Calculation of Rates of 4p–4d Transitions in Ar II
Abstract
:1. Introduction
2. Method of Calculation
2.1. Basic Theory
2.2. Radial Function Parameters
- The 6p function was newly introduced in this calculation. While retaining the 4p and 5p functions from previous work, the parameters for 6p were optimised on the ground state to improve the capture of the electron correlation effect in the n = 3 shell, and thereby improve the calculated separation between the ground and excited states.
- We retained the previous 3d and 4d functions, but reoptimised 5d and 6d. We considered the lowering of the energy of several different states brought about by the introduction of 5d. The effect was largest for the 3p44d 4F state. Similarly, the lowering of the energy of several different doublet states through the introduction of 6d was noted. There was a substantial difference in the mixings between doublet states, depending on the final LS symmetry chosen for the optimisation. As a consequence, we selected those obtained during the optimisation of the 3p4(3P)4d 2D state.
- We reoptimised the 6s function on the 5s 4P state, since the energy of that state lay in the region of those of the 4d states.
2.3. Choice of Configurations
Odd | 3p5; 3p44p |
Even | 3s3p6; 3p44s, 3p45s, 3p46s; 3p43d, 3p44d, 3p45d, 3p46d |
J = 0.5 | J = 1.5 | J = 2.5 | J = 3.5 | J = 4.5 | |
Odd | 13,082 | 18,144 | 17,603 | 9148 | |
Even | 44,149 | 75,383 | 75,964 | 61,072 | 28,854 |
2.4. Relativistic Effects
3. Results
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Hibbert, A.; Hansen, J.E. Accurate wavefunctions for 2S and 2Po states of Ar II. J. Phys. B At. Mol. Phys. 1987, 20, L245–L251. [Google Scholar] [CrossRef]
- Hibbert, A.; Hansen, J.E. Lifetimes of some 3p44p levels in Ar II. J. Phys. B At. Mol. Opt. Phys. 1989, 22, L347–L351. [Google Scholar] [CrossRef]
- Hibbert, A.; Hansen, J.E. Transitions in Ar II. J. Phys. B At. Mol. Opt. Phys. 1994, 27, 3325–3347. [Google Scholar] [CrossRef]
- Vujnović, V.; Wiese, W.L. A critical compilation of atomic transition probabilities for singly ionized argon. J. Phys. Chem. Ref. Data 1992, 21, 919–939. [Google Scholar] [CrossRef]
- Luyken, B.F.J. Transition probabilities and radiative lifetimes for Ar II. Physica 1972, 60, 432–458. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.3); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. Available online: http://physics.nist.gov/asd (accessed on 27 December 2016).
- Bennett, W.R., Jr.; Kindlmann, P.J.; Mercer, G.N. Measurement of excited state relaxation rates. In Chemical Lasers: Applied Optics Supplement 2; Howard, J.N., Ed.; OSA Publishing: Washington, DC, USA, 1965; Volume 34. [Google Scholar]
- Rudko, R.I.; Tang, C.L. Spectroscopic studies of the Ar+ laser. J. Appl. Phys. 1967, 38, 4731–4739. [Google Scholar] [CrossRef]
- Belmonte, M.T.; Djurović, S.; Peláez, R.J.; Aparicio, J.A.; Mar, S. Improved and expanded measurements of transition probabilities in UV Ar II spectral lines. Mon. Not. R. Astron. Soc. 2014, 445, 3345–3351. [Google Scholar] [CrossRef]
- Aparicio, J.A.; Gigosos, M.A.; Mar, S. Transition probability measurement in an Ar II plasma. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 3141–3157. [Google Scholar] [CrossRef]
- Hibbert, A. A general program to calculate configuration interaction wavefunctions and oscillator strengths of many-electron atoms. Comput. Phys. Commun. 1975, 9, 141–172. [Google Scholar] [CrossRef]
- Hibbert, A.; Glass, R.; Froese Fischer, C. A general program for computing angular integrals of the Breit-Pauli Hamiltonian. Comput. Phys. Commun. 1991, 64, 455–472. [Google Scholar] [CrossRef]
- Clementi, E.; Roetti, C. Roothaan Hartree-Fock Wavefunctions. Atom. Data Nucl. Data Tables 1974, 14, 177–478. [Google Scholar] [CrossRef]
- Minnhagen, L. The spectrum of singly ionized argon, Ar II. Ark. Fys. 1963, 25, 203. [Google Scholar]
- Saloman, E.B. Energy Levels and Observed Spectral Lines of Ionized Argon, Ar II through Ar XVIII. J. Phys. Chem. Ref. Data 2010, 39, 033101. [Google Scholar] [CrossRef]
- Hibbert, A. Estimation of inaccuracies in oscillator strength calculations. Phys. Scr. T 1996, 65, 104–109. [Google Scholar] [CrossRef]
Orbital | Process of Optimisation | |
---|---|---|
1s, 2s, 2p, 3s | Hartree–Fock orbitals of 3p4 1D of Ar III | |
(Clementi and Roetti (1974)) [13] | ||
3p | Exponents taken from the Hartree–Fock orbital of 3p4 1D | |
of Ar III; coefficients reoptimised on 3p44s 4P of Ar II | ||
Eigenvalue minimised | Configurations | |
3d | 3s3p6 2S | 3s3p6, 3s23p43d |
4s | 3p44s 4P | 3p44s |
4p | 3p44p 4Do | 3p44p |
4d | 3p43d 4D | 3p43d, 3p44d |
4f | 3p43d 4P | 3p44s, 3p43d, 3p44d, 3p33d4f |
5s | 3p44p 4Do | 3p44p, 3p34s5s |
5p | 3p4p 4Po | 3p44p, 3p45p |
5d | 3p44d 4F | 3p43d, 3p44d, 3p45d |
5f | 3p44p 4Do | 3p44p, 3p44f, 3p45f |
6s | 3p45s 4P | 3p44s, 3p45s, 3p46s |
6p | 3p5 2Po | 3p5, 3p44p, 3p45p, 3p46p |
6d | 3p44d(3P) 2D | 3p43d, 3p44d,3p45d, 3p46d |
nl | nl | ||||||
---|---|---|---|---|---|---|---|
1s | 0.92694 | 1 | 17.33210 | 2p | −0.01117 | 3 | 3.10281 |
0.05891 | 1 | 25.45500 | 0.00497 | 3 | 2.01193 | ||
0.00782 | 2 | 7.65768 | 0.14575 | 3 | 5.19003 | ||
0.01765 | 2 | 15.62320 | 0.82478 | 2 | 6.92892 | ||
0.00090 | 3 | 3.23731 | 0.08703 | 2 | 13.04240 | ||
−0.00047 | 3 | 2.29692 | |||||
−0.00317 | 3 | 6.72686 | 3p | 0.53023 | 3 | 3.10281 | |
0.58391 | 3 | 2.01193 | |||||
2s | −0.27790 | 1 | 17.33210 | −0.07428 | 3 | 5.19003 | |
−0.00862 | 1 | 25.45500 | −0.27224 | 2 | 6.92892 | ||
0.81664 | 2 | 7.65768 | −0.02506 | 2 | 13.04240 | ||
−0.12759 | 2 | 15.62320 | |||||
0.01306 | 3 | 3.23731 | 4p | 0.74405 | 4 | 0.99510 | |
−0.00371 | 3 | 2.29692 | 0.29740 | 4 | 0.77502 | ||
0.33125 | 3 | 6.72686 | −0.29630 | 3 | 2.50800 | ||
0.08276 | 2 | 7.36060 | |||||
3s | −0.09480 | 1 | 17.33210 | ||||
−0.00141 | 1 | 25.45500 | 5p | 4.62907 | 4 | 0.86189 | |
0.28914 | 2 | 7.65768 | −4.68680 | 4 | 1.00000 | ||
−0.04325 | 2 | 15.62320 | 0.73521 | 3 | 3.22166 | ||
−0.64052 | 3 | 3.23731 | −0.40355 | 2 | 3.47369 | ||
−0.49462 | 3 | 2.29692 | |||||
0.21665 | 3 | 6.72686 | 6p | 6.82807 | 5 | 0.93715 | |
-8.46399 | 4 | 0.89284 | |||||
4s | 0.48762 | 4 | 1.29990 | 3.19841 | 4 | 1.69771 | |
0.56947 | 4 | 1.01695 | −1.19375 | 3 | 2.71606 | ||
−0.38457 | 3 | 2.93116 | 0.30857 | 2 | 8.50855 | ||
0.15704 | 2 | 6.14939 | |||||
−0.04215 | 1 | 14.06449 | 3d | 0.24970 | 3 | 3.46562 | |
0.82157 | 3 | 1.68433 | |||||
5s | 1.13328 | 5 | 1.36491 | ||||
−2.12595 | 4 | 2.01960 | 4d | 0.21625 | 3 | 2.81741 | |
1.48729 | 3 | 2.88430 | 0.30037 | 3 | 1.89160 | ||
−0.46868 | 2 | 5.89716 | −1.10459 | 4 | 0.96472 | ||
0.11337 | 1 | 14.17886 | 0.06782 | 4 | 0.57020 | ||
6s | 1.29376 | 5 | 0.68592 | 5d | 0.43875 | 3 | 2.18996 |
1.08437 | 4 | 2.01936 | −1.65312 | 3 | 0.71704 | ||
−1.35012 | 4 | 1.18083 | 1.98183 | 4 | 0.61262 | ||
−0.45859 | 3 | 2.84445 | |||||
0.12074 | 2 | 5.63572 | 6d | 0.59456 | 3 | 2.11265 | |
−0.02611 | 1 | 14.43279 | −3.24946 | 3 | 0.71943 | ||
4.54689 | 4 | 0.69999 | |||||
4f | 1.00000 | 4 | 2.15477 | −2.05458 | 4 | 0.42947 | |
5f | 0.52216 | 4 | 2.57322 | ||||
−1.04469 | 5 | 1.22476 |
Transition | This Work | ||||||
---|---|---|---|---|---|---|---|
4p * | 4d | Wavelength (nm) | [9] | [7] | [8] | ||
4 | 4 | 319.423 | 0.074 | 0.066 | 0.086 (12%) † | 0.236 | |
4 | 4 | 326.357 | 0.105 | 0.094 | 0.13 (11%) | 0.155 | 0.348 |
4 | 4 | 326.899 | 0.0031 | 0.0026 | 0.002 (84%) | ||
4 | 4 | 313.902 | 0.625 | 0.551 | 0.49 (18%) | 0.52 | 1.00 |
4 | 4 | 316.967 | 0.524 | 0.455 | 0.43 (18%) | 0.49 | 0.817 |
4 | 4 | 318.104 | 0.469 | 0.421 | 0.36 (12%) | 0.37 | 0.627 |
4 | 4 | 324.369 | 1.18 | 1.05 | 1.07 (11%) | 1.1 | 1.99 |
4 | 4 | 324.980 | 0.763 | 0.678 | 0.60 (14%) | 0.63 | 1.00 |
4 | 4 | 328.170 | 0.459 | 0.405 | 0.41 (11%) | 0.42 | 0.733 |
4 | 4 | 384.152 | 0.258 | 0.235 | 0.19 (12%) | 0.269 | 0.267 |
4 | 4 | 384.473 | 0.051 | 0.046 | 0.049 (17%) | 0.048 | 0.047 |
4 | 4 | 382.681 | 0.325 | 0.297 | 0.30 (15%) | 0.281 | 0.345 |
4 | 4 | 379.938 | 0.221 | 0.199 | 0.22 (13%) | 0.17 | 0.23 |
2 | 2 | 320.432 | 0.176 | 0.171 | 0.24 (12%) | 0.402 | |
2 | 2 | 327.332 | 0.172 | 0.158 | 0.20 (16%) | 0.371 | |
2 | 4 | 403.138 | 0.039 | 0.033 | 0.07 (60%) | 0.075 | |
2 | 2 | 295.539 | 0.325 | 0.297 | 0.19 (13%) | ||
2 | 2 | 301.448 | 0.036 | 0.034 | 0.039 (19%) | ||
2 | 4 | 383.017 | 0.0008 | 0.0009 | 0.042 (27%) | ||
2 | 2 | 365.528 | 0.326 | 0.316 | 0.37 (13%) | 0.232 | |
2 | 2 | 329.364 | 0.899 | 0.847 | 0.59 (17%) | 1.73 | |
2 | 2 | 330.723 | 1.44 | 1.38 | 1.43 (11%) | 3.35 | |
2 | 2 | 336.658 | 0.271 | 0.255 | 0.24 (15%) | 0.409 | |
2 | 2 | 338.853 | 0.761 | 0.795 | 0.81 (12%) | 1.91 | |
2 | 2 | 316.137 | 0.370 | 0.368 | 0.35 (45%) | 1.837 | |
4p′ | 4d′ | Wavelength (nm) | [9] | [7] | [8] | ||
2 | 2 | 335.092 | 0.929 | 0.815 | 0.90 (13%) | 1.48 | |
2 | 2 | 336.552 | 0.073 | 0.066 | 0.075 (18%) | 0.131 | |
2 | 2 | 337.644 | 0.860 | 0.764 | 0.74 (13%) | 1.49 | |
2 | 2 | 366.044 | 0.741 | 0.693 | 0.73 (11%) | 2.22 | |
2 | 2 | 367.101 | 0.199 | 0.191 | 0.23 (31%) | 0.709 | |
2 | 2 | 368.006 | 0.031 | 0.007 | 0.59 (19%) | 1.15 | |
2 | 2 | 302.675 | 0.600 | 0.679 | 1.03 (21%) | ||
2 | 2 | 379.659 | 0.141 | 0.132 | 0.18 (23%) | 0.250 | |
2 | 2 | 380.317 | 0.978 | 0.902 | 0.89 (12%) | 1.53 | |
2 | 2 | 381.902 | 0.244 | 0.172 | 0.15 (49%) | 0.0036 | |
2 | 2 | 382.567 | 0.384 | 0.356 | 0.33 (55%) | 0.756 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hibbert, A. Calculation of Rates of 4p–4d Transitions in Ar II. Atoms 2017, 5, 8. https://doi.org/10.3390/atoms5010008
Hibbert A. Calculation of Rates of 4p–4d Transitions in Ar II. Atoms. 2017; 5(1):8. https://doi.org/10.3390/atoms5010008
Chicago/Turabian StyleHibbert, Alan. 2017. "Calculation of Rates of 4p–4d Transitions in Ar II" Atoms 5, no. 1: 8. https://doi.org/10.3390/atoms5010008
APA StyleHibbert, A. (2017). Calculation of Rates of 4p–4d Transitions in Ar II. Atoms, 5(1), 8. https://doi.org/10.3390/atoms5010008