# Oleg Zatsarinny (1953–2021): Memories by His Colleagues

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Individual Memories

#### 2.1. Alexei N. Grum-Grzhimailo (Lomonosov Moscow State University, Moscow, Russia)

#### 2.2. Klaus Bartschat (Drake University, Des Moines, Iowa, USA)

#### 2.3. Charlotte Froese Fischer (University of British Columbia, Vancouver, Canada)

I agreed to referee a paper where collision strengths for specific transitions are reported. They refer to a Wang, Bartschat, Zatsarinny (2018) paper using BSR which I suspect included Breit-Pauli. Can I have a copy of your paper?

Did you vote today?! How are things going?

That makes two of us—I was also assigned as referee to this paper. Attached is a copy of our paper.

The present paper is a step further—it considers fine-structure transitions. However, the accuracy of target states is still far from accurate, to such extent that to bother about small Breit corrections makes no sense, I think. And it is a problem of modern atomic-structure software—nobody yet gets accurate description of transition elements with open 3d shells, especially for scattering calculations where configuration expansions should be rather restricted.

No, I did not vote, it is far from my life, I am still Russian guy, and never feel myself as American. But it will be interesting to follow all this performance ...

Due to some health I don’t work much these days.

#### 2.4. Athanasios Petridis (Drake University, Des Moines, Iowa, USA)

#### 2.5. Adina Kilpatrick (Drake University, Des Moines, Iowa, USA)

#### 2.6. Kathryn R. Hamilton (Drake University, Des Moines, Iowa, USA)

#### 2.7. Former Students David Atri-Schuller, Doug Drake, Molly McCord, Thomas Pauly, and Will Thomas (Drake University, Des Moines, Iowa, USA)

#### 2.7.1. David Atri-Schuller, Graduate Student at Stanford University, Palo Alto, California, USA

#### 2.7.2. Doug Drake, Graduate Student at The University of Missouri-Kansas City, Kansas City, Missouri, USA

#### 2.7.3. Molly McCord, Graduate Student at The University of Wisconsin-Madison, Madison, Wisconsin, USA

#### 2.7.4. Thomas Pauly, Software Engineer at Forsman Farms, Howard Lake, Minnesota, USA

#### 2.7.5. Will Thomas, Graduate Student at The University of Wisconsin-Madison, Madison, Wisconsin, USA

#### 2.8. Luis Fernandez-Menchero (Queen’s University of Belfast, Northern Ireland)

#### 2.9. Nicolas Douguet (Kennesaw State University, Atlanta, Georgia, USA) and Samantha Fonseca (Rollins College, Orlando Florida, USA)

#### 2.10. Hartmut Hotop (University of Kaiserslautern, Germany) and Michael Allan (University of Fribourg, Switzerland)

#### 2.11. Alexander Dorn (Max-Planck Institute for Nuclear Physics, Heidelberg, Germany)

#### 2.12. Barry I. Schneider and Collin (Xiaoxu) Guan (National Institute for Science and Technology, Gaithersburg, USA)

#### 2.13. Yuri Ralchenko (National Institute for Science and Technology, Gaithersburg, Maryland, USA)

#### 2.14. Yang Wang (Harbin Institute of Technology, Harbin, People’s Republic of China)

#### 2.15. Kedong Wang (Henan Normal University, Xinxiang, People’s Republic of China)

#### 2.16. Zhangjin Chen (Shantou University, Guangdong, People’s Republic of China)

#### 2.17. Igor Bray, Dmitry Fursa, and Alisher Kadyrov (Curtin University, Perth, Australia)

#### 2.18. Anatoli Kheifets (Australian National University, Canberra, Australia)

#### 2.19. Michael J. Brunger (Flinders University, Adelaide, Australia)

#### 2.20. Swaraj Tayal (Clark Atlanta University, Atlanta, Georgia, USA)

#### 2.21. Leanne Pitchford (University of Toulouse, France, on behalf of the LXCat Team)

#### 2.22. Luis L. Alves (University of Lisbon, Lisbon, Portugal)

Dear Luis,Well, believe it or not, but we actually did this calculation already and published the results recently. I am attaching the PDF file of our paper. I’ll also CC Oleg Zatsarinny on this reply. He can probably send you the numerical results, so you don’t have to take them from the graph.Best wishes,Klaus

Dear Luis,Attached is archive of our last results for the e-N problem. It includes also the momentum-transfer cross sections you are interested in (mt-files, look in “read_me” for explanations)Hope this will help,Oleg Zatsarinny

#### 2.23. Anna Dzarasova (London, United Kingdom, on behalf of the Quantemol Team)

#### 2.24. Paul Barklem, Anish Amarsi, and Jon Grumer (Uppsala University, Uppsala, Sweden)

## 3. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zatsarinny, O.I.; Bandurina, L.A. Energy levels and lifetimes for the 2p
^{5}3snℓ core-excited states in Na. J. Phys. B At. Mol. Opt. Phys.**1993**, 26, 3765–3782. [Google Scholar] [CrossRef] - Dorn, A.; Winnewisser, C.; Wetzstein, M.; Nienhaus, J.; Grum-Grzhimailo, A.; Zatsarinny, O.; Mehlhorn, W. Electron impact excitation and ionization of laser-excited Na atoms. J. Electron Spectrosc. Relat. Phenom.
**1995**, 76, 245–251. [Google Scholar] [CrossRef] - Dorn, A.; Zatsarinny, O.; Mehlhorn, W. Experimental and theoretical Auger and autoionization spectra for electron impact on laser-excited Na atoms. J. Phys. B At. Mol. Opt. Phys.
**1997**, 30, 2975–2997. [Google Scholar] [CrossRef] - Nienhaus, J.; Zatsarinny, O.I.; Dorn, A.; Mehlhorn, W. Electron impact excitation and ionization of laser-excited sodium atoms. J. Phys. B At. Mol. Opt. Phys.
**1997**, 30, 3611–3626. [Google Scholar] [CrossRef] - Zatsarinny, O.; Dorn, A.; Loerch, H.; Nienhaus, J.; Mehlhorn, W. Electron-impact ionization and excitation of laser-excited atoms: Investigation by means of electron spectrometry. Nucl. Inst. Meth. Phys. Res. B
**1999**, 154, 90–96. [Google Scholar] [CrossRef] - Nienhaus, J.; Zatsarinny, O.; Mehlhorn, W. Experimental and theoretical Auger and autoionization spectra for electron impact on laser-excited Ba atoms. Phys. Essays
**2000**, 13, 307–324. [Google Scholar] [CrossRef] - Feuerstein, B.; Grum-Grzhimailo, A.N.; Mehlhorn, W. Electron impact excitation cross sections of sodium autoionizing state from threshold to 1.5 keV. J. Phys. B At. Mol. Opt. Phys.
**1998**, 31, 593–608. [Google Scholar] [CrossRef] - Mazza, T.; Ilchen, M.; Kiselev, M.D.; Gryzlova, E.V.; Baumann, T.M.; Boll, R.; De Fanis, A.; Grychtol, P.; Montaño, J.; Music, V.; et al. Mapping Resonance Structures in Transient Core-Ionized Atoms. Phys. Rev. X
**2020**, 10, 041056. [Google Scholar] [CrossRef] - Kiselev, M.D.; Gryzlova, E.V.; Burkov, S.M.; Zatsarinny, O.; Grum-Grzhimailo, A.N. The mechanisms of 1s double-core hole excitation and decay in neon. Atoms
**2021**. under review. [Google Scholar] - Buckman, S.J.; Hammond, P.; King, G.C.; Read, F.H. High-resolution electron impact excitation functions of metastable states of neon, argon, krypton and xenon. J. Phys. B At. Mol. Phys.
**1983**, 16, 4219–4236. [Google Scholar] [CrossRef] - Zatsarinny, O.; Bartschat, K. B-spline Breit–Pauli R-matrix calculations for electron collisions with neon atoms. J. Phys. B At. Mol. Opt. Phys.
**2004**, 37, 2173–2189. [Google Scholar] [CrossRef] - Available online: https://amosgateway.org/ (accessed on 1 December 2021).
- Available online: https://github.com/zatsaroi/BSR3 (accessed on 1 December 2021).
- Fernández-Menchero, L.; Zatsarinny, O.; Bartschat, K. Electron impact excitation of N
^{3+}using the B-spline R-matrix method: Importance of the target structure description and the size of the close-coupling expansion. J. Phys. B At. Mol. Opt. Phys.**2017**, 50, 065203. [Google Scholar] [CrossRef] - Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun.
**2006**, 174, 273–356. [Google Scholar] [CrossRef] - Zatsarinny, O.; Bartschat, K. The B-spline R-matrix method for atomic processes: Application to atomic structure, electron collisions and photoionization. J. Phys. B At. Mol. Opt. Phys.
**2013**, 46, 112001. [Google Scholar] [CrossRef] - Bömmels, J.; Franz, K.; Hoffmann, T.H.; Gopalan, A.; Zatsarinny, O.; Bartschat, K.; Ruf, M.W.; Hotop, H. Low-lying resonances in electron-neon scattering: Measurements at 4-meV resolution and comparison with theory. Phys. Rev. A
**2005**, 71, 012704. [Google Scholar] [CrossRef][Green Version] - Allan, M.; Franz, K.; Hotop, H.; Zatsarinny, O.; Bartschat, K. Absolute angle-differential cross sections for electron-impact excitation of neon within the first 3.5 eV above threshold. J. Phys. B At. Mol. Opt. Phys.
**2009**, 42, 044009. [Google Scholar] [CrossRef][Green Version] - Bartschat, K.; Fischer, C.F.; Grum-Grzhimailo, A.N. A Tribute to Oleg Zatsarinny (1953–2021): His Life in Science. Atoms
**2021**, 9, 53. [Google Scholar] [CrossRef] - Dorn, A.; Nienhaus, J.; Wetzstein, M.; Winnewissert, C.; Mehlhorn, W.; Balashov, V.V.; Grum-Grzhimailo, A.N.; Kabachnik, N.M.; Zatsarinny, O.I. Angular anisotropy of autoionization electrons from sodium atoms simultaneously excited by laser and electron beams. J. Phys. B At. Mol. Opt. Phys.
**1994**, 27, L529–L534. [Google Scholar] [CrossRef] - Ren, X.; Pflüger, T.; Ullrich, J.; Zatsarinny, O.; Bartschat, K.; Madison, D.H.; Dorn, A. Low-energy electron-impact ionization of argon: Three-dimensional cross section. Phys. Rev. A
**2012**, 85, 032702. [Google Scholar] [CrossRef][Green Version] - Ren, X.; Pflüger, T.; Ullrich, J.; Zatsarinny, O.; Bartschat, K.; Madison, D.H.; Dorn, A. Erratum: Low-energy electron-impact ionization of argon: Three-dimensional cross section. Phys. Rev. A
**2015**, 92, 019901. [Google Scholar] [CrossRef] - Ren, X.; Amami, S.; Zatsarinny, O.; Pflüger, T.; Weyland, M.; Dorn, A.; Madison, D.; Bartschat, K. Kinematically complete study of low-energy electron-impact ionization of argon: Internormalized cross sections in three-dimensional kinematics. Phys. Rev. A
**2016**, 93, 062704. [Google Scholar] [CrossRef][Green Version] - Guan, X.; Zatsarinny, O.; Bartschat, K.; Schneider, B.I.; Feist, J.; Noble, C.J. General approach to few-cycle intense laser interactions with complex atoms. Phys. Rev. A
**2007**, 76, 053411. [Google Scholar] [CrossRef][Green Version] - Guan, X.; Noble, C.J.; Zatsarinny, O.; Bartschat, K.; Schneider, B.I. Time-dependent R-matrix calculations for multiphoton ionization of argon atoms in strong laser pulses. Phys. Rev. A
**2008**, 78, 053402. [Google Scholar] [CrossRef] - Feist, J.; Zatsarinny, O.; Nagele, S.; Pazourek, R.; Burgdörfer, J.; Guan, X.; Bartschat, K.; Schneider, B.I. Time delays for attosecond streaking in photoionization of neon. Phys. Rev. A
**2014**, 89, 033417. [Google Scholar] [CrossRef][Green Version] - McKenna, C.; van der Hart, H.W. Multiphoton ionization cross sections of neon and argon. J. Phys. B At. Mol. Opt. Phys.
**2003**, 37, 457–470. [Google Scholar] [CrossRef] - Dipti; Das, T.; Bartschat, K.; Bray, I.; Fursa, D.; Zatsarinny, O.; Ballance, C.; Chung, H.K.; Ralchenko, Y. Recommended electron-impact excitation and ionization cross sections for Be I. At. Data Nucl. Data Tables
**2019**, 127–128, 1–21. [Google Scholar] [CrossRef] - Wang, Y.; Zatsarinny, O.; Bartschat, K. B-spline R-matrix-with-pseudostates calculations for electron-impact excitation and ionization of carbon. Phys. Rev. A
**2013**, 87, 012704. [Google Scholar] [CrossRef][Green Version] - Zatsarinny, O.; Wang, Y.; Bartschat, K. Relativistic B-spline R-matrix calculations for electron collisions with lead atoms: Differential cross sections and spin asymmetries. J. Phys. B At. Mol. Opt. Phys.
**2013**, 46, 035202. [Google Scholar] [CrossRef] - Wang, Y.; Zatsarinny, O.; Bartschat, K.; Booth, J.P. Fine-structure-resolved electron collisions from chlorine atoms in the (3
^{p5})^{2}P3/2o and (3^{p5})^{2}P1/2o states. Phys. Rev. A**2013**, 87, 022703. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Zatsarinny, O.; Bartschat, K. B-spline R-matrix-with-pseudostates calculations for electron-impact excitation and ionization of nitrogen. Phys. Rev. A
**2014**, 89, 062714. [Google Scholar] [CrossRef] - Zatsarinny, O.; Wang, Y.; Bartschat, K. Electron-impact excitation of argon at intermediate energies. Phys. Rev. A
**2014**, 89, 022706. [Google Scholar] [CrossRef] - Wang, Y.; Wang, Y.F.; Zhu, X.M.; Zatsarinny, O.; Bartschat, K. A xenon collisional-radiative model applicable to electric propulsion devices: I. Calculations of electron-impact cross sections for xenon ions by the Dirac B-spline R-matrix method. Plasma Sources Sci. Technol.
**2019**, 28, 105004. [Google Scholar] [CrossRef] - Zhu, X.M.; Wang, Y.F.; Wang, Y.; Yu, D.R.; Zatsarinny, O.; Bartschat, K.; Tsankov, T.V.; Czarnetzki, U. A xenon collisional-radiative model applicable to electric propulsion devices: II. Kinetics of the 6s, 6p, and 5d states of atoms and ions in Hall thrusters. Plasma Sources Sci. Technol.
**2019**, 28, 105005. [Google Scholar] [CrossRef] - Wang, K.; Zatsarinny, O.; Bartschat. Low-energy outer-shell photodetachment of the negative ion of boron. Eur. Phys. J. D
**2016**, 70, 72. [Google Scholar] [CrossRef] - Wang, K.; Zatsarinny, O.; Bartschat, K. Electron-impact excitation and ionization of atomic boron at low and intermediate energies. Phys. Rev. A
**2016**, 93, 052715. [Google Scholar] [CrossRef][Green Version] - Wang, K.; Zatsarinny, O.; Bartschat, K. Low-energy photodetachment of Ga
^{-}and elastic electron scattering from neutral Ga. Phys. Rev. A**2016**, 94, 023402. [Google Scholar] [CrossRef][Green Version] - Wang, K.; Fernández-Menchero, L.; Zatsarinny, O.; Bartschat, K. Calculations for electron-impact excitation of Mg
^{4+}. Phys. Rev. A**2017**, 95, 042709. [Google Scholar] [CrossRef][Green Version] - Tayal, S.S.; Sossah, A.M. Collision rates for electron excitation of Mg V lines. A&A
**2015**, 574, A87. [Google Scholar] [CrossRef][Green Version] - Aggarwal, K.M.; Keenan, F.P. Electron impact excitation rates for transitions in Mg V. Can. J. Phys.
**2017**, 95, 9–20. [Google Scholar] [CrossRef][Green Version] - Wang, K.; Bartschat, K.; Zatsarinny, O. Electron Scattering from Neutral Fe and Low-energy Photodetachment of Fe
^{-}. Astrophys. J.**2018**, 867, 63. [Google Scholar] [CrossRef][Green Version] - Barklem, P.S. Accurate abundance analysis of late-type stars: Advances in atomic physics. Astron. Astrophys. Rev.
**2016**, 24, 63. [Google Scholar] [CrossRef][Green Version] - Lotz, W. Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium. Z. Für Phys.
**1968**, 216, 241–247. [Google Scholar] [CrossRef] - Chen, Z.; Liu, F.; Wen, H.; Morishita, T.; Zatsarinny, O.; Bartschat, K. Nonsequential double ionization of Ar in near-single-cycle laser pulses. Opt. Express
**2020**, 28, 22231–22246. [Google Scholar] [CrossRef] [PubMed] - Zatsarinny, O.; Tayal, S.S. Low-energy electron collisions with atomic oxygen: R-matrix calculation with non-orthogonal orbitals. J. Phys. B At. Mol. Opt. Phys.
**2001**, 34, 1299–1319. [Google Scholar] [CrossRef] - Zatsarinny, O.; Tayal, S.S. Low-energy electron collisions with atomic sulfur: R-matrix calculation with non-orthogonal orbitals. J. Phys. B At. Mol. Opt. Phys.
**2001**, 34, 3383–3400. [Google Scholar] [CrossRef] - Tayal, S.S.; Zatsarinny, O. Benchmark Photoionization Cross-Sections of Neutral Scandium from the Ground and Excited States. Atoms
**2021**, 9, 83. [Google Scholar] [CrossRef] - LXCat Database. Available online: https://nl.lxcat.net (accessed on 31 October 2021).
- Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A. Global model of an iodine gridded plasma thruster. Phys. Plasmas
**2016**, 23, 033514. [Google Scholar] [CrossRef] - Ambalampitiya, H.B.; Hamilton, K.R.; Zatsarinny, O.; Bartschat, K.; Turner, M.; Dzarasova, A.; Tennyson, J. Electron Scattering Cross-Section Calculations for Atomic and Molecular Iodine. Atoms
**2021**, 9, 103. [Google Scholar] [CrossRef] - Zatsarinny, O.; Bartschat, K.; Gedeon, S.; Gedeon, V.; Lazur, V.; Nagy, E. Cross Sections for Electron Scattering from Magnesium. Phys. Rev. A
**2009**, 79, 052709. [Google Scholar] [CrossRef] - Barklem, P.S.; Osorio, Y.; Fursa, D.V.; Bray, I.; Zatsarinny, O.; Bartschat, K.; Jerkstrand, A. Inelastic e+Mg Collision Data and Its Impact on Modelling Stellar and Supernova Spectra. Astron. Astrophys.
**2017**, 606, A11. [Google Scholar] [CrossRef][Green Version] - Amarsi, A.M.; Barklem, P.S.; Asplund, M.; Collet, R.; Zatsarinny, O. Inelastic O+H Collisions and the O I 777 Nm Solar Centre-to-Limb Variation. Astron. Astrophys.
**2018**, 616, A89. [Google Scholar] [CrossRef][Green Version] - Osorio, Y.; Lind, K.; Barklem, P.S.; Allende Prieto, C.; Zatsarinny, O. Ca Line Formation in Late-Type Stellar Atmospheres. I. The Model Atom. Astron. Astrophys.
**2019**, 623, A103. [Google Scholar] [CrossRef] - Reggiani, H.; Amarsi, A.M.; Lind, K.; Barklem, P.S.; Zatsarinny, O.; Bartschat, K.; Fursa, D.V.; Bray, I.; Spina, L.; Meléndez, J. Non-LTE Analysis of K I in Late-Type Stars. Astron. Astrophys.
**2019**, 627, A177. [Google Scholar] [CrossRef][Green Version] - Amarsi, A.M.; Barklem, P.S.; Collet, R.; Grevesse, N.; Asplund, M. 3D Non-LTE Line Formation of Neutral Carbon in the Sun. Astron. Astrophys.
**2019**, 624, A111. [Google Scholar] [CrossRef] - Amarsi, A.M.; Grevesse, N.; Grumer, J.; Asplund, M.; Barklem, P.S.; Collet, R. The 3D Non-LTE Solar Nitrogen Abundance from Atomic Lines. Astron. Astrophys.
**2020**, 636, A120. [Google Scholar] [CrossRef][Green Version] - Tayal, S.S.; Zatsarinny, O. B-spline R-matrix with Pseudostates Approach for Excitation and Ionization of Atomic Oxygen by Electron Collisions. Phys. Rev. A
**2016**, 94, 042707. [Google Scholar] [CrossRef][Green Version] - Zatsarinny, O.; Parker, H.; Bartschat, K. Electron-Impact Excitation and Ionization of Atomic Calcium at Intermediate Energies. Phys. Rev. A
**2019**, 99, 012706. [Google Scholar] [CrossRef][Green Version] - Asplund, M.; Amarsi, A.M.; Grevesse, N. The Chemical Make-up of the Sun: A 2020 Vision. Astron. Astrophys.
**2021**, 653, A141. [Google Scholar] [CrossRef] - Amarsi, A.M.; Nissen, P.E.; Asplund, M.; Lind, K.; Barklem, P.S. Carbon and Oxygen in Metal-Poor Halo Stars. Astron. Astrophys.
**2019**, 622, L4. [Google Scholar] [CrossRef] - Amarsi, A.M.; Nissen, P.E.; Skúladóttir, Á. Carbon, Oxygen, and Iron Abundances in Disk and Halo Stars. Implications of 3D Non-LTE Spectral Line Formation. Astron. Astrophys.
**2019**, 630, A104. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Oleg Zatsarinny. Freiburg, 30 November 1994. Photo from private collection of A.N. Grum-Grzhimailo.

**Figure 2.**Angle-integrated cross section for production of neon atoms in the metastable states $3\mathrm{s}{[3/2]}_{2}$ and $3{\mathrm{s}}^{\prime}{[1/2]}_{0}$. The experimental data of Buckman et al. [10] (thick dots) were renormalized to provide a good visual fit to the theory at energies just above the excitation threshold. The solid line includes the cascade contributions from all the states included in the model, while the thin dotted line (starting around 18.4 eV) represents the results without cascades. Figure reproduced from Ref. [11].

**Figure 3.**A group outing in 2017. From left to right with their countries of origin in parentheses: Samantha Fonseca (Brazil), Nicolas Douguet (France), Tatyana Zatsarinny (Ukraine), Raquel Pinto $\stackrel{\xb4}{\mathrm{A}}$lvarez (Spain), Kedong Wang (China), Luis Fern$\stackrel{\xb4}{\mathrm{a}}$ndez-Menchero (Spain), Teresa Bartschat (Canada), and Oleg Zatsarinny (Ukraine). Photo from private collection of Klaus Bartschat.

**Figure 4.**Charlotte and Oleg working on the DBSR_HF project (May 2015) at Oleg’s home in West Des Moines. Photo from private collection of Charlotte Froese Fischer.

**Figure 6.**Excitation cross section (in units of ${10}^{-2}\phantom{\rule{0.166667em}{0ex}}{a}_{0}^{2}$; ${a}_{0}$ is the Bohr radius) for the production of metastable Ne${\left(2{\mathrm{p}}^{5}3\mathrm{s}\right)}^{3}{\mathrm{P}}_{2,0}$ atoms in the energy range 16.5 to 19.0 eV. Open circles: measurement [17]. Full curve: B-spline R-matrix theory [including cascade contributions and assuming identical detection efficiencies for Ne${\left(2{\mathrm{p}}^{5}3\mathrm{s}\right)}^{3}{\mathrm{P}}_{2}$ and Ne${\left(2{\mathrm{p}}^{5}3\mathrm{s}\right)}^{3}{\mathrm{P}}_{0}$ atoms]. Broken curve: theoretical excitation function for the production of Ne${\left(2{\mathrm{p}}^{5}3\mathrm{s}\right)}^{3}{\mathrm{P}}_{0}$, including cascade contributions. Inset: enlarged view of the data over the energy region 18.48−18.58 eV, revealing a narrow Feshbach resonance (see text).

**Figure 7.**Absolute cross sections for excitation of the Ne$\left(2{\mathrm{p}}^{5}3\mathrm{s}\right)$ states at $\theta ={180}^{\circ}$. The experimental data are in the left and the theoretical predictions in the right panel. Thresholds for the $2{\mathrm{p}}^{5}3\mathrm{s}$, $2{\mathrm{p}}^{5}3\mathrm{p}$, and $2{\mathrm{p}}^{5}4\mathrm{s}$ excitations are indicated below the top spectra. From [18].

**Figure 8.**Fully differential cross sections for electron-impact ionization of argon covering almost the full $4\pi $ solid angle for electron emission [23]. The projectile (${\mathbf{p}}_{0},{E}_{0}=66\phantom{\rule{3.33333pt}{0ex}}$eV) is coming in from below and scattered to the left ${\mathbf{p}}_{1}$. The FDCS is plotted as a function of the emission angle of the electron ejected from the Ar$\left(3{\mathrm{p}}^{6}\right)$ subshell with kinetic energy ${E}_{2}=3\phantom{\rule{3.33333pt}{0ex}}$eV. $\mathbf{q}$ is the momentum transfer vector. (

**a**) Experiment using a Reaction Microscope. (

**b**) BSR theory.

**Figure 9.**Generalized cross section for two-photon ionization of Ar ${\left(3{\mathrm{p}}^{6}\right)}^{1}\mathrm{S}$ as a function of photon energy [25]. A 30-cycle laser pulse with a peak intensity of ${10}^{12}\phantom{\rule{0.166667em}{0ex}}$ W/cm${}^{2}$ was used in the calculations. The filled circles represent the results obtained by using the total ionization yield, while the open circles show those generated by summing up the partial ionization yields from the individual channels. The Floquet results are from McKenna and van der Hart [27].

**Figure 10.**Photo of a get-together before I left Des Moines in 2013. Photo from the private collection of Yang Wang.

**Figure 11.**Kedong Wang (left), Tatyana Zatsarinny (middle) and Oleg Zatsarinny (right on the Great Wall in 2017. Photo from the private collection of Kedong Wang.

**Figure 12.**Differential cross section for electron impact excitation of Ar${}^{+}$ from the ground state $3{\mathrm{s}}^{2}3{\mathrm{p}}^{5}$ to the excited states with configurations $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}3\mathrm{d}$ (

**a**), $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}4\mathrm{s}$ (

**b**), and $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}4\mathrm{p}$ (

**c**) at incident energies of 20, 30, 40, and 50 eV, respectively. In panel (

**d**), the total cross sections for electron impact excitation of Ar${}^{+}$ to the excited states with configurations $3\mathrm{s}3{\mathrm{p}}^{6}$, $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}3\mathrm{d}$, $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}4\mathrm{s}$, and $3{\mathrm{s}}^{2}3{\mathrm{p}}^{4}4\mathrm{p}$ and electron-impact ionization of Ar${}^{+}$ from the ground state are also displayed. For excitation, all results were obtained with the BSR code. For ionization, the total cross sections were calculated by using the semiempirical formula of Lotz [44]. From Chen et al. [45].

**Figure 13.**Electron-impact excitation cross sections for the dipole-allowed $({2}^{1}\mathrm{S}\to {2}^{1}\mathrm{P})$ and dipole-forbidden $({3}^{3}\mathrm{P}\to {4}^{3}\mathrm{P})$ transitions in neutral beryllium. Dashed lines with squares, dotted lines with triangles and solid lines represent BSR, CCC and fitted results, respectively [28].

**Figure 14.**Taking a break from exploring the Australian hinterland. Photo from private collection of Anatoli Kheifets.

**Figure 15.**Oleg in his office at Clark Atlanta University 20 years ago. Photo from private collection of Swaraj Tayal.

**Table 1.**Dirac-Slater integrals for hydrogen ($Z=1$) to double-precision accuracy, as derived by Oleg for a point nucleus.

Integral | Value |
---|---|

${R}_{0}(1\mathrm{s},1\mathrm{s};1\mathrm{s},1\mathrm{s})$ | 0.62501225565917420 |

${R}_{0}(1\mathrm{s},2\mathrm{s};1\mathrm{s},2\mathrm{s})$ | 0.20988178946000520 |

${R}_{0}(1\mathrm{s},2\mathrm{s};2\mathrm{s},1\mathrm{s})$ | 0.02194902302127903 |

${R}_{0}(1\mathrm{s},2\mathrm{p};1\mathrm{s},2\mathrm{p})$ | 0.24280005588417670 |

${R}_{0}(1\mathrm{s},2\mathrm{p}-;1\mathrm{s},2\mathrm{p}-)$ | 0.24280528746571910 |

${R}_{1}(1\mathrm{s},2\mathrm{p};2\mathrm{p},1\mathrm{s})$ | 0.05121117625724148 |

${R}_{0}(1\mathrm{s},3\mathrm{d};1\mathrm{s},3\mathrm{d})$ | 0.11102328042993430 |

${R}_{0}(1\mathrm{s},3\mathrm{d}-;1\mathrm{s},3\mathrm{d}-)$ | 0.22128364373246080 |

${R}_{0}(2\mathrm{p},3\mathrm{d};2\mathrm{p},3\mathrm{d})$ | 0.18528097106484610 |

${R}_{0}(3\mathrm{d},3\mathrm{d};3\mathrm{d},3\mathrm{d})$ | 0.08604622596773348 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bartschat, K.; Fischer, C.F.; Grum-Grzhimailo, A.N.
Oleg Zatsarinny (1953–2021): Memories by His Colleagues. *Atoms* **2021**, *9*, 109.
https://doi.org/10.3390/atoms9040109

**AMA Style**

Bartschat K, Fischer CF, Grum-Grzhimailo AN.
Oleg Zatsarinny (1953–2021): Memories by His Colleagues. *Atoms*. 2021; 9(4):109.
https://doi.org/10.3390/atoms9040109

**Chicago/Turabian Style**

Bartschat, Klaus, Charlotte Froese Fischer, and Alexei N. Grum-Grzhimailo.
2021. "Oleg Zatsarinny (1953–2021): Memories by His Colleagues" *Atoms* 9, no. 4: 109.
https://doi.org/10.3390/atoms9040109