Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of a Trapped Bosonic Mixture
Abstract
:1. Introduction
2. Intra-Species and Inter-Species Natural Pair Functions
2.1. The Symmetric Two-Species Harmonic-Interaction Model
2.2. Intra-Species Natural Pair Functions
2.3. Inter-Species Natural Pair Functions
3. Pair of Distinguishable Pairs and Schmidt Decomposition of the wave function
3.1. Inter-Species Fragmentation in Higher-Order Reduced Density Matrices
3.2. Inter-Species Entanglement and the Limit of an Infinite Number of Particles
4. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Comparison to Fragmentation in the Single-Species System
References
- Löwdin, P.-O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev. 1955, 97, 1474. [Google Scholar] [CrossRef]
- Yang, C.N. Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors. Rev. Mod. Phys. 1962, 34, 694. [Google Scholar] [CrossRef]
- Davidson, E. Reduced Density Matrices in Quantum Chemistry; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Coleman, A.J.; Yukalov, V.I. Reduced Density Matrices: Coulson’s Challenge; Lectures Notes in Chemistry; Springer: Berlin, Germany, 2000; Volume 72. [Google Scholar]
- Mazziotti, D.A. (Ed.) Reduced -Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules; Advances in Chemical Physics; Wiley: New York, NY, USA, 2007; Volume 134. [Google Scholar]
- Penrose, O.; Onsager, L. Bose-Einstein Condensation and Liquid Helium. Phys. Rev. 1956, 104, 576. [Google Scholar] [CrossRef]
- Mueller, E.J.; Ho, T.-L.; Ueda, M.; Baym, G. Fragmentation of Bose-Einstein condensates. Phys. Rev. A 2006, 74, 033612. [Google Scholar] [CrossRef] [Green Version]
- Girardeau, M. Simple and Generalized Condensation in Many-Boson Systems. Phys. Fluids 1962, 5, 1468. [Google Scholar] [CrossRef]
- Pollock, F. Quantization of Circulation in a Non-Ideal Bose Gas. Phys. Fluids 1967, 10, 473. [Google Scholar] [CrossRef]
- Noziéres, P.; Saint James, D. Particle vs. pair condensation in attractive Bose liquids. J. Phys. 1982, 43, 1133. [Google Scholar] [CrossRef] [Green Version]
- Noziéres, P. Bose-Einstein Condensation; Griffin, A., Snoke, D.W., Stringari, S., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 15. [Google Scholar]
- Spekkens, R.W.; Sipe, J.E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 1999, 59, 3868. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.I.; Cederbaum, L.S.; Moiseyev, N. Ground-state fragmentation of repulsive Bose-Einstein condensates in double-trap potentials. Phys. Rev. A 2004, 70, 053607. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.I.; Cederbaum, L.S. Properties of fragmented repulsive condensates. Phys. Rev. A 2005, 71, 063612. [Google Scholar] [CrossRef] [Green Version]
- Alon, O.E.; Cederbaum, L.S. Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Phys. Rev. Lett. 2005, 95, 140402. [Google Scholar] [CrossRef] [Green Version]
- Bader, P.; Fischer, U.R. Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap. Phys. Rev. Lett. 2009, 103, 060402. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.R.; Bader, P. Interacting trapped bosons yield fragmented condensate states in low dimensions. Phys. Rev. A 2010, 82, 013607. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Cui, X. Fate of a Bose-Einstein Condensate in the Presence of Spin-Orbit Coupling. Phys. Rev. Lett. 2013, 110, 140407. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y. Goldstone-mode instability leading to fragmentation in a spinor Bose-Einstein condensate. Phys. Rev. A 2014, 89, 033627. [Google Scholar] [CrossRef] [Green Version]
- Song, S.-W.; Zhang, Y.-C.; Zhao, H.; Wang, X.; Liu, W.-M. Fragmentation of spin-orbit-coupled spinor Bose-Einstein condensates. Phys. Rev. A 2014, 89, 063613. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-K.; Fischer, U.R. Revealing Single-Trap Condensate Fragmentation by Measuring Density-Density Correlations after Time of Flight. Phys. Rev. Lett. 2014, 113, 140404. [Google Scholar] [CrossRef] [Green Version]
- Jen, H.H.; Yip, S.-K. Fragmented many-body states of a spin-2 Bose gas. Phys. Rev. A 2015, 91, 063603. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.R.; Kang, M.-K. “Photonic” Cat States from Strongly Interacting Matter Waves. Phys. Rev. Lett. 2015, 115, 260404. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.R.; Lode, A.U.J.; Chatterjee, B. Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions. Phys. Rev. A 2015, 91, 063621. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.J. Multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: Theory and composite fragmentation of multicomponent Bose-Einstein condensates. Phys. Rev. A 2016, 93, 063601. [Google Scholar] [CrossRef] [Green Version]
- Kolovsky, A.R. Bogoliubov depletion of the fragmented condensate in the bosonic flux ladder. Phys. Rev. A 2017, 95, 033622. [Google Scholar] [CrossRef] [Green Version]
- Tomchenko, M. On a Fragmented Condensate in a Uniform Bose System. J. Low Temp. Phys. 2020, 198, 100. [Google Scholar] [CrossRef] [Green Version]
- Sakmann, K.; Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S. Reduced density matrices and coherence of trapped interacting bosons. Phys. Rev. A 2008, 78, 023615. [Google Scholar] [CrossRef]
- Kutzelnigg, W. Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many-Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation. J. Chem. Phys. 1964, 40, 3640. [Google Scholar] [CrossRef]
- Smith, D.W.; Fogel, S.J. Natural Orbitals and Geminals of the Beryllium Atom. J. Chem. Phys. 1965, 43, S91. [Google Scholar] [CrossRef]
- Coleman, A.J. Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers. J. Math. Phys. 1965, 6, 1425. [Google Scholar] [CrossRef]
- McWeeny, R.; Kutzelnigg, W. Symmetry properties of natural orbitals and geminals I. Construction of spin- and symmetry-adapted functions. Int. J. Quantum Chem. 1968, 2, 187. [Google Scholar] [CrossRef]
- Kutzelnigg, W. A relation between the angular moments of natural orbitals and natural geminals. Chem. Phys. Lett. 1969, 4, 449. [Google Scholar] [CrossRef]
- Surján, P.R. (Ed.) An Introduction to the Theory of Geminals; Correlation and Localization. Topics in Current Chemistry; Springer: Berlin, Germany, 1999; Volume 203, p. 63. [Google Scholar]
- Casula, M.; Attaccalite, C.; Sorella, S. Correlated geminal wave function for molecules: An efficient resonating valence bond approach. J. Chem. Phys. 2004, 121, 7110. [Google Scholar] [CrossRef] [Green Version]
- Werner, H.-J.; Knizia, G.; Manby, F.R. Explicitly correlated coupled cluster methods with pair-specific geminals. Mol. Phys. 2011, 109, 407. [Google Scholar] [CrossRef]
- Surjan, P.R.; Szabados, A.; Jeszenszki, P.; Zoboki, T. Strongly orthogonal geminals: Size-extensive and variational reference states. J. Math. Chem. 2012, 50, 534. [Google Scholar] [CrossRef]
- Makkonen, I.; Ervasti, M.M.; Siro, T.; Harju, A. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals. Phys. Rev. B 2014, 89, 041105(R). [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.M.; Scuseria, G.E. Geminal-based configuration interaction. J. Chem. Phys. 2019, 151, 051101. [Google Scholar] [CrossRef] [Green Version]
- Genovese, C.; Shirakawa, T.; Nakano, K.; Sorella, S. General Correlated Geminal Ansatz for Electronic Structure Calculations: Exploiting Pfaffians in Place of Determinants. J. Chem. Theory Comput. 2020, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586. [Google Scholar] [CrossRef]
- Stamper-Kurn, D.M.; Andrews, M.R.; Chikkatur, A.P.; Inouye, S.; Miesner, H.-J.; Stenger, J.; Ketterle, W. Optical Confinement of a Bose-Einstein Condensate. Phys. Rev. Lett. 1998, 80, 2027. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.-L.; Shenoy, V.B. Binary Mixtures of Bose Condensates of Alkali Atoms. Phys. Rev. Lett. 1996, 77, 3276. [Google Scholar] [CrossRef]
- Esry, B.D.; Greene, C.H.; Burke, J.P., Jr.; Bohn, J.L. Hartree-Fock Theory for Double Condensates. Phys. Rev. Lett. 1997, 78, 3594. [Google Scholar] [CrossRef]
- Pu, H.; Bigelow, N.P. Properties of Two-Species Bose Condensates. Phys. Rev. Lett. 1998, 80, 1130. [Google Scholar] [CrossRef]
- Timmermans, E. Phase Separation of Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 5718. [Google Scholar] [CrossRef] [Green Version]
- Altman, E.; Hofstetter, W.; Demler, E.; Lukin, M.D. Phase diagram of two-component bosons on an optical lattice. New J. Phys. 2003, 5, 113. [Google Scholar] [CrossRef]
- Kuklov, A.B.; Svistunov, B.V. Counterflow Superfluidity of Two-Species Ultracold Atoms in a Commensurate Optical Lattice. Phys. Rev. Lett. 2003, 90, 100401. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, A.; Weiss, C.; Holthaus, M. Ground-state energy and depletions for a dilute binary Bose gas. Phys. Rev. A 2004, 70, 043615. [Google Scholar] [CrossRef] [Green Version]
- Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Multiconfigurational time-dependent Hartree method for mixtures consisting of two types of identical particles. Phys. Rev. A. 2007, 76, 062501. [Google Scholar] [CrossRef]
- Sakhel, A.R.; DuBois, J.L.; Glyde, H.R. Condensate depletion in two-species Bose gases: A variational quantum Monte Carlo study. Phys. Rev. A 2008, 77, 043627. [Google Scholar] [CrossRef] [Green Version]
- Zöllner, S.; Meyer, H.D.; Schmelcher, P. Composite fermionization of one-dimensional Bose-Bose mixtures. Phys. Rev. A 2008, 78, 013629. [Google Scholar] [CrossRef] [Green Version]
- Oleś, B.; Sacha, K. N-conserving Bogoliubov vacuum of a two-component Bose-Einstein condensate: Density fluctuations close to a phase-separation condition. J. Phys. A 2008, 41, 145005. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Chen, S. Density-functional theory of two-component Bose gases in one-dimensional harmonic traps. Phys. Rev. A 2009, 80, 043608. [Google Scholar] [CrossRef]
- Girardeau, M.D. Pairing, Off-Diagonal Long-Range Order, and Quantum Phase Transition in Strongly Attracting Ultracold Bose Gas Mixtures in Tight Waveguides. Phys. Rev. Lett. 2009, 102, 245303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyrnakis, J.; Bargi, S.; Kavoulakis, G.M.; Magiropoulos, M.; Kärkkäinen, K.; Reimann, S.M. Mixtures of Bose Gases Confined in a Ring Potential. Phys. Rev. Lett. 2009, 103, 100404. [Google Scholar] [CrossRef] [Green Version]
- Girardeau, M.D.; Astrakharchik, G.E. Ground state of a mixture of two bosonic Calogero-Sutherland gases with strong odd-wave interspecies attraction. Phys. Rev. A 2010, 81, 043601. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Angom, D. Ground state geometry of binary condensates in axissymmetric traps. J. Phys. B. 2010, 43, 095302. [Google Scholar] [CrossRef]
- Krönke, S.; Cao, L.; Vendrell, O.; Schmelcher, P. Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: The multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 2013, 15, 063018. [Google Scholar] [CrossRef]
- García-March, M.Á.; Busch, T. Quantum gas mixtures in different correlation regimes. Phys. Rev. A 2013, 87, 063633. [Google Scholar] [CrossRef] [Green Version]
- Anoshkin, K.; Wu, Z.; Zaremba, E. Persistent currents in a bosonic mixture in the ring geometry. Phys. Rev. A 2013, 88, 013609. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Krönke, S.; Vendrell, O.; Schmelcher, P. The multi-layer multi-configuration time-dependent Hartree method for bosons: Theory, implementation, and applications. J. Chem. Phys. 2013, 139, 134103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña Ardila, L.A.; Giorgini, S. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [Green Version]
- Schurer, J.M.; Negretti, A.; Schmelcher, P. Unraveling the Structure of Ultracold Mesoscopic Collinear Molecular Ions. Phys. Rev. Lett. 2017, 119, 063001. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Schurer, J.M.; Schmelcher, P. Entanglement Induced Interactions in Binary Mixtures. Phys. Rev. Lett. 2018, 121, 043401. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, C.; Madsen, L.B. Multispecies time-dependent restricted-active-space self-consistent-field-theory for ultracold atomic and molecular gases. J. Phys. B 2018, 51, 155302. [Google Scholar] [CrossRef] [Green Version]
- Sowiński, T.; García-March, M.Á. One-dimensional mixtures of several ultracold atoms: A review. Rep. Prog. Phys. 2019, 82, 104401. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Volosniev, A.G.; Schmelcher, P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Phys. Rev. Res. 2020, 2, 023154. [Google Scholar] [CrossRef]
- Andriati, A.; Brito, L.; Tomio, L.; Gammal, A. Stability of a Bose condensed mixture on a bubble trap. Phys. Rev. A 2021, 104, 033318. [Google Scholar] [CrossRef]
- Osadchii, M.S.; Muraktanov, V.V. The System of Harmonically Interacting Particles: An Exact Solution of the Quantum-Mechanical Problem. Int. J. Quantum Chem. 1991, 39, 173. [Google Scholar] [CrossRef]
- Bouvrie, P.A.; Majtey, A.P.; Tichy, M.C.; Dehesa, J.S.; Plastino, A.R. Entanglement and the Born-Oppenheimer approximation in an exactly solvable quantum many-body system. Eur. Phys. J. D 2014, 68, 346. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Zinner, N.T. Analytic solutions of topologically disjoint systems. J. Phys. A 2015, 48, 085301. [Google Scholar] [CrossRef] [Green Version]
- Alon, O.E. Solvable model of a generic trapped mixture of interacting bosons: Reduced density matrices and proof of Bose-Einstein condensation. J. Phys. A 2017, 50, 295002. [Google Scholar] [CrossRef] [Green Version]
- Klaiman, S.; Streltsov, A.I.; Alon, O.E. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties. J. Phys. Conf. Ser. 2018, 999, 012013. [Google Scholar] [CrossRef]
- Alon, O.E. Solvable Model of a Generic Driven Mixture of Trapped Bose-Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles. Entropy 2020, 22, 1342. [Google Scholar] [CrossRef]
- Klaiman, S.; Streltsov, A.I.; Alon, O.E. Solvable model of a trapped mixture of Bose-Einstein condensates. Chem. Phys. 2017, 482, 362. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.; Lee, C. Exact reduced density matrices for a model problem. J. Math. Phys. 1985, 26, 3105. [Google Scholar] [CrossRef]
- Pruski, S.; Maćkowiak, J.; Missuno, O. Reduced density matrices of a system of N coupled oscillators. 2. Eigenstructure of the 1-particle matrix for the canonical ensemble. Rep. Math. Phys. 1972, 3, 227. [Google Scholar] [CrossRef]
- Pruski, S.; Maćkowiak, J.; Missuno, O. Reduced density matrices of a system of N coupled oscillators. 3. The eigenstructure of the p-particle matrix for the ground state. Rep. Math. Phys. 1972, 3, 241. [Google Scholar] [CrossRef]
- Robinson, P.D. Coupled oscillator natural orbitals. J. Chem. Phys. 1977, 66, 3307. [Google Scholar] [CrossRef]
- Schilling, C. Natural orbitals and occupation numbers for harmonium: Fermions versus bosons. Phys. Rev. A 2013, 88, 042105. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L. Some exact solutions to the translation-invariant N-body problem. J. Phys. A 1978, 11, 1227. [Google Scholar] [CrossRef]
- Hall, R.L. Exact solutions of Schrödinger’s equation for translation-invariant harmonic matter. J. Phys. A 1978, 11, 1235. [Google Scholar] [CrossRef]
- Załuska-Kotur, M.A.; Gajda, M.; Orłowski, A.; Mostowski, J. Soluble model of many interacting quantum particles in a trap. Phys. Rev. A 2000, 61, 033613. [Google Scholar] [CrossRef] [Green Version]
- Yan, J. Harmonic Interaction Model and Its Applications in Bose-Einstein Condensation. J. Stat. Phys. 2003, 113, 623. [Google Scholar] [CrossRef]
- Gajda, M. Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions. Phys. Rev. A 2006, 73, 023603. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Analytic harmonic approach to the N-body problem. J. Phys. B 2011, 44, 055303. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Virial expansion coefficients in the harmonic approximation. Phys. Rev. E 2012, 86, 021115. [Google Scholar]
- Kościk, P.; Okopińska, A. Correlation effects in the Moshinsky model. Few-Body Syst. 2013, 54, 1637. [Google Scholar] [CrossRef] [Green Version]
- Benavides-Riveros, C.L.; Toranzo, I.V.; Dehesa, J.S. Entanglement in N-harmonium: Bosons and fermions. J. Phys. B 2014, 47, 195503. [Google Scholar] [CrossRef]
- Schilling, C.; Schilling, R. Number-parity effect for confined fermions in one dimension. Phys. Rev. A 2016, 93, 021601(R). [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 2000, 61, 043602. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H.; Seiringer, R. Proof of Bose-Einstein Condensation for Dilute Trapped Gases. Phys. Rev. Lett. 2002, 88, 170409. [Google Scholar] [CrossRef] [Green Version]
- Klaiman, S.; Alon, O.E. Variance as a sensitive probe of correlations. Phys. Rev. A 2015, 91, 063613. [Google Scholar] [CrossRef] [Green Version]
- Klaiman, S.; Cederbaum, L.S. Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases. Phys. Rev. A 2016, 94, 063648. [Google Scholar] [CrossRef] [Green Version]
- Anapolitanos, I.; Hott, M.; Hundertmark, D. Derivation of the Hartree equation for compound Bose gases in the mean field limit. Rev. Math. Phys. 2017, 29, 1750022. [Google Scholar] [CrossRef] [Green Version]
- Michelangeli, A.; Olgiati, A. Mean-field quantum dynamics for a mixture of Bose-Einstein condensates. Anal. Math. Phys. 2017, 7, 377. [Google Scholar] [CrossRef]
- Cederbaum, L.S. Exact many-body wave function and properties of trapped bosons in the infinite-particle limit. Phys. Rev. A 2017, 96, 013615. [Google Scholar] [CrossRef]
- Sakmann, K.; Schmiedmayer, J. Conserving symmetries in Bose-Einstein condensate dynamics requires many-body theory. arXiv 2018, arXiv:1802.03746v2. [Google Scholar]
- Alon, O.E. Analysis of a Trapped Bose-Einstein Condensate in Terms of Position, Momentum, and Angular-Momentum Variance. Symmetry 2019, 11, 1344. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Higher order Schmidt decompositions. Phys. Lett. A 1995, 202, 16. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alon, O.E. Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of a Trapped Bosonic Mixture. Atoms 2021, 9, 92. https://doi.org/10.3390/atoms9040092
Alon OE. Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of a Trapped Bosonic Mixture. Atoms. 2021; 9(4):92. https://doi.org/10.3390/atoms9040092
Chicago/Turabian StyleAlon, Ofir E. 2021. "Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of a Trapped Bosonic Mixture" Atoms 9, no. 4: 92. https://doi.org/10.3390/atoms9040092
APA StyleAlon, O. E. (2021). Fragmentation of Identical and Distinguishable Bosons’ Pairs and Natural Geminals of a Trapped Bosonic Mixture. Atoms, 9(4), 92. https://doi.org/10.3390/atoms9040092