Correcting the Input Data for Calculating the Asymmetry of Hydrogenic Spectral Lines in Plasmas
Abstract
:Frequency Corrections
Intensity Corrections
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Application of the Robust Perturbation Theory [5] for Calculating Quadrupole Corrections to the Wave Functions
References
- Sholin, G.V. On the nature of the asymmetry of the spectral line profiles of hydrogen in a dense plasma. Opt. Spectrosc. 1969, 26, 275–282. [Google Scholar]
- Djurovic, S.; Ćirišan, M.; Demura, A.V.; Demchenko, G.V.; Nikolić, D.; Gigosos, M.A.; González, M.A. Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations. Phys. Rev. E 2009, 79, 046402. [Google Scholar] [CrossRef] [PubMed]
- Demura, A.V.; Demchenko, G.V.; Nikolic, D. Multiparametric dependence of hydrogen Stark profiles asymmetry. Europ. Phys. J. D 2008, 46, 111–127. [Google Scholar] [CrossRef]
- Bacon, M.E. The asymmetry of Ly-α and Ly-β. J. Quant. Spectrosc. Radiat. Transf. 1976, 17, 501–512. [Google Scholar] [CrossRef]
- Komarov, I.V.; Ponomarev, L.I.; Slavjanov, S.Y. Spheroidal and Coulomb Spheroidal Functions; Nauka: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Oks, E.; Uzer, T. A robust perturbation theory for degenerate states based on the exact constants of the motion. Europhys. Lett. 2000, 49, 554–557. [Google Scholar] [CrossRef]
- Kryukov, N.; Oks, E. Supergeneralized Runge-Lenz vector in the problem of two Coulomb or Newton centers. Phys. Rev. A 2012, 85, 054503. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon: Oxford, UK, 1965. [Google Scholar]
- Sholin, G.V.; Demura, A.V.; Lisitsa, V.S. Electron impact broadening of Stark sublevels of a hydrogen atom in a plasma. 1972. Preprint IAE-2232. (In Russian) [Google Scholar]
- Gavrilenko, V.P. Resonant modification of quasistatic profiles of spectral lines of hydrogen in a plasma under the influence of noncollinear harmonic electric fields. Sov. Phys. JETP 1991, 92, 624–630. [Google Scholar]
- Demura, A.V. Private communication, 2018.
- Clark, C.W. Case of broken symmetry in the quadratic Zeeman effect. Phys. Rev. A 1981, 24, 605. [Google Scholar] [CrossRef]
1 | Specifically, this is related to the following two facts within the manifold of the fixed n [11]. First, the mean value <r> of the radius vector of the bound electron is proportional to the unperturbed Runge-Lenz vector A(0), as it is well-known. Second, the linear combinations J± = (L ± A(0))/2 obey the same commutation relations as the angular momentum. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanders, P.; Oks, E. Correcting the Input Data for Calculating the Asymmetry of Hydrogenic Spectral Lines in Plasmas. Atoms 2018, 6, 9. https://doi.org/10.3390/atoms6010009
Sanders P, Oks E. Correcting the Input Data for Calculating the Asymmetry of Hydrogenic Spectral Lines in Plasmas. Atoms. 2018; 6(1):9. https://doi.org/10.3390/atoms6010009
Chicago/Turabian StyleSanders, Paul, and Eugene Oks. 2018. "Correcting the Input Data for Calculating the Asymmetry of Hydrogenic Spectral Lines in Plasmas" Atoms 6, no. 1: 9. https://doi.org/10.3390/atoms6010009
APA StyleSanders, P., & Oks, E. (2018). Correcting the Input Data for Calculating the Asymmetry of Hydrogenic Spectral Lines in Plasmas. Atoms, 6(1), 9. https://doi.org/10.3390/atoms6010009