Hyperfine Anomaly in Eu Isotopes and the Universiability of the Moskowitz–Lombardi Formula
Abstract
:1. Introduction
Hyperfine Structure Measurements in Eu
2. Hyperfine Anomaly in Unstable Eu Isotopes
2.1. Measurements Done by Hühnermann et al.
2.2. Measurements Done by Ahmad et al.
3. Calculations of the Hyperfine Anomaly
The Empirical Moskowitz–Lombardi Formula
4. Conclusions
Funding
Conflicts of Interest
References
- Otten, E.W. Nuclear Radii and Moments of Unstable Isotopes. In Treatise on Heavy Ion Science; Bromley, D.A., Ed.; Springer: Boston, MA, USA, 1989; pp. 515–638. [Google Scholar]
- Lindgren, I.; Rosen, A. Relativistic self-consistent field with application to hyperfine interactions. Case Stud. At. Phys. 1974, 4, 97–298. [Google Scholar]
- Bohr, A.; Weisskopf, V.F. The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 1950, 77, 94–98. [Google Scholar] [CrossRef]
- Fujita, T.; Arima, A. Magnetic hyperfine structure of muonic and electronic atoms. Nucl. Phys. 1975, 254, 513–541. [Google Scholar] [CrossRef]
- Büttgenbach, S. Magnetic hyperfine anomalies. Hyperfine Int. 1984, 20, 1–64. [Google Scholar] [CrossRef]
- Rosenthal, J.E.; Breit, G. The Isotope Shift in Hyperfine Structure. Phys. Rev. 1932, 41, 459–470. [Google Scholar] [CrossRef]
- Crawford, M.; Schawlow, A. Electron-Nuclear Potential Fields from Hyperfine Structure. Phys. Rev. 1949, 76, 1310–1317. [Google Scholar] [CrossRef]
- Ionesco-Pallas, N.J. Nuclear Magnetic Moments from Hyperfine Structure Data. Phys. Rev. 1960, 117, 505–510. [Google Scholar] [CrossRef]
- Rosenberg, H.J.; Stroke, H.H. Effect of a Diffuse Nuclear Charge Distribution on the Hyperfine-Structure Interaction. Phys. Rev. A 1972, 5, 1992–2000. [Google Scholar] [CrossRef]
- Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer: Berlin, Germany, 1983. [Google Scholar]
- Sandars, P.G.H.; Beck, J. Relativistic effects in many electron hyperfine structure I. Theory. Proc. R. Soc. Lond. 1965, 289, 97–107. [Google Scholar]
- Persson, J.R. Determination of core polarization in Eu+ using the hyperfine anomaly. Phys. Scr. 2007, 76, 449–451. [Google Scholar] [CrossRef]
- Persson, J.R. Extraction of hyperfine anomalies without precise values of the nuclear magnetic dipole moment. Eur. Phys. J. 1998, 2, 3–4. [Google Scholar] [CrossRef]
- Schüler, H.; Schmidt, T. Über Abweichungen des Atomkerns von der Kugelsymmetrie. Z. Phys. 1935, 94, 457–468. [Google Scholar] [CrossRef]
- Müller, W.; Steudel, A.; Walther, H. Die Hyperfeinstruktur in den 4f76s6p-Termen des Eu I und die elektrischen Kernquadrupolmomente von Eu151 und Eu. 153 Z. Phys. 1965, 183, 303–320. [Google Scholar] [CrossRef]
- Evans, L.; Sandars, P.G.H.; Woodgate, G.K. Relativistic effects in many electron hyperfine structure III. Relativistic dipole and quadrupole interaction in europium and remeasurement of the nuclear magnetic dipole moments of 151Eu and 153Eu. Proc. R. Soc. Lond. Ser. A 1965, 289, 114–121. [Google Scholar]
- Champeau, R.J.; Handrich, E.; Walther, H. The hyperfine structure of the y8P-multiplet of 4f7(8S)6s6p in EuI. Z. Phys. 1973, 260, 361–365. [Google Scholar] [CrossRef]
- Zaal, G.J.; Hogervorst, W.; Eliel, E.R.; van Leeuwen, K.A.H.; Blok, J. A high resolution study of the transitions 4f76s2-4f76s6p in the Eu I-spectrum. Z. Phys. 1979, 290, 339–344. [Google Scholar] [CrossRef]
- Eliel, E.R.; van Leeuwen, K.A.H.; Hogervorst, W. Hyperfine anomaly in the z6P7/2 level of the 4f76s6p configuration of europium I. Phys. Rev. 1980, 22, 1491–1499. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Childs, W.J. Hyperfine structure of metastable levels in 151,153Eu+ by collinear laser-rf double-resonance spectroscopy. Phys. Rev. 1987, 36, 1983–1993. [Google Scholar] [CrossRef]
- Becker, O.; Enders, K.; Werth, G.; Dembczynski, J. Hyperfine-structure measurements of the 151,153Eu+ ground state. Phys. Rev. 1993, 48, 3546–3554. [Google Scholar] [CrossRef]
- Trapp, S.; Tommaseo, G.; Revalde, G.; Stachowska, E.; Szawiola, G.; Werth, G. Ion trap nuclear resonance on 151Eu+. Eur. Phys. J. 2003, 26, 237–244. [Google Scholar]
- Asaga, T.; Fujita, T.; Ito, K. Hyperfine structure constants for Eu isotopes: is the empirical formula of HFS anomaly universal? Z. Phys. 1997, 359, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, P.A.; Lombardi, M. Distribution of nuclear magnetization in mercury isotopes. Phys. Lett. 1973, 46, 334–336. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Klempt, W.; Ekström, C.; Neugart, R.; Wendt, K. ISOLDE Collaboration, Nuclear spins, moments, and changes of the mean square charge radii of 140-153Eu. Z. Phys. 1985, 321, 35–45. [Google Scholar] [CrossRef]
- Hühnermann, H.; Möller, W.; Alkhazov, G.; Panteleev, V. Hyperfine-structure anomaly, its determination solely from A-factors, and nuclear moments of europium nuclei. Inst. Phys. Conf. Ser. 1992, 132, 209–211. [Google Scholar]
- Dörschel, K.; Heddrich, W.; Hühnermann, H.; Peau, E.W.; Wagner, H.; Alkhazov, G.D.; Berlovich, E.Y.; Denison, V.P.; Panteleev, V.N.; Polyakov, A.G. Investigations of europium isotopes with neutron numbers between 84 and 93 by collinear laser ion-beam spectroscopy. Z. Phys. 1984, 317, 233–234. [Google Scholar] [CrossRef]
- Enders, K.; Becker, O.; Brand, L.; Dembczynski, J.; Marx, G.; Revalde, G.; Rao, P.B.; Werth, G. Hyperfine-structure measurements in the ground state of radioactive 150Eu+ ions. Phys. Rev. 1995, 52, 4434–4438. [Google Scholar] [CrossRef] [PubMed]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.H.; George, U.; Dembczynski, J.; Werth, G. The ISOLDE Collaboration, Ground-state hyperfine-structure measurements of unstable Eu+ isotopes in a Paul ion trap. Phys. Rev. 1997, 56, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.H.; Revalde, G.; Dembczynski, J.; Werth, G. The ISOLDE Collaboration; Hyperfine structure measurements in the 7S3 metastable finestructure level in stable and unstable Eu+ isotopes. Z. Phys. 1997, 42, 171–175. [Google Scholar]
- Semmes, P.; Ragnarsson, I. The Particle + Rotor Model and Its Applications. In Proceedings of the Hands-on Nuclear Structure Theory Workshop, Risö, Denmark, 15–26 June 1992, unpublished. [Google Scholar]
- Büttgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Träber, F. Hyperfine structure of six low-lying fine structure levels of 191Ir and 193Ir and the 191Δs193 hyperfine anomaly. Z. Phys. 1978, 286, 333–340. [Google Scholar] [CrossRef]
- Moskowitz, P.A. Extension of magnetic anomaly rule. Phys. Lett. 1982, 1982 118, 29–32. [Google Scholar] [CrossRef]
- Ekström, C.; Robertsson, L.; Ingelman, S.; Wannberg, G.; Ragnarsson, I. Nuclear ground-state spin of 185Au and magnetic moments of 187,188Au: Further evidence for coexisting nuclear shapes in this mass region. Nucl. Phys. 1980, 348, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Engfer, R.; Schneuwly, H.; Vuilleumier, J.L.; Walter, H.K.; Zehnder, A. Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At. Data Nucl. Data Tables 1974, 14, 509–597. [Google Scholar] [CrossRef]
- Persson, J.R. Hyperfine Anomalies in Gd and Nd. Atoms 2018, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Persson, J.R. Table of hyperfine anomaly in atomic systems. At. Data Nucl. Data Tables 2013, 99, 62–68. [Google Scholar] [CrossRef] [Green Version]
A | ||
---|---|---|
145 | 0.07(20) | −0.08(24) |
146 | −0.11(37) | 0.13(44) |
147 | −0.31(40) | 0.37(48) |
151 | 0 | 0.00 |
152 | −0.42(5) | 0.50(6) |
153 | 0.551(3) | −0.659(4) |
A | I | ||
---|---|---|---|
142 | 1 | 1.536(19) | −0.14(1.18) |
142m | 8 | 2.978(11) | −0.08(31) |
143 | 5/2 | 3.673(8) | −0.06(17) |
144 | 1 | 1.893(13) | −0.19(48) |
145 | 5/2 | 3.993(7) | −0.08(15) |
146 | 4 | 1.425(11) | 0.12(50) |
147 | 5/2 | 3.724(8) | −0.12(17) |
148 | 5 | 2.340(10) | 0.08(31) |
149 | 5/2 | 3.565(6) | −0.19(16) |
150 | 5 | 2.708(11) | 0.08(28) |
151 | 5/2 | 3.4717(6) | 0.00 |
153 | 5/2 | 1.5330(8) | −0.64(4) |
Exp. | Calc. | Calc. | Calc. | Calc. | |
---|---|---|---|---|---|
−0.08(15) | 0.000 | 0.021 | 0.031 | 0.056 | |
−0.12(17) | 0.002 | 0.010 | 0.008 | 0.029 | |
−0.19(16) | 0.002 | 0.007 | 0.006 | 0.011 | |
0 | 0.0 | 0 | 0 | 0.000 | |
−0.64(4) | −0.768 | −0.127 | 0.003 | −0.546 | |
−0.768 | −0.127 | −0.001 | −0.555 |
A | I | II | |||
---|---|---|---|---|---|
145 | 3.993 | 3.773 | −1.001 | −1.067 | −1.067 |
147 | 3.724 | 3.720 | −1.003 | −1.056 | −1.044 |
149 | 3.565 | 3.552 | −1.003 | −1.053 | −1.042 |
151 | 3.4717 | 3.506 | −1.004 | −1.046 | −1.036 |
153 | 1.5330 | 1.532 | −0.236 | −0.919 | −1.039 |
155 | 1.52 | 1.529 | −0.236 | −0.919 | −1.035 |
−1.065 | −0.656 | 0.2034 | ||
3.4717 | 1.533 | −0.64 | ||
−0.3387 | −0.2572 | 0.106 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persson, J.R. Hyperfine Anomaly in Eu Isotopes and the Universiability of the Moskowitz–Lombardi Formula. Atoms 2020, 8, 5. https://doi.org/10.3390/atoms8010005
Persson JR. Hyperfine Anomaly in Eu Isotopes and the Universiability of the Moskowitz–Lombardi Formula. Atoms. 2020; 8(1):5. https://doi.org/10.3390/atoms8010005
Chicago/Turabian StylePersson, Jonas R. 2020. "Hyperfine Anomaly in Eu Isotopes and the Universiability of the Moskowitz–Lombardi Formula" Atoms 8, no. 1: 5. https://doi.org/10.3390/atoms8010005
APA StylePersson, J. R. (2020). Hyperfine Anomaly in Eu Isotopes and the Universiability of the Moskowitz–Lombardi Formula. Atoms, 8(1), 5. https://doi.org/10.3390/atoms8010005