Butyric Acid Added Apically to Intestinal Caco-2 Cells Elevates Hepatic ApoA-I Transcription and Rescues Lower ApoA-I Expression in Inflamed HepG2 Cells Co-Cultured in the Basolateral Compartment
Abstract
1. Introduction
2. Material and Methods
2.1. Materials
2.2. Cell Culture and C4 Treatment
2.3. Quantification of Gene mRNA Transcription
2.4. Statistical Analysis
3. Results
3.1. Effects of C4 on ApoA-I mRNA Expression in Caco-2 or HepG2 Cells (Conditions 1 and 2)
3.2. Effects of C4 Added to the Apical Surface of Caco-2 Cells on ApoA-I mRNA Expression in Caco-2 and HepG2 Cells (Condition 3)
3.3. Effects of the Positive Control JQ1(+) on ApoA-I mRNA Expression in Caco-2 and HepG2 Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ApoA-I | Apolipoprotein A-I |
cDNA | Complementary DNA |
IL-1β | Interleukin 1 beta |
NF-κB | Nuclear factor kappa B |
SCFAs | Short chain fatty acids |
TNFα | Tumor necrosis factor-α |
mRNA | messenger RNA |
References
- Kles, K.A.; Chang, E.B. Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology 2006, 2, S100–S105. [Google Scholar] [CrossRef] [PubMed]
- Waldecker, M.; Kautenburger, T.; Daumann, H.; Veeriah, S.; Will, F.; Dietrich, H. Histone-deacetylase inhibition and butyrate formation: Fecal slurry incubations with apple pectin and apple juice extracts. Nutrition 2008, 4, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Robles-Vera, I.; Toral, M.; de la Visitación, N.; Aguilera-Sánchez, N.; Redondo, J.M.; Duarte, J. Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Front. Physiol. 2020, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Di Costanzo, M.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 12, 1519. [Google Scholar] [CrossRef]
- Segain, J.; De La Blétiere, D.R.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C. Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut 2000, 3, 397–403. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.; Wagenaar, G.T.; Garssen, J.; Folkerts, G.; Henricks, P.A. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 11, 52–59. [Google Scholar] [CrossRef]
- Ohira, H.; Tsutsui, W.; Fujioka, Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb. 2017, 7, 660–672. [Google Scholar] [CrossRef]
- Thibault, R.; Blachier, F.; Darcy-Vrillon, B.; De Coppet, P.; Bourreille, A.; Segain, J.-P. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency. Inflammatory bowel diseases. Inflamm. Bowel Dis. 2010, 4, 684–695. [Google Scholar] [CrossRef]
- Tayyeb, J.Z.; Popeijus, H.E.; Mensink, R.P.; Konings, M.C.; Mulders, K.H.; Plat, J. The effects of short-chain fatty acids on the transcription and secretion of apolipoprotein A-I in human hepatocytes in vitro. J. Cell. Biochem. 2019, 10, 17219–17227. [Google Scholar] [CrossRef]
- Bloemen, J.G.; Venema, K.; van de Poll, M.C.; Damink, S.W.O.; Buurman, W.A.; Dejong, C.H. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 2009, 6, 660–672. [Google Scholar] [CrossRef]
- Den Besten, G. Elucidating the Mechanisms of Action of Short-Chain Fatty Acids: From Dietary Fiber to Host Metabolism. Ph.D. Thesis, Groningen University, Groningen, The Netherlands, 2014. [Google Scholar]
- Tayyeb, J.Z.; Popeijus, H.E.; Mensink, R.P.; Konings, M.; Mokhtar, F.B.A.; Plat, J. Short-Chain Fatty Acids (Except Hexanoic Acid) Lower NF-kB Transactivation, Which Rescues Inflammation-Induced Decreased Apolipoprotein A-I Transcription in HepG2 Cells. Int. J. Mol. Sci. 2020, 14, 5088. [Google Scholar] [CrossRef] [PubMed]
- Carpintero, R.; Pineiro, M.; Andres, M.; Iturralde, M.; Alava, M.; Heegaard, P.M. The concentration of apolipoprotein AI decreases during experimentally induced acute-phase processes in pigs. Infect. Immun. 2005, 5, 3184–3187. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, A.; Sakuma, S.; Morikawa, W.; Takiue, T.; Miake, F.; Terano, T. Intravenous injection of rabbit apolipoprotein AI inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 1995, 11, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.K.; Yano, J.; Reyes, O.; Chyu, K.-Y.; Kaul, S.; Bisgaier, C.L. High-Dose Recombinant Apolipoprotein A-IMilano Mobilizes Tissue Cholesterol and Rapidly Reduces Plaque Lipid and Macrophage Content in Apolipoprotein E–Deficient Mice: Potential Implications for Acute Plaque Stabilization. Circulation 2001, 25, 3047–3050. [Google Scholar] [CrossRef]
- Cummings, J.; Pomare, E.; Branch, W.; Naylor, C.; Macfarlane, G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 10, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.G., Jr.; Soergel, K.H.; Wood, C.M. Absorption of short chain fatty acids from the human jejunum. Gastroenterology 1976, 2, 211–215. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Hypocholesterolaemic activity of lupin peptides: Investigation on the crosstalk between human enterocytes and hepatocytes using a co-culture system including Caco-2 and HepG2 cells. Nutrients 2016, 7, 437. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 2005, 2, 175–185. [Google Scholar] [CrossRef]
- Garcia, M.N.; Flowers, C.; Cook, J.D. The Caco-2 cell culture system can be used as a model to study food iron availability. J. Nutr. 1996, 1, 251–258. [Google Scholar] [CrossRef]
- Van der Krieken, S.E.; Popeijus, H.E.; Mensink, R.P.; Plat, J. Link between ER-stress, PPAR-alpha activation, and BET inhibition in relation to apolipoprotein A-I transcription in HepG2 cells. J. Cell. Biochem. 2017, 8, 2161–2167. [Google Scholar] [CrossRef]
- Wu, A.L.; Windmueller, H.G. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat. J. Biol. Chem. 1979, 15, 7316–7322. [Google Scholar] [CrossRef]
- Peng, L.; He, Z.; Chen, W.; Holzman, I.R.; Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res. 2007, 1, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Glickman, R.M.; Green, P.H. The intestine as a source of apolipoprotein A1. Proc. Natl. Acad. Sci. USA 1977, 6, 2569–2573. [Google Scholar] [CrossRef] [PubMed]
- Neis, E.P.; van Eijk, H.M.; Lenaerts, K.; Damink, S.W.O.; Blaak, E.E.; Dejong, C.H. Distal versus proximal intestinal short-chain fatty acid release in man. Gut 2019, 4, 764–765. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 3, 558–577. [Google Scholar] [CrossRef]
- Trapecar, M.; Communal, C.; Velazquez, J.; Maass, C.A.; Huang, Y.-J.; Schneider, K. Gut-Liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst. 2020, 3, 223–239. [Google Scholar] [CrossRef]
- Kan, H.-Y.; Georgopoulos, S.; Zannis, V. A hormone response element in the human apolipoprotein CIII (ApoCIII) enhancer is essential for intestinal expression of the ApoA-I and ApoCIII genes and contributes to the hepatic expression of the two linked genes in transgenic mice. J. Biol. Chem. 2000, 39, 30423–30431. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyeb, J.Z.; Popeijus, H.E.; Mensink, R.P.; Plat, J. Butyric Acid Added Apically to Intestinal Caco-2 Cells Elevates Hepatic ApoA-I Transcription and Rescues Lower ApoA-I Expression in Inflamed HepG2 Cells Co-Cultured in the Basolateral Compartment. Biomolecules 2021, 11, 71. https://doi.org/10.3390/biom11010071
Tayyeb JZ, Popeijus HE, Mensink RP, Plat J. Butyric Acid Added Apically to Intestinal Caco-2 Cells Elevates Hepatic ApoA-I Transcription and Rescues Lower ApoA-I Expression in Inflamed HepG2 Cells Co-Cultured in the Basolateral Compartment. Biomolecules. 2021; 11(1):71. https://doi.org/10.3390/biom11010071
Chicago/Turabian StyleTayyeb, Jehad Z., Herman E. Popeijus, Ronald P. Mensink, and Jogchum Plat. 2021. "Butyric Acid Added Apically to Intestinal Caco-2 Cells Elevates Hepatic ApoA-I Transcription and Rescues Lower ApoA-I Expression in Inflamed HepG2 Cells Co-Cultured in the Basolateral Compartment" Biomolecules 11, no. 1: 71. https://doi.org/10.3390/biom11010071
APA StyleTayyeb, J. Z., Popeijus, H. E., Mensink, R. P., & Plat, J. (2021). Butyric Acid Added Apically to Intestinal Caco-2 Cells Elevates Hepatic ApoA-I Transcription and Rescues Lower ApoA-I Expression in Inflamed HepG2 Cells Co-Cultured in the Basolateral Compartment. Biomolecules, 11(1), 71. https://doi.org/10.3390/biom11010071