histopathology 2014, 65, 868–878. [Google Scholar] [CrossRef]
- Nishino, M.; Hoang, M.P.; Ba, P.D.P.; Morales-Oyarvide, V.; Bs, T.G.H.; Mark, E.J.; Mino-Kenudson, M. Napsin A/p40 antibody cocktail for subtyping non-small cell lung carcinoma on cytology and small biopsy specimens. Cancer Cytopathol. 2016, 124, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Wang, H.; Peng, Y.; Tian, B.; Peng, L.; Zhang, D.-C. ΔNp63, CK5/6, TTF-1 and napsin A, a reliable panel to subtype non-small cell lung cancer in biopsy specimens. Int. J. Clin. Exp. Pathol. 2014, 7, 4247–4253. [Google Scholar]
- Tatsumori, T.; Tsuta, K.; Masai, K.; Kinno, T.; Taniyama, T.; Yoshida, A. P40 is the best marker for diagnosing pulmonary squamous cell carcinoma: Comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2. Appl. Immunohistochem. Mol. Morphol. 2014, 22, 377–382. [Google Scholar] [CrossRef]
- Ikeda, S.; Naruse, K.; Nagata, C.; Kuramochi, M.; Onuki, T.; Inagaki, M.; Suzuki, K. Immunostaining for thyroid transcription factor 1, Napsin A, p40, and cytokeratin 5 aids in differential diagnosis of non-small cell lung carcinoma. Oncol. Lett. 2015, 9, 2099–2104. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fan, M.; Dai, L.; Kang, X.; Liu, Y.; Sun, Y. Expression of p63 and CK5/6 in early-stage lung squamous cell carcinoma is not only an early diagnostic indicator but also correlates with a good prognosis. Thorac. Cancer 2015, 6, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Vidarsdottir, H.; Tran, L.; Nodin, B.; Jirström, K.; Planck, M.; Jönsson, P.; Mattsson, J.S.; Botling, J.; Micke, P.; Brunnström, H. Immunohistochemical profiles in primary lung cancers and epithelial pulmonary metastases. Hum. Pathol. 2019, 84, 221–230. [Google Scholar] [CrossRef]
- Kriegsmann, K.; Cremer, M.; Zgorzelski, C.; Harms, A.; Muley, T.; Winter, H.; Kazdal, D.; Warth, A.; Kriegsmann, M. Agreement of CK5/6, p40, and p63 immunoreactivity in non-small cell lung cancer. Pathology 2019, 51, 240–245. [Google Scholar] [CrossRef]
- Guo, R.; Tian, Y.; Zhang, N.; Huang, H.; Huang, Y.; Yang, J. Use of dual-marker staining to differentiate between lung squamous cell carcinoma and adenocarcinoma. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- Roberts, E.A.; Morrison, L.E.; Behman, L.J.; Draganova-Tacheva, R.; O’Neill, R.; Solomides, C.C. Chromogenic immunohistochemical quadruplex provides accurate diagnostic differentiation of non-small cell lung cancer. Ann. Diagn. Pathol. 2020, 45, 151454. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.F.; Sirohi, D.; Fukuoka, J.; Cagle, P.T.; Policarpio-Nicolas, M.; Tacha, D.; Jagirdar, J. Tissue-Preserving Antibody Cocktails to Differentiate Primary Squamous Cell Carcinoma, Adenocarcinoma, and Small Cell Carcinoma of Lung. Arch. Pathol. Lab. Med. 2013, 137, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Compérat, E.; Zhang, F.; Perrotin, C.; Molina, T.; Magdeleinat, P.; Marmey, B.; Régnard, J.-F.; Audouin, J.; Camilleri-Broët, S. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod. Pathol. 2005, 18, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Matoso, A.; Singh, K.; Jacob, R.; Greaves, W.O.; Tavares, R.; Noble, L.; Resnick, M.B.; DeLellis, R.A.; Wang, L.J. Comparison of Thyroid Transcription Factor-1 Expression by 2 Monoclonal Antibodies in Pulmonary and Nonpulmonary Primary Tumors. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashima, K.; Hashimoto, H.; Nishida, H.; Arakane, M.; Yada, N.; Daa, T.; Yokoyama, S. Significant Expression of Thyroid Transcription Factor-1 in Pulmonary Squamous Cell Carcinoma Detected by SPT24 Monoclonal Antibody and CSA-II System. Appl. Immunohistochem. Mol. Morphol. 2014, 22, 119–124. [Google Scholar] [CrossRef]
- Smits, A.J.; Vink, A.; Tolenaars, G.; Herder, G.J.; Kummer, J.A. Different Cutoff Values for Thyroid Transcription Factor-1 Antibodies in the Diagnosis of Lung Adenocarcinoma. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 416–421. [Google Scholar] [CrossRef]
- Kadota, K.; Nitadori, J.-I.; Rekhtman, N.; Jones, D.R.; Adusumilli, P.S.; Travis, W.D. Reevaluation and Reclassification of Resected Lung Carcinomas Originally Diagnosed as Squamous Cell Carcinoma Using Immunohistochemical Analysis. Am. J. Surg. Pathol. 2015, 39, 1170–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidarsdottir, H.; Tran, L.; Nodin, B.; Jirström, K.; Planck, M.; Mattsson, J.S.M.; Botling, J.; Micke, P.; Jönsson, P.; Brunnström, H. Comparison of Three Different TTF-1 Clones in Resected Primary Lung Cancer and Epithelial Pulmonary Metastases. Am. J. Clin. Pathol. 2018, 150, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Staaf, J.; Tran, L.; Söderlund, L.; Nodin, B.; Jirström, K.; Vidarsdottir, H.; Planck, M.; Mattsson, J.S.M.; Botling, J.; Micke, P.; et al. Diagnostic Value of Insulinoma-Associated Protein 1 (INSM1) and Comparison with Established Neuroendocrine Markers in Pulmonary Cancers. Arch. Pathol. Lab. Med. 2020, 144, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Nadjafi, M.; Sung, M.; Santos, G.; Le, L.; Hwang, D.; Tsao, M.; Leighl, N. Diagnostic Patterns of Non-Small-Cell Lung Cancer at Princess Margaret Cancer Centre. Curr. Oncol. 2020, 27, 244–249. [Google Scholar] [CrossRef]
- Thunnissen, E.; Borczuk, A.C.; Flieder, D.B.; Witte, B.; Beasley, M.B.; Chung, J.-H.; Dacic, S.; Lantuejoul, S.; Russell, P.A.; Bakker, M.D.; et al. The Use of Immunohistochemistry Improves the Diagnosis of Small Cell Lung Cancer and Its Differential Diagnosis. An International Reproducibility Study in a Demanding Set of Cases. J. Thorac. Oncol. 2017, 12, 334–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, A.G.; Gonzalez, D.; Shah, P.; Pynegar, M.J.; Deshmukh, M.; Rice, A.; Popat, S. Refining the Diagnosis and EGFR Status of Non-small Cell Lung Carcinoma in Biopsy and Cytologic Material, Using a Panel of Mucin Staining, TTF-1, Cytokeratin 5/6, and P63, and EGFR Mutation Analysis. J. Thorac. Oncol. 2010, 5, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Tang, F.; Gu, Y. A prospective study on the diagnosis of peripheral lung cancer using endobronchial ultrasonography with a guide sheath and computed tomography-guided transthoracic needle aspiration. Ther. Adv. Med Oncol. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Zhou, Z.; Zhao, H.; Li, Z.; Jiang, G.; Wang, J. Endobronchial ultrasonography with guide sheath versus computed tomography guided transthoracic needle biopsy for peripheral pulmonary lesions: A propensity score matched analysis. J. Thorac. Dis. 2016, 8, 2758–2764. [Google Scholar] [CrossRef] [Green Version]
- DiBardino, D.M.; Yarmus, L.B.; Semaan, R.W. Transthoracic needle biopsy of the lung. J. Thorac. Dis. 2015, 7, S304–S316. [Google Scholar] [CrossRef]
- Al-Ibraheem, A.; Hirmas, N.; Fanti, S.; Paez, D.; Abuhijla, F.; Al-Rimawi, D.; Al-Rasheed, U.; Abdeljalil, R.; Hawari, F.; Alrabi, K.; et al. Impact of 18F-FDG PET/CT, CT and EBUS/TBNA on preoperative mediastinal nodal staging of NSCLC. BMC Med. Imaging 2021, 21, 49. [Google Scholar] [CrossRef]
- Vilmann, P.; Clementsen, P.F.; Colella, S.; Siemsen, M.; De Leyn, P.; Dumonceau, J.M. Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (ESGE) Guideline, in cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS). Endoscopy 2015, 47, 545–559. [Google Scholar] [PubMed] [Green Version]
Characteristic | Lund (n = 268) | Stockholm (n = 270) |
---|---|---|
Histological type | ||
Adenocarcinoma | 186 | 213 |
Squamous cell carcinoma | 47 | 29 |
Adenosquamous carcinoma | 2 | 5 |
Large cell carcinoma | 1 | 1 |
Sarcomatoid carcinoma | 3 | 0 |
Small cell/large cell neuroendocrine carcinoma incl. combined tumors | 10 | 3 |
Carcinoid tumor | 19 | 18 |
Salivary gland type carcinoma | 0 | 1 |
Stage (TNM8) | ||
In situ or yT0 | 7 | 6 |
IA | 107 | 138 |
IB | 53 | 42 |
IIA | 11 | 13 |
IIB | 58 | 38 |
IIIA | 23 | 28 |
IIIB | 7 | 3 |
IIIC | 0 | 0 |
IVA | 2 | 2 |
IVB | 0 | 0 |
N Stage | ||
N0 | 211 | 225 |
N1 | 43 | 30 |
N2 | 14 | 15 |
Number of N2 stations sampled | a | |
0 | 30 | 13 |
1 | 25 | 25 |
2 | 42 | 57 |
3 | 134 | 130 |
4 | 33 | 43 |
5 | 4 | 2 |
Pre-surgical diagnosis | ||
Cytology only | 24 | 100 |
Biopsy only | 98 | 40 |
Both cytology and biopsy | 42 | 34 |
No diagnosis | 104 | 96 |
Frozen section | ||
Tumor | 35 | 16 |
Lymph nodes | 4 | 3 |
Margin/extension | 7 | 1 |
Discordance | Lund | Stockholm |
---|---|---|
With potential clinical relevance | ||
Cytology AC, resection SqCC | 0 | 4 (2) |
Cytology NSCC, resection SqCC | 4 (4) | 0 |
Cytology AC, resection mixed SCLC/LCNEC | 0 | 1 |
Cytology NSCC, resection LCNEC | 1 | 0 |
Cytology LCNEC, resection carcinoid | 0 | 1 |
Cytology SqCC, resection salivary gland type carcinoma | 0 | 1 (1) |
Cytology and biopsy NSCC, resection SqCC | 1 | 0 |
Cytology and biopsy NSCC, resection mixed SCLC/LCNEC | 1 | 0 |
Biopsy AdSq, resection SqCC | 0 | 1 (1) |
Biopsy NSCC, resection SqCC | 1 | 0 |
With no/limited clinical relevance | ||
Cytology NSCC, resection AC | 22 (17) | 6 (6) |
Cytology AC/NSCC, resection AdSq | 0 | 2 |
Cytology and biopsy NSCC, resection AC | 0 | 1 |
Cytology and biopsy AC/NSCC, resection pleomorphic carcinoma with AC component | 2 | 0 |
IHC Markers | Lund | Stockholm |
---|---|---|
0 | 7 | 8 |
1 | 10 | 55 |
2 | 19 | 29 |
3 | 16 | 6 |
4 | 42 | 15 |
5 | 21 | 8 |
6 | 16 | 3 |
7 | 9 | 9 |
8 | 8 | 3 |
9 | 4 | 2 |
10 | 3 | 11 |
11–15 | 6 | 18 |
16–20 | 3 | 6 |
21–30 | 0 | 1 |
Specimen | Morphology | Previous Malignancy | Age/Gender | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Core biopsy | AC mucinous | Thyroid papillary micro-cancer | 66/F | CK20 | CDX2, CK7, TTF-1 | Napsin A | PAX8 | CA19-9, CK19, HBME1, Ki67, MUC1, MUC2, MUC5AC, MUC6, p40, thyreoglobulin, vimentin | |||||
Bronchial biopsy | SqCC | - | 67/M | p40 | TTF-1 | CK5 | Napsin A | Ki67, vimentin | |||||
Core biopsy | AC acinary | Uterine endometrioid cancer | 65/F | TTF-1 | Napsin A, PAX8 | ER | CK7, PGR | CA125 | CK5, CK18, CK19, Ki67, p40, p53, vimentin, WT1 | ||||
Core biopsy | Metastasis of breast cancer 1 | Tripple negative breast cancer | 49/F | GATA3, TTF-1 | Napsin A | p40 | CD56, CK5, CK7 | Chromogranin A | Synaptophysin | CKAE1/3, GCDFP15, INSM1, mammaglobin, SOX10 | CK18, CK19, vimentin | ||
Bronchial biopsy | SCLC | - | 69/M | TTF-1 | Ki67, Synaptophysin | CD56 | CKAE1/3, chromogranin A | Napsin A, p40 | CD45, CK5, INSM1 | Vimentin | |||
Bronchial biopsy | NSCC 2 | - | 76/F | CK5, p40, TTF-1 | Napsin A | CK7 | CA19-9, CAIX, CDX2, CK19, CK20, CKAE1/3, GATA3, Ki67, MUC1, MUC2, MUC5AC, MUC6, S100, vimentin | ||||||
Core biopsy | AC lepidic | Urothelial cancer of the renal pelvis | 81/F | TTF-1 | Napsin A | CK7, Ki67 | GATA3, p40, vimentin | CK5, CK20, CDX2 | |||||
Bronchial biopsy | Metastasis of colorectal cancer | Rectal cancer | 71/M | CK20 | CDX2, CK7, TTF-1 | Napsin A | SATB2 | CA19-9, Ki67, MUC1, MUC2, MUC5AC, MUC6, p40, vimentin | |||||
Core biopsy | LCNEC | - | 78/F | TTF-1 | Napsin A, synaptophysin | CK5, p40 | CD56, chromogranin A | Ki67 | CK7 | INSM1 | CK20, ER, GATA3, MUC1, MUC2, MUC5AC, MUC6, PAX8, PGR, vimentin | ||
Bronchial biopsy | NSCC 3 | - | 82/F | TTF-1 | Napsin A, p40 | CK5, CK7 | CDX2, GATA3, Ki67 | CA19-9, CAIX, CD56, chromogranin A, CK19, CK20, MUC1, MUC2, MUC5AC, MUC6, PAX8, SOX10, vimentin | |||||
Core biopsy | AC micro-papillary/papillary | - | 58/F | TTF-1 | CK7, napsin A | PAX8 | CDX2, GATA3 | CA19-9, CK18, CK19, CK20, ER, GATA3, HBME1, Ki67, MUC1, MUC2, MUC5AC, MUC6, p40, vimentin | |||||
Bronchial brush | AC | Tounge SqCC | 62/M | p40, TTF-1 | CK5, napsin A | p16 | CK7 | CD56, chromogranin A | |||||
Bronchial brush | SCLC | - | 75/F | TTF-1 | Synaptophysin | CD56 | CKAE1/3, Ki67, p40 | Chromogranin A, napsin A | CK5 | CK7, INSM1 | CD45 | ||
Bronchial brush | NSCC 2 | - | 57/F | TTF-1 | Napsin A | p40 | CK5 | CK7 | CD56, synaptophysin | CA125, CA19-9, CDX2, chromogranin A, CK20, p16, ER, GATA3, PAX8, PGR | |||
Bronchial brush | SqCC | Follicular lymphoma | 78/F | TTF-1 | p40 | CK5, napsin A | CK7 | CD3, CD20, CDX2 | BCL2, BCL6, CA19-9, CD56, chromogranin A, CKAE1/3, Ki67, MUC1, MUC2, MUC5AC, MUC6 |
Sampling Procedure | Lund | Stockholm |
---|---|---|
EBUS against lymph nodes | 16/182 (9%) | 1/25 (4%) |
Bronchoscopic FNA | 2/10 (20%) | 3/4 (75%) |
Bronchial brush | 46/183 (25%) | 38/121 (31%) |
Bronchioalveolar lavage | 3/32 (9%) | 18/125 (14%) |
Bronchial suction catheter | 23/134 (17%) | 0/0 |
Transthoracic FNA | 1/2 (50%) | 93/116 (80%) |
Pleural effusion | 1/2 (50%) | 0/1 (0%) |
FNA against lymph node | 0/5 (0%) | 0/4 (0%) |
Bronchoscopic biopsy | 66/176 (38%) | 25/47 (53%) |
Transthoracic core biopsy | 73/86 (85%) | 49/68 (72%) |
Mediastinoscopy | 0/0 | 0/4 (0%) |
Liver biopsy | 0/1 (0%) | 0/1 (0%) |
Brain biopsy | 0/0 | 1/1 (100%) |
Head and neck biopsy | 0/2 (0%) | 0/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ericson Lindquist, K.; Gudinaviciene, I.; Mylona, N.; Urdar, R.; Lianou, M.; Darai-Ramqvist, E.; Haglund, F.; Béndek, M.; Bardoczi, E.; Dobra, K.; et al. Real-World Diagnostic Accuracy and Use of Immunohistochemical Markers in Lung Cancer Diagnostics. Biomolecules 2021, 11, 1721. https://doi.org/10.3390/biom11111721
Ericson Lindquist K, Gudinaviciene I, Mylona N, Urdar R, Lianou M, Darai-Ramqvist E, Haglund F, Béndek M, Bardoczi E, Dobra K, et al. Real-World Diagnostic Accuracy and Use of Immunohistochemical Markers in Lung Cancer Diagnostics. Biomolecules. 2021; 11(11):1721. https://doi.org/10.3390/biom11111721
Chicago/Turabian StyleEricson Lindquist, Kajsa, Inga Gudinaviciene, Nektaria Mylona, Rodrigo Urdar, Maria Lianou, Eva Darai-Ramqvist, Felix Haglund, Mátyás Béndek, Erika Bardoczi, Katalin Dobra, and et al. 2021. "Real-World Diagnostic Accuracy and Use of Immunohistochemical Markers in Lung Cancer Diagnostics" Biomolecules 11, no. 11: 1721. https://doi.org/10.3390/biom11111721
APA StyleEricson Lindquist, K., Gudinaviciene, I., Mylona, N., Urdar, R., Lianou, M., Darai-Ramqvist, E., Haglund, F., Béndek, M., Bardoczi, E., Dobra, K., & Brunnström, H. (2021). Real-World Diagnostic Accuracy and Use of Immunohistochemical Markers in Lung Cancer Diagnostics. Biomolecules, 11(11), 1721. https://doi.org/10.3390/biom11111721