Investigation of Resonance-Enhanced High-Order Harmonics by Two-Component Laser-Produced Plasmas
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [Google Scholar] [CrossRef]
- Hentschel, M.; Kienberger, R.; Spielmann, C.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond metrology. Nature 2001, 414, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Witte, S.; Tenner, V.T.; Noom, D.W.; Eikema, K.S. Lensless diffractive imaging with ultra-broadband table-top sources: From infrared to extreme-ultraviolet wavelengths. Light Sci. Appl. 2014, 3, e163. [Google Scholar] [CrossRef]
- Hädrich, S.; Krebs, M.; Hoffmann, A.; Klenke, A.; Rothhardt, J.; Limpert, J.; Tünnermann, A. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 2015, 4, e320. [Google Scholar] [CrossRef]
- Kanda, N.; Imahoko, T.; Yoshida, K.; Tanabashi, A.; Eilanlou, A.A.; Nabekawa, Y.; Sumiyoshi, T.; Kuwata-Gonokami, M.; Midorikawa, K. Opening a new route to multiport coherent XUV sources via intracavity high-order harmonic generation. Light Sci. Appl. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Uiberacker, M.; Uphues, T.; Schultze, M.; Verhoef, A.J.; Yakovlev, V.; Kling, M.F.; Rauschenberger, J.; Kabachnik, N.M.; Schröder, H.; Lezius, M. Attosecond real-time observation of electron tunnelling in atoms. Nature 2007, 446, 627–632. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, X.; Liu, X.; Li, L.; Zhang, X.; Lan, P.; Lu, P. High harmonic generation from axial chiral molecules. Opt. Express 2017, 25, 23502–23516. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Fang, R.; Vorobyev, A.; Guo, C. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci. Appl. 2017, 6, e16256. [Google Scholar] [CrossRef]
- Bom, L.E.; Kieffer, J.-C.; Ganeev, R.; Suzuki, M.; Kuroda, H.; Ozaki, T. Influence of the main pulse and prepulse intensity on high-order harmonic generation in silver plasma ablation. Phys. Rev. A 2007, 75, 033804. [Google Scholar]
- Bom, L.E.; Haessler, S.; Gobert, O.; Perdrix, M.; Lepetit, F.; Hergott, J.-F.; Carré, B.; Ozaki, T.; Salières, P. Attosecond emission from chromium plasma. Opt. Express 2011, 19, 3677–3685. [Google Scholar]
- Fareed, M.; Mondal, S.; Pertot, Y.; Ozaki, T. Carbon molecules for intense high-order harmonics from laser-ablated graphite plume. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 035604. [Google Scholar] [CrossRef]
- Bom, L.E.; Pertot, Y.; Bhardwaj, V.; Ozaki, T. Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method. Opt. Express 2011, 19, 3077–3085. [Google Scholar] [CrossRef] [PubMed]
- Fareed, M.; Strelkov, V.; Singh, M.; Thiré, N.; Mondal, S.; Schmidt, B.; Légaré, F.; Ozaki, T. Harmonic generation from neutral manganese atoms in the vicinity of the giant autoionization resonance. Phys. Rev. Lett. 2018, 121, 023201. [Google Scholar] [CrossRef] [PubMed]
- Fareed, M.; Strelkov, V.; Thiré, N.; Mondal, S.; Schmidt, B.; Légaré, F.; Ozaki, T. High-order harmonic generation from the dressed autoionizing states. Nat. Commun. 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Haessler, S.; Strelkov, V.; Bom, L.E.; Khokhlova, M.; Gobert, O.; Hergott, J.-F.; Lepetit, F.; Perdrix, M.; Ozaki, T.; Salières, P. Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation. New J. Phys. 2013, 15, 013051. [Google Scholar] [CrossRef]
- Rosenthal, N.; Marcus, G. Discriminating between the role of phase matching and that of the single-atom response in resonance plasma-plume high-order harmonic generation. Phys. Rev. Lett. 2015, 115, 133901. [Google Scholar] [CrossRef]
- Amusia, M.Y.; Connerade, J. The theory of collective motion probed by light. Rep. Prog. Phys. 2000, 63, 41. [Google Scholar] [CrossRef]
- Keller, F.; Lefebvre-Brion, H. Shape resonances in photoionization of diatomic molecules: An example in the d inner shell ionization of the hydrogen halides. Z. Phys. D At. Mol. Clust. 1986, 4, 15–23. [Google Scholar] [CrossRef]
- Ganeev, R.A. Generation of high-order harmonics of high-power lasers in plasmas produced under irradiation of solid target surfaces by a prepulse. Physics-Uspekhi 2009, 52, 55. [Google Scholar] [CrossRef]
- Suzuki, M.; Baba, M.; Kuroda, H.; Ganeev, R.A.; Ozaki, T. Observation of single high-harmonic enhancement by quasi-resonance with a tellurium ion in a laser-ablation plume at 29.44 nm. JOSA B 2007, 24, 2686–2689. [Google Scholar] [CrossRef]
- Ganeev, R.; Odžak, S.; Milošević, D.; Suzuki, M.; Kuroda, H. Resonance enhancement of harmonics in metal plasmas using tunable mid-infrared pulses. Laser Phys. 2016, 26, 075401. [Google Scholar] [CrossRef]
- Frolov, M.; Manakov, N.; Starace, A.F. Potential barrier effects in high-order harmonic generation by transition-metal ions. Phys. Rev. A 2010, 82, 023424. [Google Scholar] [CrossRef]
- Gaarde, M.B.; Schafer, K.J. Enhancement of many high-order harmonics via a single multiphoton resonance. Phys. Rev. A 2001, 64, 013820. [Google Scholar] [CrossRef]
- Strelkov, V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production. Phys. Rev. Lett. 2010, 104, 123901. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Malomed, B.A.; Kivshar, Y.S. Nonlinearly PT-symmetric systems: Spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 2011, 84, 012123. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, R.; Cheng, Y.; Yu, W.; Xu, Z. Resonance-enhanced high-order harmonic generation and frequency mixing in two-color laser field. Phys. Scr. 2002, 66, 321. [Google Scholar] [CrossRef]
- Milošević, D. High-energy stimulated emission from plasma ablation pumped by resonant high-order harmonic generation. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 3367. [Google Scholar] [CrossRef]
- Redkin, P.; Kodirov, M.; Ganeev, R. Theoretical investigation of resonant nonperturbative high-order harmonic generation in indium vapors. Josa B 2011, 28, 165–170. [Google Scholar] [CrossRef]
- Kulagin, I.A.; Usmanov, T. Efficient selection of single high-order harmonic caused by atomic autoionizing state influence. Opt. Lett. 2009, 34, 2616–2618. [Google Scholar] [CrossRef]
- Kulagin, I.Y.A.; Kim, V.V.; Usmanov, T. Compensation for phase mismatch of high harmonics by the group-velocity mismatch. Quantum Electron. 2011, 41, 801. [Google Scholar] [CrossRef]
- Duffy, G.; van Kampen, P.; Dunne, P. 4d→5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 3171. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Strelkov, V.V.; Hutchison, C.; Zaïr, A.; Kilbane, D.; Khokhlova, M.A.; Marangos, J.P. Experimental and theoretical studies of two-color-pump resonance-induced enhancement of odd and even harmonics from a tin plasma. Phys. Rev. A 2012, 85, 023832. [Google Scholar] [CrossRef]
- Suzuki, M.; Baba, M.; Ganeev, R.; Kuroda, H.; Ozaki, T. Anomalous enhancement of a single high-order harmonic by using a laser-ablation tin plume at 47 nm. Opt. Lett. 2006, 31, 3306–3308. [Google Scholar] [CrossRef] [PubMed]
- Ganeev, R.A.; Boltaev, G.S.; Stremoukhov, S.Y.; Kim, V.V.; Andreev, A.V.; Alnaser, A.S. High-order harmonic generation during different overlaps of two-colored pulses in laser-produced plasmas and gases. Eur. Phys. J. D 2020, 74, 1–9. [Google Scholar] [CrossRef]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994. [Google Scholar] [CrossRef]
- Kulander, K.; Schafer, K.; Krause, J. Dynamics of short-pulse excitation, ionization and harmonic conversion. In Super-Intense Laser-Atom Physics; Springer: Berlin/Heidelberg, Germany, 1993; pp. 95–110. [Google Scholar]
- Perry, M.D.; Crane, J.K. High-order harmonic emission from mixed fields. Phys. Rev. A 1993, 48, R4051. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, C.M.; Kim, H.T.; Lee, G.H.; Lee, Y.S.; Park, J.Y.; Cho, D.J.; Nam, C.H. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 2005, 94, 243901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Venkatesh, M.; Boltaev, G.S.; Ganeev, R.A.; Lai, Y.H.; Guo, C. Investigation of Resonance-Enhanced High-Order Harmonics by Two-Component Laser-Produced Plasmas. Atoms 2021, 9, 1. https://doi.org/10.3390/atoms9010001
Liang J, Venkatesh M, Boltaev GS, Ganeev RA, Lai YH, Guo C. Investigation of Resonance-Enhanced High-Order Harmonics by Two-Component Laser-Produced Plasmas. Atoms. 2021; 9(1):1. https://doi.org/10.3390/atoms9010001
Chicago/Turabian StyleLiang, Jingguang, Mottamchetty Venkatesh, Ganjaboy S. Boltaev, Rashid A. Ganeev, Yu Hang Lai, and Chunlei Guo. 2021. "Investigation of Resonance-Enhanced High-Order Harmonics by Two-Component Laser-Produced Plasmas" Atoms 9, no. 1: 1. https://doi.org/10.3390/atoms9010001
APA StyleLiang, J., Venkatesh, M., Boltaev, G. S., Ganeev, R. A., Lai, Y. H., & Guo, C. (2021). Investigation of Resonance-Enhanced High-Order Harmonics by Two-Component Laser-Produced Plasmas. Atoms, 9(1), 1. https://doi.org/10.3390/atoms9010001