Next Article in Journal
Tungsten Data for Current and Future Uses in Fusion and Plasma Science
Previous Article in Journal
Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

MCDHF Calculations and Beam-Foil EUV Spectra of Boron-Like Sodium Ions (Na VII)

1
Materials Science and Applied Mathematics, Malmö University, SE-205 06, Malmö, Sweden
2
Astronomisches Institut, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
*
Author to whom correspondence should be addressed.
Atoms 2015, 3(2), 195-259; https://doi.org/10.3390/atoms3020195
Submission received: 21 March 2015 / Accepted: 15 May 2015 / Published: 9 June 2015

Abstract

:
Atomic data, such as wavelengths and line identifications, are necessary for many applications, especially in plasma diagnostics and for interpreting the spectra of distant astrophysical objects. The number of valence shell electrons increases the complexity of the computational problem. We have selected a five-electron ion, Na6+ (with the boron-like spectrum Na VII), for looking into the interplay of measurement and calculation. We summarize the available experimental work, perform our own extensive relativistic configuration interaction (RCI) computations based on multi-configuration Dirac–Hartree–Fock (MCDHF) wave functions, and compare the results to what is known of the level structure. We then discuss problems with databases that have begun to combine observations and computations.

Graphical Abstract

1. Introduction

A good third of a century ago, the ground and low-lying displaced configuration levels of ions with an open n = 2 or n = 3 shell were calculated for survey and application purposes in the study of terrestrial and astrophysical plasmas. An example is the calculations by Fawcett [1,2], who used the non-relativistic Cowan code (Hartree–Fock with relativistic exchange (HXR)) to provide wavelengths and oscillator strengths on low-lying configurations of elements of astrophysics and fusion research interest. In these calculations, certain atomic structure parameters were scaled to fractions of their ab initio values in order to improve the agreement with experimental data. Cheng, Kim and Desclaux [3] used the multiconfiguration Dirac–Fock approach in their computations of Li- through F-like ions, and the results served very well for orientation in very many experiments. However, computational facilities at the time limited the work to rather few basis functions, and this shortcoming has limited the accuracy of the results.
The development of atomic-structure algorithms and computing facilities has made great strides since, and improved tabulations can now be assembled. Atomic structure calculations have not yet reached the stage at which a routine computation can produce a full spectrum with spectroscopic accuracy. Usually, the low-lying levels are reproduced better by computations than high-lying ones. This incidentally matches the typical experimental situation in which the level structure of low-lying levels is better understood in detail than that of the higher-lying levels, a result of a better signal from easier excitation combined with the lower complexity of lower-lying electron configurations. Moreover, the different energy intervals bridged by transitions in the ground configuration, within a shell or between shells, are linked to different spectral ranges. Transitions between low-lying levels have a strong bearing on the overall accuracy of the wavelength and energy level data. We wanted to test the quality of our computational technique on a system that has not yet been studied extensively, so that good results should enable a significant step forward in practical knowledge. We have selected the extreme ultraviolet (EUV) spectrum of Na VII (B-like) for the purpose, for reasons that we detail below.

2. Earlier Work

The overwhelming fraction of spectroscopic data on Na VII has been obtained by Jonas Söderqvist [4,5] in the early days of EUV spectroscopy with grazing incidence spectrometers, more than 80 years ago, using a vacuum spark as the light source. The results on n = 2 and n = 3 levels and transitions between them were presented in his 1934 PhD thesis on the spectra of Na, Mg, Al and Si, and information on some 4d and 5d levels of Na VII was added in a journal publication ten years later. The isoelectronic scaling exercises by Edlén [68] (Söderqvist’s mentor at Uppsala) have contributed further information on the n = 2 levels. The Söderqvist data form the bulk of the compilations on Na VII by Kelly and Palumbo [9,10] and by Martin and Zalubas [11] (who changed some level designations to improve the regularity of the level sequences). The spectroscopic world knowledge on the various spectra of Na has been compiled by J. Sansonetti as recently as 2008 [12]. In this compilation, in the interval 62 Å to 790 Å, all Na VII wavelengths, but one, refer to Söderqvist’s paper of 1944. Sansonetti lists further theoretical work, as well as solar observations by the SUMER instrument on the SOHO spacecraft [13]. The latter data encompassed some long sought-for intercombination transitions so that the relative positions of doublet and quartet term systems could be established experimentally. The Sansonetti wavelength listings are complemented by transition rates mostly from a compilation by Kelleher and Podobedova [14] of computed results.
Sansonetti lists 170 Na VII lines with wavelengths from 62 to 500 Å. However, the actual NIST online database [15] has since expanded to more than 700 Na VII lines on the basis of the same primary data, apparently by adding many hitherto unobserved lines using the Ritz combination principle. Such predicted transitions between excited levels carry a larger wavelength uncertainty because of the relatively small energy difference of the initial and final levels, both of which may be less well established than the positions of resonance line levels. Moreover, the associated spectral lines are likely weak, because they either result from levels not well populated in a given light source or because they represent weak decay branches. This raises questions about excitation processes and about decay rates, radiative level lifetimes and branch fractions. Such questions may be addressed experimentally by time-resolved observations, such as offered by beam-foil spectroscopy. We discuss such measurements and the data available below.
On the side of theory, atomic structure calculations have reached high accuracy for atomic systems with few electrons in total or outside closed shells. Additional electrons multiply the complexity of the computational problem, which is reflected in the progressively lesser agreement of calculated results with accurate experimental data. While semi-empirical adjustments of atomic parameters have served well in providing calculated datasets bridging gaps in the experimental data, guiding further data analysis and providing consistency checks, they are not sufficient to test the status of our understanding of atomic structure detail, in particular the need for any theory to have predictive value. The latter can only be claimed by ab initio calculations, which tend to be demanding in computing effort. In the following, we briefly recall experimental and computational work on B-like ions of the last 40 years before looking in more detail at a particular measurement of the spectrum Na VII.
In 1973 and 1978, the Lyon group of Buchet et al. worked on ion beams of sodium from a single-stage accelerator [16,17]; the latter paper reporting beam-foil lifetimes of several Na ion species, and among them, one level of Na VII. In the late 1970s, the Bochum beam-foil spectroscopy group began to measure EUV spectra and decay curves of B-like ions of Si and P [1823]; references to various earlier calculations of oscillator strengths and transition rates are given in those papers. In the 1990s, the Bochum group returned to measurements of detailed processes in B-like ions, such as the massive changes of multiplet line intensity patterns (away from the standard expectation of LS coupling that had been tabulated 80 years ago by White and Eliason [24]), due to the changes in level mixing along the isoelectronic sequence [25]. The experiment employed photoelectric detection, the (linear) signal of which is more easily evaluated than the (nonlinear) photographic signal obtained by Söderqvist. The measurement (including data on Na VII) corroborated the deviation of the line intensities from the unperturbed case, but it also revealed that quantitatively, there remained shortcomings of the available computations. A Liège–Bochum collaboration measured the lifetimes of several n = 2 levels of Na VII [26]. In the course of this work, wide-range EUV spectra of Na were recorded. Those data will be used below in a discussion of the experimental situation and for a comparison with our present computational results.
In 1979, Farrag et al. [27,28] used relativistic wave functions and produced oscillator strengths for transitions among n = 2 levels of B-like ions. In 1982, McEachran and Cohen [29] employed a core polarization approach in their computation of oscillator strengths. A 1983 Bochum determination of n = 2, Δn = 0 transition probabilities in B-like ions [23] stated quite a bit of scatter of the predictions and found agreement of the measured data with only a few of the calculations, most of them scaled to match the experimental transition energies. In 1993, Lavin and Martin [30] presented calculations of oscillator strengths of B-like ions, employing their quantum defect orbital formalism. In 1995, the Lithuanian team of Merkelis et al. applied many-body perturbation theory (MBPT) to the n = 2 levels of the B isoelectronic sequence [31]. Considering the increased availability of inexpensive computing power, this can be seen as the beginning of large-scale ab initio calculations of the atomic structure of B-like ions. In 1996, Safronova et al. turned the relativistic MBPT apparatus to calculations of n = 2 and n = 3 levels and transition rates in B-like ions [3234]. In 1998, Galavís et al. [35] applied the SUPERSTRUCTURE code to B-like ions with the principal aim being the transition rates within the n = 2 level complex. Vilkas et al. began to work on boron-like ions using the multireference Møller–Plesset (MR-MP) code [36]. In 2000, Tachiev and Froese Fischer [37] applied the non-relativistic multiconfiguration Hartree–Fock (MCHF) approach to B-like ions up to Si (Z = 14) and computed level energies, level lifetimes up to some n = 3 levels and line strengths. In 2003, Koc calculated n = 2, n = 3 and some n = 4 levels, as well as transition rates of the B-like ions of Ne, Na and Mg by multireference relativistic configuration interaction computations [38]. In the same year and by the same approach, Koc produced fine structure intervals and M1/E2 transition rates within the ground term of B-like ions with an atomic number Z from 10 to 30, and so on [3941]. This latter topic ties in with the demand for accurate ab initio calculations to compare with accurate wavelength and lifetime measurements at electron beam ion traps (EBIT) [4245]. However, in this latter suite of studies, only a single transition is of primary interest (see [46]), the electric-dipole (E1) forbidden transition in the 2s22p 2P° ground term. The experiment has obtained a transition rate with an uncertainty of a small fraction of one percent, which would make for a significant test of the 0.45% QED contribution (via the electron anomalous magnetic moment (EAMM)), if many-body quantum mechanics were computed sufficiently accurately. Other EBIT work has addressed (without time resolution) high-Z B-like ions, that is ions in the realm of large relativistic effects and notable contributions from QED [4749].
Because of the large fine structure intervals in highly charged high-Z ions, those measurements just mentioned comprise just one or a few lines of any B-like ion. The computational demands are high to reach accurate predictions on these lines, but that is similarly so at lower atomic numbers, where practical spectra might contain dozens, if not hundreds of lines of a given ionic species. The computational challenge there lies not so much in the treatment of relativity and QED, but the calculations have to cope with a less dominant central Coulomb field, which usually means that the convergence of any computation is slower.
In a single high-resolution beam-foil dataset on Si (recorded at Bochum), Kramida has identified about a hundred lines of Si XI (Be-like) [50] by a judicious analysis based on the Cowan code (with scaled parameters) and some ab initio calculations. In other sections of the same dataset, Vilkas (using the ab initio multireference Møller–Plesset code developed by Y. Ishikawa and his group) identified more than a hundred lines of Si X (B-like) [51] and determined level positions up to n = 4. The study recognized a number of lines that had been mistakenly subsumed into various data compilations, because the measured wavelengths had been stated with more decimals than used by other authors; however, the underlying line identifications turned out to be incorrect. This experience underlines the need for occasional cross-checks between experimental analyses of spectroscopic data and the more systematic results of accurate computations. Unfortunately, such high-resolution beam-foil spectra have not been recorded for other elements, such as Na and Mg, because the lower ion beam currents usually available for those elements would have resulted in a significantly poorer signal. However, there are the aforementioned beam-foil spectra of Na that have been recorded by Tordoir et al. [26] using the same grazing-incidence spectrometer at lower spectral resolution; we discuss these measurements below.
Recently Rynkun and Jönsson et al. have calculated (by the relativistic configuration interaction method) n = 2 levels of B-like ions from elements N through Zn, as well as transitions between these levels [5255]. They have compared their calculated level energies with the results of other advanced calculations and with databases and experimental data for Si X [51], and they find good agreement. We are applying the same ab initio computational approach now to n = 2, 3 and (some) 4 levels of Na VII and compare our results with the results obtained by competing computational approaches and with data of the aforementioned Tordoir et al. measurement campaign in the EUV.

3. Relativistic Multiconfiguration Calculations

The calculations were performed using the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method in jj-coupling [56]. For practical purposes, a transformation from jj- to LS-coupling [57] was done at the end, and in all tables, the quantum states are labeled by the leading LS-percentage composition.

3.1. Multiconfiguration Dirac–Hartree–Fock

According to quantum mechanics, a state of an N-electron system is determined by a wave function Ψ that is a solution to the wave equation:
Ψ = E Ψ .
Here, is the Hamiltonian operator and E the total energy of the system. The starting point for fully relativistic calculations is the Dirac–Coulomb Hamiltonian:
= i = 1 N ( c α i p i + ( β i 1 ) c 2 + V i N ) i > j N 1 r i j ,
where VN is the central part of the electron-nucleus Coulomb interaction, α and β the 4 × 4 Dirac matrices and c the speed of light in atomic units. In the MCDHF method, the wave function Ψ(γPJM) for a state labeled γPJM, where J and M are the angular quantum numbers and P is the parity, is expanded in antisymmetrized configuration state functions (CSFs):
Ψ ( γ P J M ) = j = 1 N C S F c j Φ ( γ P J M ) .
The label γj denotes other appropriate information of the configuration state function j, such as orbital occupancy and coupling scheme. The CSFs are built from products of one-electron Dirac orbitals.
In this work, the wave functions were determined in the extended optimal level (EOL) scheme, and the radial parts of the Dirac orbitals and the expansion coefficients of a number of targeted states were obtained iteratively in the relativistic self-consistent field (RSCF) scheme from a set of equations that results from applying the variational principle on a weighted energy functional of the states [58]. The transverse interaction in the low-frequency limit, or the Breit interaction [59],
H Breit = i < j N 1 2 r i j [ α i α j + ( α i r i j ) ( α j r i j ) r i j 2 ] ,
the mass shift correction [60] and leading QED (vacuum polarization and self-energy) were included in subsequent configuration interaction (RCI) calculations, where now, only the expansion coefficients were determined by diagonalizing the Hamiltonian matrix. All calculations were performed with an updated parallel version of the GRASP2K code [61,62]. To calculate the spin-angular part of the matrix elements, the second quantization method in coupled tensorial form and quasi-spin technique [63] was adopted.

3.2. Transition Parameters

Transition parameters, such as transition rates or weighted oscillator strengths between two states γPJM′ and γPJM, were expressed in terms of the transition moment:
Ψ ( γ P J ) T Ψ ( γ P J ) = = j , k c j c k Φ ( γ j P J ) T Φ ( γ k P J ) ,
where T is the transition operator [64]. In cases where the two states γPJM′ and γPJM were separately determined, the radial orbitals are not orthogonal. To deal with this complication, a transformation to a biorthonormal orbital basis was applied [65] before the reduced matrix elements were evaluated using standard Racah algebra techniques.
For electric multipole transitions, there are two forms of the transition operator, the length and velocity form [66]. The length form is the preferred one, because it puts more weight on the outer parts of the wave function where electron correlation normally is better described and which is mathematically more tractable. In this work, the relative difference:
d T = | A l A v | max ( A l , A v )
between the transition rates computed in the length and velocity forms, respectively, is used as an indicator of the uncertainty [67,68].

3.3. Calculations

Calculations were performed for the 67 lowest odd states belonging to the configurations 2s22p, 2p3, 2s23p, 2s2p3s, 2s2p3d, 2s24p, 2s24f, 2p23p and 2s2p4s and the 66 lowest even states belonging to 2s2p2, 2s23s, 2s23d, 2s2p3p, 2s24s, 2s24d, 2p23s and 2p23d. The calculations were done by parity, meaning that the even and odd states were determined in separate calculations in the EOL scheme. As a starting point, two RSCF calculations were performed in the EOL scheme for the weighted average of the odd and even parity reference states, respectively. To include electron correlation and improve on the computed energies, these calculation were followed by RSCF calculations, separate calculations for the odd and even parity states, where the CSF expansions were obtained by allowing single and double (SD) excitations from all shells of the odd and even reference configurations to active orbital sets with principal quantum numbers up to n = 10 and with orbital angular momenta up to l = 7. (These parameter choices reflect a compromise between the wish for a complete computation and the available computer resources, but by experience, these options are adequate for the present goal of accuracy in the computation of n = 2, 3, 4 levels and transitions between them.) The RSCF calculations were followed by RCI calculations, including the Breit interaction, mass shift and leading QED effects. To include higher-order electron correlation effects, additional RCI calculations were performed. For these calculations, the expansions were obtained by SD excitations from extended sets of odd and even parity reference configurations. The odd parity configurations were extended with 2s2p4s, 2s3s3p, 2s3p3d, 2p3s2, 2p3s3d, 2p3p2, 2p3d2, 2p24p, 2p24f and 2s2p4d, whereas the even parity configurations also included 2s3s2, 2s3p2, 2s3d2, 2s3s3d, 2p3s3p, 2p3p3d, 2p24s, 2p24d, 2s2p4p and 2s2p4f. The number of CSFs in the final odd and even state expansions were 3 150000 and 3 100000, respectively, distributed over the different J symmetries.

3.4. Labeling of States

The wave functions in the present work were obtained as expansions over jj-coupled CSFs, and it is convenient to give the states the same labels as the dominating CSFs. In this work, we used a module in the latest release of the GRASP2K code [62] to transform from jj- to LS-coupling to obtain the leading LS-percentage composition.

4. Results and Discussion

4.1. Energies

In Table 1, we compare the energies from the final RCI calculation with observed energies from the compilation by Sansonetti [12] and with calculated energies by Koc [38]. The calculations by Koc are based on a multireference RCI method with an orbital set based on analytical Gaussian functions. Except for an unexplained 900-cm1 difference for the 2s2p(1P)3p 2S1/2 state, there is a good agreement between the two different sets of calculations. However, our level list is more comprehensive than that published by Koc. We also note that there are numerous levels with only a single n = 3 electron, which are easily calculated, but which have not yet been established by experiment. Of our own calculations, we list only a few levels with a single n = 4 electron, and even in these cases, most experimental level counterparts are yet unknown. A detailed comparison of the present calculated energies and the experimental energies seems to indicate that there are some misidentifications, since for ten levels, the difference between calculated and experimental energies is 800 cm1 or more. (However, the comparison has to include the uncertainty of the experimental data; see the discussion below.) Disregarding these levels, the average relative difference between the calculated and experimental energy values is less than 0.018 %. This is in line with the accuracy found for other ions in the B-like sequence [52,55].
Our computations result in more than 1500 calculated transitions with a transition rate higher than A = 106 s1 (an arbitrary cut-off) and wavelengths that range from just below 7 nm to beyond 900 nm. These results are listed in Table 3. They comprise n = 2 − 2, 2 − 3 and a few n = 3 − 4 transitions and, thus, only a sub-set of all Na VII transitions that may appear in this wavelength range (missing n = 2 − 5, 3 − 5, etc.). The n = 2 − 2 transitions of Na ions are mostly found in the range 30 to 100 nm. In a hydrogenic approximation, the n = 2 − 3, 4, 5, … transitions are expected in the short wavelength part of the EUV spectrum (see the 2p-nd transitions in [5]). However, because of the sizable in-shell structure of B-like and neighboring ions, n = 2 − 3 transitions extend to wavelengths longer than those of the aforementioned n = 2 − 2 interval, too. The smaller the predicted transition energy (the longer the predicted wavelength), the larger the uncertainty of the prediction that is related to the uncertainty of the energy predictions for the levels involved.

4.2. Transition Rates and Lifetimes

The lifetimes of the excited states were calculated from transition rates in both the length and velocity forms. Disregarding the lifetimes for the long living 2s2p2 4P states that decay only through intercombination transitions, the average relative difference between the lifetimes in the length and velocity forms is less than 0.032%, which is highly satisfactory. In Table 2, we compare calculated lifetimes in the length form with lifetimes obtained from from other methods and from experiments. Included in the comparison are lifetimes obtained by Koc using multireference RCI and by [37] using the MCHF Breit–Pauli method, accounting for valence and core-valence electron correlation. There are also experimental lifetimes from beam-foil measurements by [26]. The lifetimes for the metastable 2s2p2 4P states are consistent to within 5%, which can be regarded as quite good. For the shorter lifetimes of the low lying states, the agreement between the calculations is excellent. The calculated lifetimes are also within the experimental error bars. For some of the higher lying states, there are extremely large differences, orders of magnitude, between the present lifetimes and the ones by Koc. Two examples are the lifetimes of the 2p2(3P)3s 4P1/2,3/2 and 2 D 3 / 2 , 5 / 2 o states. We have tried out other calculations when we found the deviations, but none corroborate the values listed by Koc. The calculations of Koc should be reliable, so the discrepancies may be attributable to clerical errors.
Employing the relative difference dT between the oscillator strengths calculated in the length or the velocity form as an indicator of uncertainty, we find this measure dT well below 1% for most of the stronger transitions. The weaker transitions are either intercombination transitions, where the smallness of the rates come from a cancellations in the contributions to the transition matrix elements, or so-called two-electron one-photon transitions that are zero at the Dirac–Fock level of approximation and where the rate is only due to correlation effects. Both of these transitions are very challenging to compute and are often associated with sizable uncertainties. For a recent discussion of two-electron one-photon transitions, see [69]. Intercombination transitions are necessary for establishing the relative positions of the various term systems. However, the transition rates are very low in low-Z atomic systems, and for Na VII, they have not yet been seen in the laboratory. As mentioned above, the connection between the doublet and quartet level systems has been established only recently, by solar observations from the SOHO spacecraft [13].
Figure 1 shows a synthetic Na VII spectrum obtained from calculated transition rates and matching the wavelength range of the beam-foil data obtained by Tordoir et al. [26]. The intensity of each transition in the spectrum depends on the upper level population and on the transition rates of the various decay channels of the upper level. With ni and li, the principal quantum number and orbital angular momentum, respectively, of the last occupied subshell in the upper level configuration, Aij/k Aik the branching fraction of the transition between level i and the lower level j and a population of upper levels in beam-foil experiments (see [70]) that may be approximated as being proportional to n i 3 ( 2 l i + 1 ), the individual calculated line intensity is modulated to be proportional to n i 3 ( 2 l i + 1 ) A i j / k A i k. In order to accommodate the instrumental line width of the measurements by Tordoir et al., we represent each calculated spectral line by a Gaussian distribution with a full width at half maximum (FWMH) of 0.03 nm. The same representation of a simple excitation (level population) model and of atomic branch fractions has been applied to the data of Table 3.

5. Beam-Foil Technique and Experiment

A variety of light sources have been developed over the century and a half since spectroscopic analysis has been recognized as an important scientific tool. Spectra of multiply-charged ions, such as Na6+ (spectrum of Na VII), can, for example, be produced in vacuum sparks, low-density plasma discharges, laser-produced plasmas, by the interaction of fast ion beams with solid (foil) targets or in electron beam ion traps (EBIT). The excitation depends on environmental parameters, such as the particle density and temperature or collision energy. Excitation is particularly efficient in the beam-foil light source, in which MeV-energy ion beams are being passed through a thin carbon foil (therefore, the electrons of the target are at solid-state density). The collision frequency is much higher than most radiative decay rates in the ions of the ion beam, so that multiple excitation occurs. The heavy ions of the beam collide mostly with the many (light) electrons of the target and, thus, suffer only a minor energy loss and deflection (angular straggling). The ion beam continues on its trajectory after leaving the foil target, and the observation of radiative decays then takes place (with intrinsic time resolution) in the low-density (high-vacuum) environment of the vacuum chamber of the ion beam transport system. (For the basics and the evolution of the beam-foil technique, see [7173] and the references therein.)
There are several significant advantages to beam-foil spectroscopy: the ion beam is isotopically pure; the excitation efficiency is so high that high-lying and multiply-excited levels are reached much more likely than in other light sources; and the geometry is favorable for time-resolved observations. The field of view of any detection system corresponds to a time window at the location of the ion beam, and variation of the position of that time window on a scale of picoseconds to many nanoseconds is easily achieved by a mechanical foil displacement on the scale of micrometers to many centimeters. Moreover, the charge state distribution of the ions in the beam leaving the exciter foil depends on the ion beam energy, and thus, it can be shifted to favor specific charge states. Among the drawbacks of the technique is the high ion velocity, which causes Doppler shifts and Doppler broadening of observations with a finite solid angle of detection. Furthermore, the isotopic purity makes it difficult to use external wavelength calibrations with reference lines from other elements. Instead, often (but not always) in-beam calibration is employed that relies on well-known lines of the same element (and preferably the same ion charge state). Moreover, there is a drawback to the high excitation efficiency, in that often there are so many lines in beam-foil spectra (especially in observations close to the exciter foil, that is at very short times after excitation) that it may be difficult, if not impossible, to resolve the reference lines of interest. At the same time the observation of the decays of long-lived levels (intercombination or E1-forbidden decays) is hampered by the intrinsically high time resolution, which disfavors the signal collection from extended emission zones.

5.1. Beam-Foil EUV Spectra of Na: Seeing Trees or a Forest?

Experimental setups for beam-foil spectroscopy have become scarce, and beams of sodium ions have been difficult to produce for tandem accelerators, the most suitable machinery for much of the beam-foil work. The Bochum Dynamitron Tandem accelerator laboratory has been most successful in this vein, but even there, the ion beam currents achieved with Na remained well below those of many other elements. (The Bochum beam-foil measurement setups have been shut down for good since.) Lacking the tools for new beam-foil measurements, we have revisited the best samples of such spectra as have been obtained previously (but not evaluated in detail) by Tordoir et al. at Bochum [26]. Tordoir et al. covered the wavelength range from 8.3 to about 54 nm at ion beam energies of 1.5 MeV, 3 MeV, 4.5 MeV and 7 MeV, respectively. The latter two choices optimize the excitation of the spectra Na VI and Na VII, respectively. The individual charge state fractions peak at about 40% of the charge state distribution [75]. With one fraction so maximized, the neighboring ones amount to about 20% each, and the next ones to about 5% each. Thus, with run conditions aiming at Na VI and Na VII, the spectra Na IV, Na V and Na VIII are expected to be excited as well, but at accordingly lower yields. The spectra of multiply-excited ions usually have excitation functions in between; for example, at an ion beam energy of 4.5 MeV, the Na III fraction may be too small to matter, but the Na III* fraction may be still notable. Other beam-foil studies, conducted at Lyon [16,17], used ion beam energies in the low part of the Bochum measurements. Both Lyon and Bochum beam-foil experiments on Na employed photoelectric detection, whereas Söderqvist had used photographic recording. There is one striking difference between the Lyon and the Bochum spectra: the prominent peaks in the Lyon spectra bear labels as if there were no doubt about line identification (although many line profiles reveal the presence of more than one component), while the Bochum spectra feature so many lines in the same intensity bracket that not many lines stand out, and identification by imperfectly calibrated line position (in the short wavelength range) remains tentative.
Tordoir et al. have concentrated on the measurement of lifetimes of various n = 2 levels (as mentioned above, the results are compared with our calculations in Table 2). The associated spectra may be expected to yield plenty of atomic structure information, including information on many levels in the n = 3 shell and some in the n = 4 shell. However, the technical conditions (such as the operational wavelength range, signal rate from an only moderately strong ion beam, durability of the exciter foil under ion beam irradiation, etc.) necessitated the use of a highly reflective diffraction grating, but of lower groove density than used in the aforementioned work on Si beams. Hence, the spectral resolving power was much lower than what is achievable in principle. With 40 µm wide slits a spectral line width of 0.03 nm (FWHM) was obtained, corresponding to a resolving power λλ of about 240 at the short wavelength end (λ ≈ 8.3 nm) of the data range and of about 1800 at the long wavelength end (54.3 nm). (In contrast, Söderqvist used several spectrographs observing a stationary light source, which was bright enough to employ a narrow spectrometer entrance slit, and the spectrographs worked also in various higher orders of diffraction; both factors are beneficial for spectral resolution.) Figure 2 shows the complete spectral range that was covered in sections and the individual spectra stitched together. An approximate response function of the spectrometer-detector combination has been established (a decade earlier) for the wavelength range above 20 nm [76,77], but the measured spectrum (recorded in sections at various occasions and having varying signal normalization settings) has not been corrected for this. Nevertheless, one has to be aware of the general efficiency function that in this case has a wide maximum near a wavelength of 20 nm and falls off monotonically to half of that efficiency at wavelengths shorter than 12 nm or longer than 40 nm. Hence, measurements inside this wavelength range are enhanced in signal compared to measurements outside.
The spectra were calibrated from known lines of Na (“in-beam calibration”), which takes care of the Doppler shift, but suitable lines are not evenly available in the spectral range covered. There are sufficiently many appropriate lines at wavelengths longer than 30 nm. Between 14 and 26 nm, our present calculations for Na VII predict nothing but a few very weak lines, but the beam-foil spectra show a multitude of moderate to weak lines (see below). Below 14 nm, there are many lines known and many lines seen, but the two sets are not congruent. Some one hundred lines crowd and often blend in an interval of about 6 nm, in which the average line spacing is only about a factor of two to three larger than the instrumental line width. In this short wavelength range, many of the line positions (whether the lines have been identified or not) appear reproducibly in the spectra recorded at 4.5 MeV and at 7 MeV ion beam energy, matching the expectation that in both settings, the n = 2 − 3 transitions in the spectra Na VI and Na VII are the dominant contributors (Figure 3). At an ion beam energy of 3 MeV, the charge state distribution [75] favors Na VI and Na V similarly (each at some 37%), while at 1.5 MeV, Na V and Na IV are about equally strongly present. These lower charge states are expected to contribute many lines to the spectrum above a wavelength of some 10 nm, and thus, they are the most likely candidates for the many lines seen in the beam-foil spectra of Na. An example are the prominent 2p-3d transitions in Na ions of successively lower ionization stages that, according to the databases, appear at successively longer wavelengths. The densely packed n = 2 − 3 lines of low-charge state ions (a “forest of lines”) practically hide the more widely-spaced lines (“single trees”) of higher charge state ions that are expected to lie in the same wavelength ranges.

6. Comparison of Laboratory Data with Results of Computation

A simple approximation of the level population is being used here to simulate a spectrum of Na VII on the basis of our calculations and in lieu of a full radiative-collisional model, which would include the redistribution of level populations by various processes, including radiative cascades. The result demonstrates the overall similarity of our calculated data (Figure 1) with the observed spectrum (Figure 2). The similarity of the line positions of prominent lines and the balance of emission intensities in the various parts of the spectral range covered attests to the overall quality of the calculations. The agreement of the calculated n = 2 displaced level lifetimes with the experiment [26] has already been noted. A more detailed comparison of the line intensities of the decays of levels with n > 2 with the experiment would have to include the specific excitation and observation geometry of the beam-foil experiment, which is of limited interest here.
A major field of comparison is the level energies (see above) and the resulting transition wavelengths, while in the experiment, the dependence is the inverse, in that wavelength determinations come first, from which levels are derived. For the technical reasons mentioned above, the wavelength information from the Bochum beam-foil spectra does not reach Söderqvist’s accuracy. However, for some levels, our calculations find significant deviations from Söderqvist’s, which suggests that with the same wavelength information from the experiment, the spectrum analysis might lead to some different line assignments. After all, Söderqvist’s spectra feature a similarly high line density in the short wavelength range, with the same problem of neighboring charge states providing the bulk of the lines. The data recorded by Tordoir et al. [26], unfortunately, are not resolved well enough to help with reanalyzing this spectral section.
However, there are many more lines than those Söderqvist has assigned to the various charge states of Na, and the isotopic purity of the beam-foil light source guarantees that they also belong to Na. The most striking multitude of those unidentified lines ranges from 14 to 32 nm. In order to check for the appearance of lines in second diffraction order, the observed spectrum 8 to 12 nm has been overlaid as a scaled plot on the spectral range 16 to 24 nm. Incidentally, very few of the second diffraction order images of the short wavelength lines coincide with line profiles in the longer wavelength section. Moreover, the second diffraction order line pattern can only be accommodated, if the second-order signal amounts to no more than some 10% of the same transitions in the first diffraction order. For most lines, this would be indistinguishable from the background level. The vast majority of the lines in the wavelength range above 16 nm suffer no recognizable potential contamination by second diffraction order lines.
There are many more lines in the beam-foil spectra between 14 and 26 nm than are listed by NIST as observations (of many charge states) of Na IV through Na VIII, while there are no notably bright lines predicted by the present computations on Na VII. This is particularly interesting for the practitioner, because the recent extension of the NIST tables by inserting lines based on the Ritz combination principle has added hundreds of such lines with no explicit tool to judge a likely signal. In contrast, our present computations have been used to provide a (very simple) model spectrum that takes transition rates (A values) into account, but also the branching of the upper level decays. From this combination, one can see wavelength ranges with an expected significant line signal of Na VII and others without. (An extension of the synthetic spectrum to include more of the n = 4, 5 levels would add mostly lines at the short wavelength end of the range.) We note that the many lines in the wavelength range 14 to 26 nm increase in relative brightness (compared to the lines in the interval 8 to 14 nm) when the ion beam energy is decreased to 3 or 1.5 MeV. This is a clear sign of lower charge states, and many of the lines will originate from multiply-excited states of those ions.
We suggest to limit “predictive line lists” to lines that, under simple assumptions (or after proper collisional-radiative model calculations), are expected not to be weaker than, say, 0.1% of the strong ones. This is not a scientific criterion, only a practical one. Such a cutoff may prevent unnecessary clutter in tables from computations that are capable of producing thousands of results, without any measure of relevance and that often are presented without a meaningful intrinsic measure of accuracy. Table 3 demonstrates the need for such a cut-off. The transition rate of any given line is insufficient as a measure of whether the line might be notable in a spectrum. The relative intensity estimate after applying a population model and branch fractions, however, easily tells that a large fraction of the number of computed lines is of no practical importance for the understanding of observations. The plenitude of indiscriminate table entries from computations into databases may even be a disservice to the community.
However, we are aware that there are light sources with an excitation pattern that differs very much from that of the fast-ion-foil one, that is, for example, the low density environment as in the electron beam ion trap [78]. In such a trap, the population is primarily in the ground configuration. Thus, direct excitation from the ground state matters most, and ground state transitions dominate, irrespective of the multipole order. This is in stark contrast to the beam-foil excitation process [79]. Hence, there is no simple criterion that guarantees sensible data filtering for databases.

7. Conclusion

Our ab initio MCDHF computations of the B-like spectrum Na VII are in the same high accuracy class as the multireference RCI computations by Koc [38]. However, we identify a few possible errors in that work. Both computations so far come closest among such studies to the unsurpassed experimental data acquired by Söderqvist more than 80 years ago. Again, for a few of the n = 3 and n = 4 levels, our calculations come out less close to Söderqvist’s analysis than in the vast majority of others. A level mismatch between computation and measurement by 100 cm1 corresponds to a wavelength mismatch of 0.001 nm for a line of wavelength 10 nm. This is the magnitude of Söderqvist’s claimed measurement uncertainty. The deviations between measurement and computation listed in Table 1 indicate that the present computations are, indeed, close to spectroscopic quality for the n = 2 levels and many of the n = 3 levels. Any significantly larger mismatch (11 cases in Table 1) then suggests either the presence of an atomic structure peculiarity or the need for a change of line identification. The overall excellent agreement serves as a test of quality and encourages the use of computations such as ours as a guide for extending the spectral analysis of the spectrum of Na VII levels of the n = 4 manifold and beyond, as well as the application to other B-like ions, for which the database is much sparser than for Na, Mg, Al and Si.
The Söderqvist data have been obtained with observations of a vacuum spark, and for many decades, they have not been augmented by further measurements. We have investigated beam-foil spectra, which are known for their richness of spectral lines, especially from the multiple excitation of atomic systems, and indeed, there appear plenty of spectral lines of Na that have not been reported from other light sources. Unfortunately, the line-rich beam-foil far-EUV spectra of Na (and many other elements) have not yet been recorded with a spectral resolution high enough to separate most lines, as would benefit a future spectral analysis attempt.

Acknowledgments

Elmar Träbert gratefully acknowledges the hospitality of the astronomy institute at Ruhr-Universität Bochum.
PACS Classifications: 31.15.am, 32.30.Jc, 32.70.Cs

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Fawcett, B.C. Classification of highly ionized emission lines due to transitions from singly and doubly excited levels in sodium, magnesium, aluminium, silicon, phosphorus, sulphur and chlorine. J. Phys. B 1970, 3, 1152. [Google Scholar]
  2. Fawcett, B.C. Wavelengths and classifications of emission lines due to 2s22p2–2s2pn+1 and 2s2pn–2pn+1 transitions. Z ≤ 28At. Data Nucl. Data Tables 1975, 16, 135. [Google Scholar]
  3. Cheng, K.T.; Kim, Y.K.; Desclaux, J.P. Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F. At. Data Nucl. Data Tables 1979, 24, 111–189. [Google Scholar]
  4. Söderqvist, J. Vakuumfunkenspektren der Elemente Natrium Magnesium Aluminium und Silicium. Nova Acta Regiae Soc. Sci. Ups. 1934, 9, 1, In Germany. [Google Scholar]
  5. Söderqvist, J. Spektren von hochionisiertem Natrium und Magnesium. Ark. Mat. Astron. Fys. 1944, 30, 1, In Germany. [Google Scholar]
  6. Edlén, B. Critical Compilation of Energy Levels of the Low Configurations in Boron-Like Ions. Phys. Scr. 1981, 23, 1079. [Google Scholar]
  7. Edlén, B. Accurate values of the energy intervals in the configurations 1s22s22pk (k = 1–5). Phys. Scr. 1982, 26, 71. [Google Scholar]
  8. Edlén, B. Comparison of Theoretical and Experimental Level Values of the n = 2 Configurations in the Boron Isoelectronic Sequence. Phys. Scr. 1983, 28, 483. [Google Scholar]
  9. Kelly, R.L.; Palumbo, L.J. Atomic and Ionic Emission Lines below 2000 Å, Hydrogen through Krypton; Naval Research Laboratory: Washington, DC, USA, 1978. [Google Scholar]
  10. Kelly, R.L. Atomic and Ionic spectrum lines below 2000 Angstroms: Hydrogen through krypton. J. Phys. Chem. Ref. Data 1987, (1). [Google Scholar]
  11. Martin, W.C.; Zalubas, R. Energy levels of sodium, Na I through Na XI. J. Phys. Chem. Ref. Data 1981, 10, 153–195. [Google Scholar]
  12. Sansonetti, J.E. Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I – Na XI). J. Phys. Chem. Ref. Data 2008, 37, 1659–1763. [Google Scholar]
  13. Feldman, U.; Behring, W.E.; Curdt, W.; Schühle, U.; Wilhelm, K.; Lemaire, P.; Moran, T.M. A coronal spectrum in the 500-1610 Å wavelength range recorded at a height of 21000 kilometers above the west solar limb by the SUMER instrument on Solar and heliospheric observatory. Astrophys. J. Suppl. Ser. 1977, 113, 195–219. [Google Scholar]
  14. Kelleher, D.E.; Podobedova, L. Atomic Transition Probabilities of Sodium and Magnesium. A Critical Compilation. J. Phys. Chem. Ref. Data 2008, 37, 267–706. [Google Scholar]
  15. Kramida, A.; Ralchenko, Yu.; Reader, J. NIST ASD Team. Gaithersburg, MD, USA, 2014. NIST Atomic Spectra Database (ver. 5.2); National Institute of Standards and Technology. Available online: http://physics.nist.gov/asd accessed on 28 december 2014.
  16. Buchet, J.-P.; Buchet-Poulizac, M.C. Spectrum and lifetimes of sodium between 150 Å and 400 Å. Phys. Lett. A 1973, 46, 273–274. [Google Scholar]
  17. Buchet, J.-P.; Buchet-Poulizac, M.C.; Druetta, M. Mean-Life Measurements of Na V, Na VI and Na VII Levels in the Extreme Ultraviolet Region. Phys. Scr. 1978, 18, 496. [Google Scholar]
  18. Träbert, E.; Heckmann, P.H.; von Buttlar, H.; Brand, K. Beam-foil spectrum of silicon in the extreme UV. Z. Phys. 1976, A 279, 127–133. [Google Scholar]
  19. Träbert, E.; Heckmann, P.H.; von Buttlar, H. Beam-foil lifetimes of highly ionized silicon. Z. Phys. 1977, A 281, 333–339. [Google Scholar]
  20. Träbert, E.; Heckmann, P.H.; von Buttlar, H. Highly resolved EUV beam-foil spectra of silicon. Z. Phys. 1979, A 290, 7–12. [Google Scholar]
  21. Träbert, E.; Heckmann, P.H.; Schlagheck, W.; von Buttlar, H. Beam-foil lifetime studies of highly ionized silicon. Phys. Scr. 1980, 21, 27–34. [Google Scholar]
  22. Träbert, E.; Heckmann, P.H. EUV spectrum and lifetimes of foil-excited phosphorus. Phys. Scr. 1980, 21, 35–39. [Google Scholar]
  23. Träbert, E.; Schneider, G.; Heckmann, P.H. Beam-foil measurements of branching ratios and transition probabilities in boron-like Si X and P XI. Phys. Scr. 1983, 27, 407–412. [Google Scholar]
  24. White, H.E.; Eliason, A.Y. Relative Intensity Tables for Spectrum Lines. Phys. Rev. 1933, 44, 753. [Google Scholar]
  25. Doerfert, J.; Träbert, E. Relative intensities of 2s22p 2P – 2s2p2 2S, 2P transitions in B-like ions of oxygen through chlorine. Phys. Scr. 1993, 47, 524–530. [Google Scholar]
  26. Tordoirr, X.; Biémont, E.; Garnir, H.P.; Dumont, P.D.; Träbert, E. Atomic lifetimes and transition probabilities in boron-like (Na VII) and beryllium-like (Na VIII) sodium ions. Eur. Phys. J. D 1999, 6, 1–7. [Google Scholar]
  27. Farrag, A.; Luc-Koenig, E.; Sinzelle, J. Relativistic oscillator strengths in the boron isoelectronic sequence. At. Data Nucl. Data Tables 1979, 24, 227–241. [Google Scholar]
  28. Farrag, A.; Luc-Koenig, E.; Sinzelle, J. Systematic trends of the relativistic f values for electric dipole transitions within the ground complex of B-like ions. J. Phys. B 1980, 13, 3939. [Google Scholar]
  29. McEachran, R.P.; Cohen, M. The polarised frozen-core approximation: Oscillator strengths for the boron isoelectronic sequence. J. Quant. Spectrosc. Radiat. Transf. 1982, 27, 111–117. [Google Scholar]
  30. Lavin, C.; Martin, I. Oscillator strengths in the boron isoelectronic sequence. J. Quant. Spectr. Radiat. Transfer. 1993, 50, 611–619. [Google Scholar]
  31. Merkelis, G.; Vilkas, M.J.; Gaigalas, G.; Kisielius, R. MBPT calculation of energy spectra and E1 transition probabilities for boron isoelectronic sequence. Phys. Scr. 1995, 51, 233–251. [Google Scholar]
  32. Safronova, M.S.; Johnson, W.R.; Safronova, U.I. Relativistic many-body calculations of energies of n = 2 states for boron-like ions. Phys. Rev. A 1996, 54, 2850–2862. [Google Scholar]
  33. Safronova, U.I.; Johnson, W.R.; Safronova, M.S. Relativistic many-body calculations of energies of n = 3 states for the boron isoelectronic sequence. Z = 6 −30 At. Data Nucl. Data Tables 1998, 69, 183–215. [Google Scholar]
  34. Safronova, U.I.; Johnson, W.R.; Livingston, A.E. Relativistic many-body calculations of electric-dipole transitions between n = 2 states in B-like ions. Phys. Rev. A 1999, 60, 996–1004. [Google Scholar]
  35. Galavís, M.E.; Mendoza, C.; Zeippen, C.J. Atomic data from the IRON Project: XXIX. Radiative rates for transitions within the n = 2 complex in ions of the boron isoelectronic sequence. Astron. Astrophys. Suppl. Ser. 1998, 131, 499–522. [Google Scholar]
  36. Vilkas, M.J.; Ishikawa, Y.; Koc, K. Second-Order multiconfigurational Dirac-Fock calculations on boron-like ions. Int. J. Quant. Chem. 1998, 70, 813–823. [Google Scholar]
  37. Tachiev, G.; Fischer, C.F. Breit Pauli energy levels, lifetimes and transition data: boron-like spectra. J. Phys. B 2000, 33, 2419–2435. [Google Scholar]
  38. Koc, K. Relativistic MR RCI calculation of energy levels and transition probabilities of boron isoelectronic sequence. Phys. Scr. 2003, 67, 491. [Google Scholar]
  39. Koc, K. Calculations for 2s22p 2P23/2P1/2 M1 and E2 transitions in boron isoelectronic sequence. J. Phys. B. 2003, 36, 93. [Google Scholar]
  40. Koc, K. QED effects in transition energies of low lying levels for highly ionized boron like ions. Nucl. Instrum. Meth. Phys. Res. B 2005, 235, 46–50. [Google Scholar]
  41. Koc, K. Relativistic multireference configuration interaction calculations of lifetime of 2s22p 2P3/2 level along boron isoelectronic sequence. Eur. Phys. J. D 2009, 53, 9–14. [Google Scholar]
  42. Träbert, E.; Beiersdorfer, P.; Utter, S.B.; Brown, G.V.; Chen, H.; Harris, C.L.; Neill, P.A.; Savin, D.W.; Smith, A.J. Experimental M1 transition rates of coronal lines from Ar X, Ar XIV, and Ar XV. Astrophys. J 2000, 541, 506–511. [Google Scholar]
  43. Draganić, I.; Crespo López-Urrutia, J.R.; DuBois, R.; Fritzsche, S.; Shabaev, V.M.; Soria Orts, R.; Tupitsyn, I.I.; Zou, Y.; Ullrich, J. High precision wavelength measurements of QED-sensitive forbidden transitions in highly charged argon ions. Phys. Rev. Lett. 2003, 91, 183001. [Google Scholar]
  44. Lapierre, A.; Jentschura, U.D.; Crespo López-Urrutia, J.R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; González Martínez, A.J.; Harman, Z.; Johnson, W.R. Relativistic electron correlation, quantum electrodynamics Relativistic electron correlation, quantum electrodynamics, and the lifetime of the 1s22s22p 2P°3/2 level in boron-like argon. Phys. Rev. Lett. 2005, 95, 183001. [Google Scholar]
  45. Lapierre, A.; Crespo López-Urrutia, J.R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; González-Martínez, A.J.; Mironov, V.; Osborne, C.J.; Sikler, G.; et al. Lifetime measurement of the Ar XIV 1s22s22p 2P°3/2 metastable level at the Heidelberg electron-beam ion trap. Phys. Rev. A 2006, 73, 052507. [Google Scholar]
  46. Träbert, E. In pursuit of highly accurate atomic lifetime measurements of multiply charged ions. J. Phys. B 2010, 43, 074034. [Google Scholar]
  47. Beiersdorfer, P.; Knapp, D.; Marrs, R.E.; Elliott, S.R.; Chen, M.H. Structure and Lamb shift of 2s1/2–2p3/2 levels in lithiumlike U89+ through neonlike U82+. Phys. Rev. Lett. 1993, 71, 3939–3942. [Google Scholar]
  48. Beiersdorfer, P.; Osterheld, A.; Elliott, S.R.; Chen, M.H.; Knapp, D.; Reed, K. Structure and Lamb shift of 2s1/2–2p3/2 levels in lithiumlike Th87+ through neonlike Th80+. Phys. Rev. A 1995, 52, 2693–2706. [Google Scholar]
  49. Träbert, E.; Beiersdorfer, P.; Lepson, J.K.; Chen, H. Extreme ultraviolet spectra of highly charged Xe ions. Phys. Rev. A 2003, 68, 042501. [Google Scholar]
  50. Kramida, A.E.; Träbert, E. Extended analysis of the spectrum Si XI: Compilation plus new measurements. Phys. Scr. 1995, 51, 209–226. [Google Scholar]
  51. Vilkas, M.J.; Ishikawa, Y.; Träbert, E. Relativistic many-body perturbation calculations of boron-like silicon, Si X. Phys. Scr. 2005, 72, 181–199. [Google Scholar]
  52. Rynkun, P.; Jönsson, P.; Gaigalas, G.; Fischer, C.F. Energies and E1, M1, E2, M2 transition rates for states of the 2s22p, 2s2p2, and 2p3 configurations in boron-like ions between N III and Zn XXVI. At. Data Nucl. Data Tables 2012, 98, 481–556. [Google Scholar]
  53. Li, J.G.; Jönsson, P.; Dong, C.Z.; Gaigalas, G. Two-electron—One-photon M1 and E2 transitions between the states of the 2p3 and 2s22p odd configurations for B-like ions with 18 ≤ Z ≤92. J. Phys. B 2010, 43, 035005. [Google Scholar]
  54. Jönsson, P.; Li, J.G.; Gaigalas, G.; Dong, C.Z. Hyperfine structures, isotope shifts, and transition rates of C II, N III, and O IV from relativistic configuration interaction calculations. At. Data Nucl. Data Tables 2010, 96, 271–298. [Google Scholar]
  55. Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L.B.; du Rietz, R.; Gaigalas, G.; Godefroid, M.R.; Froese Fischer, C. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII, Cu XXV. Astron. Astrophys. 2013, 559, A100. [Google Scholar]
  56. Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules; Springer: New York, NY, USA, 2007. [Google Scholar]
  57. Gaigalas, G.; Zalandauskas, T.; Rudzikas, Z. Jj transformation matrices for a shell of equivalent electrons. At. Data Nucl. Data. Tables 2003, 84, 99–190. [Google Scholar]
  58. Dyall, K.G.; Grant, I.P.; Johnson, C.T.; Parpia, F.A.; Plummer, E.P. GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 1989, 55, 425–456. [Google Scholar]
  59. McKenzie, B.J.; Grant, I.P.; Norrington, P.H. A program to calculate transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment. Comput. Phys. Commun. 1980, 21, 233–246. [Google Scholar]
  60. Nazé, C.; Gaidamauskas, E.; Gaigalas, G.; Godefroid, M.; Jönsson, P. ris3: A program for relativistic isotope shift calculations. Comput. Phys. Commun. 2013, 184, 2187–2196. [Google Scholar]
  61. Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I.P. The Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2007, 177, 597–622. [Google Scholar]
  62. Jönsson, P.; Gaigalas, G.; Bieroń, J.; Froese Fischer, C.; Grant, I.P. New version: Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197–2203. [Google Scholar]
  63. Gaigalas, G.; Rudzikas, Z.; Froese Fischer, C. An efficient approach for spin—Angular integrations in atomic structure calculations. J. Phys. B 1997, 30, 3747–3772. [Google Scholar]
  64. Cowan, R. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
  65. Olsen, J.; Godefroid, M.; Jönsson, P.; Malmqvist, P.; Froese Fischer, C. Transition probability calculations for atoms using nonorthogonal orbitals. Phys. Rev. E 1995, 52, 4499. [Google Scholar]
  66. Grant, I.P. Gauge invariance and relativistic radiative transitions. J. Phys. B 1974, 7, 1458–1475. [Google Scholar]
  67. Fischer, C.F. Evaluating the accuracy of theoretical transition data. Phys. Scr. 2009, T 134, 014019. [Google Scholar]
  68. Ekman, J.; Godefroid, M.R.; Hartman, H. Validation and implementation of uncertainty estimates of calculated transition rates. Atoms 2014, 2, 215–224. [Google Scholar]
  69. Bogdanovic, P.; Karpuškien˙e, R.; Rancova, O. Influence of the two-electron transitions on the radiative lifetimes of excited levels in the boron isoelectronic sequence. Phys. Scr. 2007, 75, 669–675. [Google Scholar]
  70. Engström, L. Relative Level Populations in S VI after Beam-Foil Excitation, Obtained from ANDC Analyses of Measured Decay Curves. Phys. Scr. 1983, 28, 68. [Google Scholar]
  71. Bashkin, S.; Meinel, A.B. Laboratory Excitation of the Emission Spectrum of a Nova. Astrophys. J. 1964, 139, 413. [Google Scholar]
  72. Träbert, E. Accelerator-Based Atomic Physics Techniques and Applications; Shafroth, S.M., Austin, J.C., Eds.; American Institute of Physics: Washington, DC, USA, 1997; p. 567. [Google Scholar]
  73. Träbert, E. Beam-foil spectroscopy—Quo vadis? Phys. Scr. 2008, 78, 038103. [Google Scholar]
  74. Granzow, J.; Heckmann, P.H.; Träbert, E. Experimental transition probabilities of the intercombination line 1s22s2 1S0–1s22s3p 3P1° in Be-like ions of Na through Si. Phys. Scr. 1994, 49, 148–153. [Google Scholar]
  75. Delaunay, B. Heavy-ion stripping. Nucl. Instrum. Meth. 1977, 146, 101–113. [Google Scholar]
  76. Träbert, E.; Heckmann, P.H.; Raith, B.; Sander, U. Beam-foil based efficiency calibration of a grazing-incidence spectrometer. Phys. Scr. 1980, 22, 363–366. [Google Scholar]
  77. Träbert, E. Extended relative efficiency calibration of a grazing incidence monochromator and applications in fast-beam spectroscopy. Phys. Scr. 1984, T8, 112–116. [Google Scholar]
  78. Beiersdorfer, P. A “brief” history of spectroscopy on EBIT. Can. J. Phys. 2008, 86, 1–10. [Google Scholar]
  79. Träbert, E.; Beiersdorfer, P.; Pinnington, E.H.; Utter, S.B.; Vilkas, M.J.; Ishikawa, Y. Experiment and theory in interplay on high-Z few-electron ion spectra from foil-excited ion beams and electron beam ion traps. J. Phys.: Conf. Ser. 2007, 58, 93–96. [Google Scholar]
Figure 1. Synthetic Na VII spectrum containing transitions between 8 and 56 nm from the present calculation. The short wavelength range has predominantly n = 2 − 3 transitions, whereas the n = 2 − 2 transitions spread over the range 30 to 80 nm. See the text for details.
Figure 1. Synthetic Na VII spectrum containing transitions between 8 and 56 nm from the present calculation. The short wavelength range has predominantly n = 2 − 3 transitions, whereas the n = 2 − 2 transitions spread over the range 30 to 80 nm. See the text for details.
Atoms 03 00195f1
Figure 2. Beam-foil spectrum of Na at an ion beam energy of 7 MeV (unpublished data collected for [26]). Prominent n = 2 − 2 lines of Na VII can easily be recognized by comparison with Figure 1. Labeled details of several of the line groups in the long wavelength part of the spectrum (the lower two panels of this figure) are also shown in [26].
Figure 2. Beam-foil spectrum of Na at an ion beam energy of 7 MeV (unpublished data collected for [26]). Prominent n = 2 − 2 lines of Na VII can easily be recognized by comparison with Figure 1. Labeled details of several of the line groups in the long wavelength part of the spectrum (the lower two panels of this figure) are also shown in [26].
Atoms 03 00195f2
Figure 3. Beam-foil spectra of Na at ion beam energies of 7 MeV (top) and 4.5 MeV (bottom) (unpublished data collected for [26]).
Figure 3. Beam-foil spectra of Na at ion beam energies of 7 MeV (top) and 4.5 MeV (bottom) (unpublished data collected for [26]).
Atoms 03 00195f3
Table 1. Energy levels of the n = 2, 3 and 4 shells of Na VII. ERCI energies in cm−1 from the present relativistic configuration interaction (RCI) calculations. EKoc energies in cm−1 from Koc [38]. Experimental energies Eexp are from the compilation by Sansonetti [12]. ∆E is the deviation of calculated energies from the experiment. * These states were labeled 2p2(1D)3d in the compilation by Sansonetti. According to our calculations, they should be labeled 2p2(3P)3d instead.
Table 1. Energy levels of the n = 2, 3 and 4 shells of Na VII. ERCI energies in cm−1 from the present relativistic configuration interaction (RCI) calculations. EKoc energies in cm−1 from Koc [38]. Experimental energies Eexp are from the compilation by Sansonetti [12]. ∆E is the deviation of calculated energies from the experiment. * These states were labeled 2p2(1D)3d in the compilation by Sansonetti. According to our calculations, they should be labeled 2p2(3P)3d instead.
LevelERCIEEKocEEexp
2 s 2 2 p 2 P 1 / 2 o00000
2 s 2 2 p 2 P 3 / 2 o21340213842134
2s2p2 4P1/2114856−139114878−117114995
2s2p2 4 P3/2115572−156115618−110115728
2s2p2 4 P5/2116652−146116668−130116798
2s2p2 2 D5/220544432205617205205412
2s2p2 2D3/220548537205681233205448
2s2p2 2S1/2264501101264760360264400
2s2p2 2P1/2283975106284147278283869
2s2p2 2P3/2285291102285465276285189
..367189−119367240−68367308
2 p 3 2 D 5 / 2 o41232110412533222412311
2 p 3 2 D 3 / 2 o41240712412641246412395
2 p 3 2 P 1 / 2 o465155138465406389465017
2 p 3 2 P 3 / 2 o465247136465509398465111
2s23s 2S1/2951183−167951067−283951350
2 s 2 3 p 2 P 3 / 2 o10077861007696
2 s 2 3 p 2 P 3 / 2 o1008332−881008252−1681008420
2s2 3d 2D3/21060482−981060463−1171060580
2s23d 2D5/21060612−881060592−1081060700
2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o1077041−2291077012−2581077270
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o1077762−2381077755−2451078000
2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o1079074−2561079036−2941079330
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o1103068−1521103087−1331103220
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o1104508−1121104513−1071104620
2s2p(3P)3p 2P1/21126639−1711126672−1381126810
2s2p(3P)3p 2P3/21127284−1461127330−1001127430
2s2p(3P)3p 4D1/211287841128823
2s2p(3P)3p 4D3/211291581129197
2s2p(3P)3p 4D5/211298131129855
2s2p(3P)3p 4D7/211309551130933
2s2p(3P)3p 4S3/211400571140089
2s2p(3P)3p 4P1/211478121147867
2s2p(3P)3p 4P3/211483611148413
2s2p(3P)3p 4P5/211490371149084
2s2p(3P)3p 2D3/21154694−861154774−61154780
2s2p(3P)3p 2D5/21156079−1011156142−381156180
2s2p(3P)3p 2S1/21172268−721172334−61172340
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o11740521174113
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o11744691174539
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o11750871175146
2 s 2 p ( 3 P ) 3 d 4 F 9 / 2 o1175942
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o11855081185528
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o1185631−1091185699−411185740
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o1185871−1291185924−761186000
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o1186323−1571186354−1261186480
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o118750487411876249941186630
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o1187743−1471187851−391187890
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o1192208−1421192270−801192350
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o1192719−1511192778−921192870
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o1193050−1601193044−1661193210
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o1198244−461198340501198290
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o1198282−81198372821198290
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o1209815−9512100251151209910
2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o1211141−991211326861211240
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o1217038−1521217255651217190
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o1217805−1451217961111217950
2s2p(1P)3p 2D3/2125192925912520704001251670
2s2p(1P)3p 2D5/212520847412522152051252010
2s2p(1P)3p 2P1/212534015112535441941253350
2s2p(1P)3p 2P3/212538002012539371571253780
2s2p(1P)3p 2S1/21258410−47012593234431258880
2p2(3P)3s 4P1/212909261291009
2p2(3P)3s 4P3/212916761626129174816981290050
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o129263930912929165861292330
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o129264331312931538231292330
2p2(3P)3s 4P5/212928531273129319016101291580
2s24s 2S1/2130006851581294910
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o13035267613037012511303450?
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o130372711713038852751303610
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o1306511411306470
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o13067042341306470
2p2(3P)3s 2P1/21315362
2p2(3P)3s 2P3/21316724
2 s 2 4 p 2 P 1 / 2 o1323377
2 s 2 4 p 2 P 3 / 2 o1323564
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o1327643
2p2(1D)3s 2D3/213319688281331140
2p2(1D)3s 2D5/21331987171331970
2s24d 2D3/21335621−1891335810
2s24d 2D5/21335733−971335830
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o1336100
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o1336490
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o1337246
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o1338292−1781338470
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o1342599
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o1342967
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o1343655−11951344850
2 s 2 4 f 2 F 5 / 2 o1347900
2 s 2 4 f 2 F 7 / 2 o1347981
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o1348671−491348720
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o135013514151348720
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o1360693
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o1360809
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o1362893−771362970
2 p 2 ( 3 P ) 3 p 4 F 3 / 2 o1375786
2p2(3P)3d 4F5/21376184
2p2(3P)3d 4F7/21376753
2p2(3P)3d 4F9/21377501
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o13779241041377820
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o137830111378300
2p2(3P)3d 4D1/21386200
2p2(3P)3d 4D3/21386281
2p2(3P)3d 4D5/21386579
2p2(3P)3d 4D7/21386815
2p2(3P)3d 2P3/21387742
2p2(3P)3d 2F5/213888563561388500?
2p2(3P)3d 2P1/21389006
2p2(3P)3d 2F7/2139036513951388970?
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o1392735−651392800
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o1392892921392800
2p2(3P)3d 4P5/21398970−1001399070
2p2(3P)3d 4P3/21399509−911399600
2p2(3P)3d 4P1/21399808−821399890
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o1401895
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o1402773
2p2(1S)3s 2S1/21412099
2p2(3P)3d 2D3/214158201901415630*
2p2(3P)3d 2D5/214159523221415630*
2p2(1D)3d 2G7/21418543
2p2(1D)3d 2G9/21418646
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o1420768
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o1421495
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o1422846−441422890
2p2(1D)3d 2F7/21428794−61428800
2p2(1D)3d 2F5/214290473271428720
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o1431932
2p2(1D)3d 2D3/21432157
2p2(1D)3d 2D5/21432670
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o1433406
2p2(1D)3d 2P1/21443803116631432140
2p2(1D)3d 2P3/21444324117141432610
2p2(1D)3d 2S1/21452195
Table 2. Radiative lifetimes. τRCI lifetimes from present RCI calculations; τKoc lifetimes from Koc [38]; τTB lifetimes from Tachiev and Froese Fischer [37]. Experimental lifetimes τexp from beam-foil studies by Buchet et al. [17] and Tordoir et al. [26]. A table entry 1.6382E−05 means 1.6382 × 10−5
Table 2. Radiative lifetimes. τRCI lifetimes from present RCI calculations; τKoc lifetimes from Koc [38]; τTB lifetimes from Tachiev and Froese Fischer [37]. Experimental lifetimes τexp from beam-foil studies by Buchet et al. [17] and Tordoir et al. [26]. A table entry 1.6382E−05 means 1.6382 × 10−5
LevelτRCI (s−1)τKoc (s−1)τTF (s−1)τexp (s−1)
2s2p2 4P1/21.6382E−051.589E−051.571E−05
2s2p2 4P3/21.2575E−041.171E−041.212E−04
2s2p2 4P5/23.8216E−054.021E−053.667E−05
2s2p2 2D5/27.3837E−107.350E−107.351E−107.0(7)E−10
2s2p2 2D3/27.1459E−107.111E−107.124E−106.9(5)E−10
2s2p2 2S1/21.6180E−101.615E−101.613E−101.55(10)E−10
2s2p2 2P1/28.3553E−118.335E−118.332E−117.3(1.0)E−11, 7.6(8)E−11
2s2p2 2P3/28.3111E−118.283E−118.297E−11
2 p 3 4 S 3 / 2 o9.2486E−119.242E−119.228E−119.5(1.0)E−11
2 p 3 2 D 5 / 2 o2.8495E−102.852E−102.839E−102.8(4)E−10
2 p 3 2 D 3 / 2 o2.8588E−102.856E−102.849E−10
2 p 3 2 P 1 / 2 o1.1619E−101.163E−101.156E−10
2 p 3 2 P 3 / 2 o1.1668E−101.167E−101.161E−10
2s23s 2S1/22.0241E−112.027E−112.025E−11
2 s 2 3 p 2 P 1 / 2 o2.2170E−102.244E−102.226E−10
2 s 2 3 p 2 P 3 / 2 o2.2271E−102.238E−102.222E−10
2s23d 2D3/23.7823E−123.778E−123.774E−12
2s23d 2D5/23.7931E−123.793E−123.788E−12
2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o1.6844E−111.690E−111.691E−11
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o1.6810E−111.692E−111.684E−11
2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o1.6738E−111.678E−111.670E−11
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o2.2493E−112.258E−11
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2.2106E−112.218E−11
2s2p(3P)3p 2P1/21.1201E−111.145E−11
2s2p(3P)3p 2P3/21.0938E−111.089E−11
2s2p(3P)3p 4D1/21.0424E−108.522E−11
2s2p(3P)3p 4D3/21.5001E−101.543E−10
2s2p(3P)3p 4D5/24.7080E−094.425E−09
2s2p(3P)3p 4D7/24.6826E−091.426E−07
2s2p(3P)3p 4S3/21.6894E−091.619E−09
2s2p(3P)3p 4P1/21.3892E−091.382E−09
2s2p(3P)3p 4P3/21.3715E−091.364E−09
2s2p(3P)3p 4P5/21.0204E−091.091E−09
2s2p(3P)3p 2D3/29.8122E−129.802E−12
2s2p(3P)3p 2D5/29.8332E−129.809E−12
2s2p(3P)3p 2S1/29.6219E−129.611E−12
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o1.2021E−091.155E−09
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o7.4785E−107.197E−10
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o6.9802E−107.038E−10
2 s 2 p ( 3 P ) 3 d 4 F 9 / 2 o7.7730E−09
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2.4930E−122.490E−12
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2.5152E−122.509E−12
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2.5398E−122.537E−12
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o2.5021E−122.500E−12
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o6.9533E−126.976E−12
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o6.8162E−126.804E−12
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o4.5699E−124.557E−12
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o4.5551E−124.567E−12
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o4.5705E−125.759E−12
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o1.0624E−111.067E−11
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o1.0458E−113.980E−11
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o3.9460E−123.938E−12
2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o3.8703E−123.870E−12
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o5.9040E−123.211E−10
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o5.8044E−125.791E−12
2s2p(1P)3p 2D3/26.1559E−118.552E−11
2s2p(1P)3p 2D5/26.1308E−115.133E−09
2s2p(1P)3p 2P1/21.9570E−113.830E−11
2s2p(1P)3p 2P3/21.9573E−111.212E−10
2s2p(1P)3p 2S1/21.9633E−115.661E−11
2p2(3P)3s 4P1/22.9048E−115.378E−06
2p2(3P)3s 4P3/22.8898E−115.539E−10
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o5.7034E−123.487E−10
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o5.5432E−125.604E−12
2p2(3P)3s 4P5/22.8663E−118.246E−11
2s24s 2S1/21.0417E−10
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o3.1444E−122.649E−05
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o3.1536E−122.721E−11
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o6.7242E−12
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o6.7203E−12
2p2(3P)3s 2P1/21.4970E−11
2p2(3P)3s 2P3/21.4934E−11
2 s 2 4 p 2 P 1 / 2 o9.6869E−12
2 s 2 4 p 2 P 3 / 2 o9.7495E−12
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o1.2503E−11
2p2(1D)3s 2D3/21.7822E−11
2p2(1D)3s 2D5/21.7747E−11
2s24d 2D3/29.7817E−12
2s24d 2D5/29.7779E−12
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2.6807E−11
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2.6787E−11
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2.6781E−11
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o2.6805E−11
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o1.8709E−11
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o1.8726E−11
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o1.8740E−11
2 s 2 4 f 2 F 5 / 2 o1.8146E−11
2 s 2 4 f 2 F 7 / 2 o1.8275E−11
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o1.7957E−11
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o1.7732E−11
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o1.3695E−11
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o1.3965E−11
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o1.6245E−11
2p2(3P)3d 4F3/25.4642E−10
2p2(3P)3d 4F5/25.3874E−10
2p2(3P)3d 4F7/25.4118E−10
2p2(3P)3d 4F9/25.6349E−10
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o3.5376E−11
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o3.5090E−11
2p2(3P)3d 4D1/21.0613E−10
2p2(3P)3d 4D3/26.0989E−11
2p2(3P)3d 4D5/21.8072E−10
2p2(3P)3d 4D7/22.1278E−10
2p2(3P)3d 2P3/21.0167E−11
2p2(3P)3d 2F5/22.2051E−11
2p2(3P)3d 2P1/29.3520E−12
2p2(3P)3d 2F7/22.2665E−11
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o1.2824E−11
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o1.2882E−11
2p2(3P)3d 4P5/22.7169E−12
2p2(3P)3d 4P3/22.7103E−12
2p2(3P)3d 4P1/22.7039E−12
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o3.1165E−11
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o3.0690E−11
2p2(1S)3s 2S1/21.0163E−11
2p2(3P)3d 2D3/24.3088E−12
2p2(3P)3d 2D5/24.1993E−12
2p2(1D)3d 2G7/21.2821E−09
2p2(1D)3d 2G9/24.8804E−09
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o4.5974E−11
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o4.5807E−11
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o4.5752E−11
2p2(1D)3d 2F7/22.3854E−12
2p2(1D)3d 2F5/22.4027E−12
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2.5146E−11
2p2(1D)3d 2D3/23.6983E−12
2p2(1D)3d 2D5/23.6884E−12
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2.5217E−11
2p2(1D)3d 2P1/24.1062E−12
2p2(1D)3d 2P3/24.0679E−12
2p2(1D)3d 2S1/27.9727E−12
Table 3. Transition data from present RCI calculations. A is the transition rate in s−1; gf is weighted oscillator strength; and Irel is the relative intensity (maximum 1.00) taking into account the branching fraction and population of upper levels as described in Section 4. Finally, dT is the relative difference in transition rates in the length and velocity gauge that is used to estimate the uncertainty. Only transitions with rates above 106 s1 are included in the table.
Table 3. Transition data from present RCI calculations. A is the transition rate in s−1; gf is weighted oscillator strength; and Irel is the relative intensity (maximum 1.00) taking into account the branching fraction and population of upper levels as described in Section 4. Finally, dT is the relative difference in transition rates in the length and velocity gauge that is used to estimate the uncertainty. Only transitions with rates above 106 s1 are included in the table.
UpperLowerE (cm1)λ (nm)A (s1)gfIreldT
2p2(1D)3d 2S1/2 2 s 2 2 p 2 P 1 / 2 o14522616.8852.442E+093.472E−039.616E−030.004
2p2(1D)3d 2S1/2 2 s 2 2 p 2 P 3 / 2 o14501276.8955.165E+097.365E−032.034E−020.004
2p2(1D)3d 2P3/2 2 s 2 2 p 2 P 1 / 2 o14443866.9231.129E+093.245E−032.268E−030.002
2p2(1D)3d 2P1/2 2 s 2 2 p 2 P 1 / 2 o14438656.9254.871E+097.005E−039.877E−030.002
2p2(1D)3d 2P3/2 2 s 2 2 p 2 P 3 / 2 o14422516.9336.234E+091.797E−021.252E−020.002
2p2(1D)3d 2P1/2 2 s 2 2 p 2 P 3 / 2 o14417316.9362.293E+093.307E−034.649E−030.001
2p2(1D)3d 2D3/2 2 s 2 2 p 2 P 1 / 2 o14322196.9823.249E+099.499E−035.934E−030.004
2p2(1D)3d 2D5/2 2 s 2 2 p 2 P 3 / 2 o14305966.9904.710E+092.070E−028.579E−030.003
2p2(1D)3d 2D3/2 2 s 2 2 p 2 P 3 / 2 o14300846.9926.189E+081.815E−031.130E−030.004
2p2(3P)3d 2D3/2 2 s 2 2 p 2 P 1 / 2 o14158827.0629.157E+092.739E−021.949E−020.001
2p2(3P)3d 2D5/2 2 s 2 2 p 2 P 3 / 2 o14138807.0729.978E+094.490E−022.069E−020.002
2p2(3P)3d 2D3/2 2 s 2 2 p 2 P 3 / 2 o14137487.0731.829E+095.489E−033.892E−030.001
2p2(1S)3s 2S1/2 2 s 2 2 p 2 P 1 / 2 o14121557.0813.706E+075.572E−053.720E−050.038
2p2(1S)3s 2S1/2 2 s 2 2 p 2 P 3 / 2 o14100217.0928.687E+071.310E−048.720E−050.037
2p2(3P)3d 4P1/2 2 s 2 2 p 2 P 3 / 2 o13977307.1543.109E+064.771E−064.151E−060.001
2p2(3P)3d 4P3/2 2 s 2 2 p 2 P 3 / 2 o13974317.1552.355E+067.231E−063.152E−060.003
2p2(3P)3d 4P5/2 2 s 2 2 p 2 P 3 / 2 o13968917.1585.121E+062.361E−056.871E−060.001
2p2(3P)3d 2P1/2 2 s 2 2 p 2 P 1 / 2 o13890797.1992.873E+094.465E−031.327E−020.002
2p2(3P)3d 2P3/2 2 s 2 2 p 2 P 1 / 2 o13878137.2057.457E+082.322E−033.744E−030.002
2p2(3P)3d 2P1/2 2 s 2 2 p 2 P 3 / 2 o13869447.2101.361E+092.121E−036.283E−030.002
2p2(3P)3d 4D3/2 2 s 2 2 p 2 P 1 / 2 o13863567.2131.066E+083.325E−043.210E−030.003
2p2(3P)3d 4D1/2 2 s 2 2 p 2 P 1 / 2 o13862757.2131.559E+082.433E−048.172E−030.002
2p2(3P)3d 2P3/2 2 s 2 2 p 2 P 3 / 2 o13856797.2163.061E+099.559E−031.537E−020.002
2p2(3P)3d 4D3/2 2 s 2 2 p 2 P 3 / 2 o13842227.2243.788E+081.186E−031.141E−020.002
2p2(3P)3d 4D1/2 2 s 2 2 p 2 P 3 / 2 o13841417.2247.444E+071.165E−043.902E−030.003
2p2(3P)3d 4F3/2 2 s 2 2 p 2 P 1 / 2 o13758627.2684.125E+061.307E−051.113E−030.007
2p2(3P)3d 4F5/2 2 s 2 2 p 2 P 3 / 2 o13741257.2771.818E+068.660E−064.836E−040.000
2s24d 2D3/2 2 s 2 2 p 2 P 1 / 2 o13356907.4867.190E+102.417E−011.465E−010.000
2s24d 2D5/2 2 s 2 2 p 2 P 3 / 2 o13336057.4988.625E+104.362E−011.757E−010.001
2s24d 2D3/2 2 s 2 2 p 2 P 3 / 2 o13335557.4981.431E+104.827E−022.917E−020.001
2p2(1D)3s 2D3/2 2 s 2 2 p 2 P 1 / 2 o13320297.5071.274E+094.305E−032.242E−030.008
2p2(1D)3s 2D5/2 2 s 2 2 p 2 P 3 / 2 o13299147.5191.631E+098.293E−032.858E−030.008
2p2(1D)3s 2D3/2 2 s 2 2 p 2 P 3 / 2 o13298957.5193.181E+081.079E−035.600E−040.009
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s22p 4P1/213185587.5849.011E+063.108E−059.467E−060.028
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s22p 4P3/213178437.5883.548E+061.225E−053.728E−060.039
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s22p 4P1/213170847.5921.195E+062.066E−061.253E−060.147
2p2(3P)3s 2P3/2 2 s 2 2 p 2 P 1 / 2 o13167807.5942.664E+089.212E−043.929E−040.018
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 4P5/213167637.5948.667E+062.997E−059.106E−060.029
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p2 4P3/213163707.5967.278E+061.259E−057.625E−060.004
2p2(3P)3s 2P1/2 2 s 2 2 p 2 P 1 / 2 o13154197.6029.787E+081.696E−031.447E−030.018
2p2(3P)3s 2P3/2 2 s 2 2 p 2 P 3 / 2 o13146467.6061.178E+094.087E−031.737E−030.018
2p2(3P)3s 2P1/2 2 s 2 2 p 2 P 3 / 2 o13132857.6145.055E+088.787E−047.473E−040.018
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p2 4P3/213072807.6493.417E+091.799E−026.514E−030.008
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 4P1/213066457.6534.705E+091.652E−028.979E−030.007
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p2 4P5/213062007.6557.907E+094.169E−021.507E−020.006
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 4P3/213059317.6571.497E+095.263E−032.857E−030.009
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 4P1/213059187.6571.876E+093.298E−033.593E−030.008
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 4P3/213052037.6619.336E+091.643E−021.788E−020.010
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 4P5/213048507.6635.030E+091.772E−029.600E−030.008
2s24s 2S1/2 2 s 2 2 p 2 P 1 / 2 o13000797.6911.554E+092.757E−036.746E−030.001
2s24s 2S1/2 2 s 2 2 p 2 P 3 / 2 o12979457.7043.110E+095.536E−031.350E−020.004
2p2(3P)3s 4P1/2 2 s 2 2 p 2 P 1 / 2 o12909887.7456.055E+061.089E−051.737E−050.002
2p2(3P)3s 4P5/2 2 s 2 2 p 2 P 3 / 2 o12907817.7471.601E+068.646E−064.534E−060.008
2p2(3P)3s 4P3/2 2 s 2 2 p 2 P 3 / 2 o12896047.7543.378E+061.218E−059.642E−060.010
2p2(3P)3s 4P1/2 2 s 2 2 p 2 P 3 / 2 o12888547.7581.661E+062.998E−064.765E−060.012
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 4P3/212872387.7683.101E+061.122E−052.820E−050.092
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p2 4P1/212870737.7691.723E+063.119E−061.591E−050.457
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 4P5/212861587.7751.533E+075.557E−051.394E−040.147
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p2 4P5/212761217.8361.626E+068.980E−066.177E−060.276
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p2 4P3/212623927.9211.546E+068.727E−061.621E−050.046
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s2p2 4P5/212616897.9258.714E+066.566E−059.060E−050.045
2s2p(1P)3p 2S1/2 2 s 2 2 p 2 P 1 / 2 o12584437.9461.445E+102.735E−028.404E−020.001
2s2p(1P)3p 2S1/2 2 s 2 2 p 2 P 1 / 2 o12563097.9592.471E+104.694E−021.437E−010.002
2s2p(1P)3p 2P3/2 2 s 2 2 p 2 P 3 / 2 o12538407.9756.860E+092.617E−023.978E−020.001
2s2p(1P)3p 2P1/2 2 s 2 2 p 2 P 1 / 2 o12534417.9782.017E+103.849E−021.169E−010.001
2s2p(1P)3p 2D3/2 2 s 2 2 p 2 P 1 / 2 o12519697.9877.962E+093.046E−021.452E−010.001
2s2p(1P)3p 2P3/2 2 s 2 2 p 2 P 3 / 2 o12517067.9892.677E+101.025E−011.553E−010.001
2s2p(1P)3p 2P1/2 2 s 2 2 p 2 P 3 / 2 o12513077.9911.331E+102.548E−027.715E−020.001
2s2p(1P)3p 2D5/2 2 s 2 2 p 2 P 3 / 2 o12499898.0001.196E+106.888E−022.173E−010.001
2s2p(1P)3p 2D3/2 2 s 2 2 p 2 P 3 / 2 o12498358.0013.822E+091.467E−026.971E−020.001
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 4P1/212480748.0128.503E+093.273E−024.093E−020.005
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 4P3/212473608.0161.802E+106.944E−028.672E−020.004
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 4P5/212462798.0232.983E+101.152E−011.436E−010.003
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 4P1/212459908.0251.221E+072.358E−055.053E−050.001
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 4P1/212458748.0267.706E+062.977E−053.127E−050.003
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 4P3/212452758.0301.436E+072.776E−055.940E−050.022
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 4P3/212451598.0316.109E+072.363E−042.479E−040.018
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 4P5/212440788.0386.872E+062.663E−052.788E−050.011
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p2 4P3/212346028.0992.034E+081.200E−031.069E−030.005
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 4P1/212338538.1047.232E+072.849E−043.848E−040.002
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p2 4P5/212335228.1066.152E+083.637E−033.232E−030.010
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 4P3/212331388.1093.366E+071.328E−041.791E−040.012
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 4P5/212320588.1168.022E+073.169E−044.268E−040.002
2 s 2 4 f 2 F 7 / 2 o2s2p2 4P5/212313078.1213.392E+062.683E−051.808E−050.011
2 s 2 4 f 2 F 5 / 2 o2s2p2 4P5/212312278.1216.673E+063.960E−053.532E−050.023
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 4P1/212281498.1421.892E+107.521E−021.050E−010.002
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p32 4P3/212281228.1421.208E+107.203E−026.706E−020.002
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 2D5/212279698.1431.957E+107.781E−022.056E−020.013
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 2D3/212279288.1432.238E+098.899E−032.351E−030.007
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 4P1/212277818.1447.113E+091.415E−023.943E−020.002
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 4P3/212274348.1478.370E+093.332E−024.644E−020.001
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 4P3/212270668.1494.115E+108.194E−022.281E−010.001
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p2 4P5/212270418.1493.548E+102.120E−011.970E−010.002
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p2 4D3/212264558.1532.217E+104.419E−022.323E−020.014
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 4P5/212263538.1542.090E+108.332E−021.159E−010.001
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p2 4P3/212217158.1852.529E+101.524E−012.007E−010.001
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o2s2p2 4P5/212216798.1853.303E+102.654E−012.624E−010.000
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 4P1/212216738.1851.568E+106.298E−021.244E−010.000
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 4P1/212212208.1882.843E+105.716E−022.258E−010.000
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 4P3/212209598.1901.634E+106.574E−021.297E−010.000
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p2 4P5/212206348.1927.794E+094.706E−026.185E−020.001
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 4P3/212205058.1934.611E+099.281E−033.662E−020.001
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 4P5/212198788.1971.063E+094.285E−038.439E−030.001
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 2D5/212160568.2236.244E+072.532E−041.192E−040.053
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 2D3/212160168.2238.673E+063.517E−051.655E−050.015
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 4D3/212152888.2282.768E+075.620E−055.303E−050.050
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 4P1/212128248.2453.276E+076.677E−051.214E−040.015
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 4P3/212121098.2501.020E+082.081E−043.778E−040.016
2 s 2 4 p 2 P 3 / 2 o2s2p2 4P1/212086958.2731.632E+066.699E−061.989E−060.015
2 s 2 4 p 2 P 1 / 2 o2s2p2 4P1/212085078.2742.091E+064.292E−062.531E−060.044
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2D5/211973648.3511.829E+107.650E−021.663E−010.005
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2D3/211973238.3513.535E+091.479E−023.214E−020.012
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p2 2D3/211964448.3582.273E+104.761E−022.099E−010.001
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p2 4P3/211881548.4161.379E+068.784E−062.147E−060.019
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p2 2D5/211874848.4216.459E+092.747E−022.465E−020.008
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p2 2D3/211874438.4213.656E+101.555E−011.395E−010.006
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p2 2D5/211873278.4224.070E+102.597E−011.547E−010.005
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p2 2D3/211872878.4222.672E+091.705E−021.015E−020.003
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o2s2p2 4P5/211759918.5032.563E+062.223E−053.558E−060.017
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s2p2 2D5/211728958.5252.665E+102.324E−012.771E−010.000
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p2 2D5/211725178.5281.212E+097.929E−031.270E−020.001
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p2 2D3/211724778.5282.517E+101.647E−012.639E−010.000
2s2p(3P)3p 2S1/2 2 s 2 2 p 2 P 1 / 2 o11723018.5303.113E+106.791E−028.874E−020.001
2s2p(3P)3p 2S1/2 2 s 2 2 p 2 P 3 / 2 o11701668.5456.617E+101.449E−011.887E−010.001
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 2S1/211689148.5542.804E+091.231E−022.946E−030.027
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p2 2S1/211674408.5653.530E+097.766E−033.699E−030.034
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 2D5/211574858.6395.901E+062.641E−052.840E−050.053
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 2D3/211574458.6391.420E+066.354E−066.833E−060.035
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 2S1/211570018.6433.631E+061.627E−056.930E−060.216
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 2S1/211562738.6481.930E+064.329E−063.698E−060.200
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 2D3/211553608.6552.325E+105.223E−029.622E−020.006
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 2D5/211552848.6552.198E+109.876E−028.920E−020.007
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 2D3/211552448.6563.111E+091.398E−021.262E−020.001
2s2p(3P)3p 2D3/2 2 s 2 2 p 2 P 1 / 2 o11547288.6608.133E+103.658E−012.365E−010.001
2s2p(3P)3p 2D5/2 2 s 2 2 p 2 P 3 / 2 o11539778.6659.924E+106.703E−012.891E−010.001
2s2p(3P)3p 2D3/2 2 s 2 2 p 2 P 3 / 2 o11525938.6761.812E+108.177E−025.267E−020.001
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 2P1/211494378.6991.255E+095.696E−031.319E−030.015
2s2p(3P)3p 4P3/2 2 s 2 2 p 2 P 1 / 2 o11483988.7071.981E+079.009E−058.051E−030.005
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p2 2P3/211481218.7095.662E+092.576E−025.949E−030.013
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p2 2P1/211479638.7113.977E+099.049E−034.167E−030.017
2s2p(3P)3p 4P1/2 2 s 2 2 p 2 P 1 / 2 o11478498.7113.340E+077.601E−051.375E−020.005
2s2p(3P)3p 4P5/2 2 s 2 2 p 2 P 3 / 2 o11469418.7182.958E+082.023E−038.945E−020.004
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p2 2P3/211466488.7212.063E+094.704E−032.161E−030.019
2s2p(3P)3p 4P3/2 2 s 2 2 p 2 P 3 / 2 o11462648.7233.647E+071.665E−041.482E−020.002
2s2p(3P)3p 4P1/2 2 s 2 2 p 2 P 3 / 2 o11457158.7281.373E+073.136E−055.651E−030.009
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p2 2D5/211447288.7358.292E+095.692E−024.356E−020.006
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p2 2D3/211446878.7365.819E+083.994E−033.057E−030.010
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 2D5/211432648.7468.639E+083.964E−034.596E−030.008
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 2D3/211432238.7478.250E+093.786E−024.390E−020.005
2 s 2 4 f 2 F 7 / 2 o2s2p2 2D5/211425138.7521.453E+101.335E−017.743E−020.003
2 s 2 4 f 2 F 5 / 2 o2s2p2 2D5/211424338.7531.285E+098.858E−036.802E−030.004
2 s 2 4 f 2 F 5 / 2 o22s2p2 2D3/211423938.7531.371E+109.452E−027.258E−020.008
2s2p(3P)3p 4S3/2 2 s 2 2 p 2 P 1 / 2 o11400958.7714.627E+072.135E−042.316E−020.000
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2S1/211383098.7842.066E+099.562E−031.879E−020.015
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p2 2D5/211382478.7851.697E+081.178E−039.423E−040.003
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p2 2D3/211382078.7854.438E+063.082E−052.464E−050.012
2s2p(3P)3p 4S3/2 2 s 2 2 p 2 P 3 / 2 o11379618.7871.852E+088.577E−049.271E−020.000
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 2D5/211375598.7901.988E+079.212E−051.103E−040.064
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 2P1/211375248.7913.311E+061.534E−056.320E−060.068
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 2D3/211375198.7912.488E+071.153E−041.381E−040.024
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p2 2S1/211374298.7911.603E+093.715E−031.480E−020.036
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 2D3/211371518.7934.872E+061.130E−052.701E−050.089
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 2P1/211367978.7963.371E+067.822E−066.458E−060.056
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p2 2P3/211362098.8011.430E+076.642E−052.729E−050.014
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p2 2P3/211354818.8062.296E+065.339E−064.398E−060.033
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o2s2p2 2D5/211328858.8275.762E+065.385E−054.577E−050.079
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p2 2D5/211318408.8351.098E+067.713E−068.717E−060.073
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 2D5/211310848.8419.718E+064.555E−057.713E−050.070
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 2D3/211305908.8441.917E+074.497E−051.523E−040.074
2s2p(3P)3p 4D3/2 2 s 2 2 p 2 P 1 / 2 o11291968.8551.217E+095.724E−035.410E−020.001
2s2p(3P)3p 4D1/2 2 s 2 2 p 2 P 1 / 2 o11288228.8586.302E+091.483E−021.947E−010.001
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p2 2S1/211284298.8612.056E+089.681E−047.846E−040.030
2s2p(3P)3p 2P3/2 2 s 2 2 p 2 P 1 / 2 o11273188.8701.656E+107.812E−025.366E−020.001
2s2p(3P)3p 4D3/2 2 s 2 2 p 2 P 3 / 2 o11270628.8725.083E+092.400E−022.259E−010.001
2s2p(3P)3p 4D1/2 2 s 2 2 p 2 P 3 / 2 o11266888.8752.853E+096.738E−038.811E−020.001
2s2p(3P)3p 2P1/2 2 s 2 2 p 2 P 1 / 2 o11266748.8755.977E+101.412E−011.984E−010.001
2s2p(3P)3p 2P3/2 2 s 2 2 p 2 P 3 / 2 o11251848.8877.253E+103.436E−012.351E−010.001
2s2p(3P)3p 2P1/2 2 s 2 2 p 2 P 3 / 2 o11245408.8922.721E+106.451E−029.030E−020.001
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 2D3/211221948.9118.718E+072.076E−043.230E−040.001
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2P1/211188328.9371.622E+087.772E−041.475E−030.053
2 s 2 4 p 2 P 3 / 2 o2s2p2 2D5/211181058.9431.094E+095.248E−031.333E−030.038
2 s 2 4 p 2 P 3 / 2 o2s2p2 2D3/211180658.9447.564E+073.629E−049.219E−050.115
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2P1/211179528.9442.672E+096.411E−032.468E−020.033
2 s 2 4 p 2 P 1 / 2 o2s2p2 2D3/211178778.9451.231E+092.953E−031.490E−030.099
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p2 2P3/211175168.9484.369E+092.098E−023.973E−020.029
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p2 2P3/211166378.9559.773E+082.350E−039.025E−030.045
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p2 2P1/211089529.0172.717E+101.325E−011.037E−010.004
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p2 2P3/211076379.0285.562E+092.719E−022.123E−020.005
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p2 2P3/211074809.0293.292E+102.414E−011.251E−010.004
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 4P1/211029499.0666.493E+071.600E−041.861E−040.048
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 4P3/211022359.0723.024E+067.462E−068.667E−060.135
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 4P1/211021849.0722.424E+071.197E−047.069E−050.042
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 4P3/211014699.0781.586E+077.841E−054.625E−050.001
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p2 2D5/211012519.0803.189E+091.577E−021.058E−020.018
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p2 2D3/211012119.0802.499E+081.236E−038.294E−040.050
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p2 2D3/211010199.0823.786E+099.366E−031.257E−020.041
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 4P5/211003889.0873.264E+061.617E−059.517E−060.258
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 2S1/210984309.1032.552E+061.268E−051.228E−050.026
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p2 2D5/210982799.1053.197E+102.384E−014.978E−020.002
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p2 2D3/210982399.1052.138E+091.594E−023.329E−030.001
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p2 2D5/210980789.1063.409E+091.695E−025.293E−030.005
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p2 2D3/210980389.1073.276E+101.629E−015.087E−020.002
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 2S1/210963469.1215.071E+071.265E−042.098E−040.032
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 2S1/210962299.1225.185E+082.587E−032.104E−030.003
2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o2s2p2 4P5/210944869.1367.151E+067.160E−051.367E−050.005
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p2 4P5/210931629.1471.199E+069.026E−062.337E−060.019
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p2 2P3/210926709.1512.856E+072.152E−042.994E−040.011
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o2s2p2 2D5/210872029.1971.187E+109.035E−021.648E−020.000
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o2s2p2 2D5/210871979.1971.752E+111.778E+002.432E−010.000
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o2s2p2 2D3/210871629.1981.684E+111.282E+002.338E−010.000
2p2(1D)3d 2S1/2 2 p 3 4 S 3 / 2 o10850119.2163.466E+078.828E−051.365E−040.004
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 2S1/210842099.2231.529E+087.799E−048.134E−040.004
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p2 4P1/210833859.2307.592E+061.939E−057.967E−060.050
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 4P3/210827099.2368.227E+064.208E−058.498E−060.005
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p2 4P3/210826719.2361.119E+072.861E−051.174E−050.025
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 4P5/210816289.2456.829E+063.500E−057.054E−060.052
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 2P1/210789539.2681.393E+077.174E−056.703E−050.027
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p2 4P1/210781959.2742.575E+106.642E−025.813E−020.000
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 2S1/210781369.2751.328E+063.425E−067.361E−060.119
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 4P1/210778639.2776.764E+103.491E−011.522E−010.000
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p2 2P3/210776389.2795.778E+072.984E−042.781E−040.026
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p2 4P3/210774809.2801.928E+114.980E−014.352E−010.000
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 4P3/210771499.2834.590E+102.372E−011.032E−010.000
2p2(1D)3d 2P3/2 2 p 3 4 S 3 / 2 o10771359.2835.089E+072.630E−041.022E−040.014
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 2P1/210768699.2862.693E+106.962E−021.114E−010.001
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 2P1/210767539.2877.720E+093.993E−023.133E−020.001
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p2 4P3/210766389.2883.560E+102.763E−018.035E−020.000
2p2(1D)3d 2P1/2 2 p 3 4 S 3 / 2 o10766159.2881.970E+075.096E−053.995E−050.018
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 4P5/210760689.2931.055E+115.463E−012.373E−010.000
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p2 4P5/210755589.2971.807E+111.405E+004.078E−010.000
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p2 2P3/210755539.2971.659E+104.300E−026.865E−020.001
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p2 2P3/210754379.2983.498E+101.814E−011.419E−010.000
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 4P1/210726519.3225.810E+083.028E−031.995E−030.000
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p2 4P3/210721769.3261.652E+091.293E−025.561E−030.002
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 2S1/210720299.3282.668E+061.392E−052.118E−050.108
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 4P3/210719379.3281.978E+091.032E−026.793E−030.000
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 2S1/210715759.3325.441E+061.421E−054.322E−050.112
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p2 4P5/210710959.3367.477E+095.862E−022.517E−020.001
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 4P5/210708569.3385.072E+082.652E−031.742E−030.003
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 4P1/210707679.3391.893E+119.903E−012.352E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 4P1/210706439.3403.451E+119.026E−014.248E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p2 4P3/210702919.3433.076E+112.416E+003.858E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 4P3/210700539.3451.951E+111.022E+002.424E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 4P3/210699299.3465.593E+101.465E−016.885E−020.000
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o2s2p2 4P5/210696649.3483.996E+114.188E+004.937E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p2 4P5/210692119.3528.398E+106.608E−011.053E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 4P5/210689729.3541.198E+106.289E−021.489E−020.000
2 p 2 ( 1 D ) 3 d 2 D 5 / 2 o 2 p 3 4 S 3 / 2 o10654809.3858.196E+076.494E−041.493E−040.004
2 p 2 ( 1 D ) 3 d 2 D 3 / 2 o 2 p 3 4 S 3 / 2 o10649689.3891.490E+077.879E−052.721E−050.003
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p2 2P3/210648819.3904.347E+103.448E−012.284E−010.002
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 2P1/210647329.3923.625E+101.918E−011.929E−010.001
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p2 2P3/210634179.4036.933E+093.677E−023.689E−020.002
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 2S1/210631809.4052.561E+076.794E−059.489E−050.006
2 s 2 4 f 2 F 5 / 2 o2s2p2 2P3/210625869.4109.327E+077.431E−044.936E−040.000
2p2(1D)3d 2F5/2 2 p 3 4 S 3 / 2 o10618519.4171.388E+061.107E−051.646E−060.008
2s23d 2D3/2 2 s 2 2 p 2 P 1 / 2 o10604799.4292.203E+111.174E+004.114E−010.000
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 4P1/210592079.4412.090E+081.117E−031.240E−010.000
2 s 2 4 p 2 P 3 / 2 o2s2p2 2S1/210590509.4423.905E+102.088E−014.759E−020.003
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p2 2P1/210590289.4421.843E+089.857E−041.023E−030.008
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p2 4P3/210589109.4437.579E+086.080E−032.799E−010.000
2 s 2 4 p 2 P 1 / 2 o2s2p2 2S1/210588639.4444.599E+101.230E−015.569E−020.002
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 2P1/210586609.4451.114E+082.981E−046.178E−040.013
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 4P3/210584929.4472.629E+081.407E−031.560E−010.003
2s23d 2D5/2 2 s 2 2 p 2 P 3 / 2 o10584769.4472.634E+112.115E+004.935E−010.000
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o2s2p2 4P5/210584479.4471.251E+091.339E−024.312E−010.000
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p2 2P3/210584009.4486.692E+085.374E−033.716E−030.002
2s23d 2D3/2 2 s 2 2 p 2 P 3 / 2 o10583459.4484.394E+102.352E−018.206E−020.000
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p2 4P5/210578299.4533.159E+082.539E−031.167E−010.004
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 4P5/210574129.4572.397E+071.286E−041.423E−020.008
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p2 2P3/210573449.4577.305E+071.959E−044.049E−040.007
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 2P1/210520999.5041.116E+063.022E−068.863E−060.018
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p2 2P3/210519939.5052.188E+061.779E−051.736E−050.015
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p2 2P3/210512379.5124.757E+062.581E−053.776E−050.062
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p2 2P3/210507839.5161.242E+073.372E−059.864E−050.001
2p2(1S)3s 2S1/2 2 p 3 4 S 3 / 2 o10449059.5707.244E+071.989E−047.271E−050.003
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 2P1/210437039.5812.498E+106.877E−029.255E−020.003
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p2 2P3/210423889.5934.931E+101.361E−011.827E−010.004
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p2 2S1/210421969.5954.071E+102.248E−011.351E−010.001
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p2 2S1/210420049.5964.909E+101.356E−011.630E−010.001
2p2(1D)3d 2S1/2 2 p 3 2 D 3 / 2 o10397929.6171.062E+082.945E−044.180E−040.010
2 s 2 4 p 2 P 3 / 2 o2s2p2 2P1/210395749.6191.150E+106.379E−021.401E−020.001
2 s 2 4 p 2 P 1 / 2 o2s2p2 2P1/210393869.6213.441E+109.550E−024.166E−020.000
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p2 2S1/210390239.6245.786E+083.214E−038.985E−040.003
2 s 2 4 p 2 P 3 / 2 o2s2p2 2P3/210382589.6314.691E+102.610E−015.717E−020.001
2 s 2 4 p 2 P 1 / 2 o2s2p2 2P3/210380719.6331.764E+104.909E−022.136E−020.000
2p2(3P)3d 4P1/2 2 p 3 4 S 3 / 2 o10326149.6843.646E+111.025E+004.868E−010.000
2p2(3P)3d 4P3/2 2 p 3 4 S 3 / 2 o10323159.6863.637E+112.046E+004.868E−010.000
2p2(1D)3d 2P3/2 2 p 3 2 D 5 / 2 o10320029.6895.822E+103.278E−011.170E−010.001
2p2(1D)3d 2P3/2 2 p 3 2 D 3 / 2 o10319169.6906.252E+093.521E−021.256E−020.002
2p2(3P)3d 4P5/2 2 p 3 4 S 3 / 2 o10317759.6923.628E+113.066E+004.868E−010.000
2p2(1D)3d 2P1/2 2 p 3 2 D 3 / 2 o10313969.6957.151E+102.016E−011.450E−010.001
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p2 2P1/210227209.7771.733E+109.937E−025.752E−020.000
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p2 2P1/210225279.7795.575E+101.599E−011.851E−010.000
2p2(3P)3d 2P1/2 2 p 3 4 S 3 / 2 o10218289.7862.171E+066.234E−061.003E−050.027
2p2(3P)3d 2F5/2 2 p 3 4 S 3 / 2 o10216769.7873.673E+073.165E−044.000E−040.000
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p2 2P3/210214049.7907.764E+104.463E−012.577E−010.000
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p2 2P3/210212129.7923.038E+108.733E−021.009E−010.001
2p2(3P)3d 2P3/2 2 p 3 4 S 3 / 2 o10205639.7983.598E+062.072E−051.807E−050.012
2p2(1D)3d 2D5/2 2 p 3 2 D 5 / 2 o10203479.8001.066E+119.209E−011.942E−010.000
2p2(1D)3d 2D5/2 2 p 3 2 D 3 / 2 o10202619.8012.357E+102.037E−014.293E−020.000
2p2(1D)3d 2D3/2 2 p 3 2 D 5 / 2 o10198359.8051.549E+108.933E−022.830E−020.001
2p2(1D)3d 2D3/2 2 p 3 2 D 3 / 2 o10197499.8061.336E+117.705E−012.440E−010.000
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p2 2P1/210195469.8082.309E+111.332E+003.585E−010.000
2p2(3P)3d 4D5/2 2 p 3 4 S 3 / 2 o10194049.8091.211E+091.049E−021.081E−010.001
2p2(3P)3d 4D3/2 2 p 3 4 S 3 / 2 o10191069.8129.046E+085.223E−032.725E−020.001
2p2(3P)3d 4D1/2 2 p 3 4 S 3 / 2 o10190259.8132.709E+087.821E−041.420E−020.001
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p2 2P3/210184329.8192.777E+112.409E+004.325E−010.000
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p2 2P3/210182319.8204.516E+102.612E−017.013E−020.002
2p2(1D)3d 2F5/2 2 p 3 2 D 5 / 2 o10167189.8355.216E+104.539E−016.189E−020.001
2p2(1D)3d 2F5/2 2 p 3 2 D 3 / 2 o10166329.8363.628E+113.158E+004.305E−010.001
2p2(1D)3d 2F7/2 2 p 3 2 D 5 / 2 o10164649.8384.181E+114.853E+004.925E−010.001
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 2D3/210123209.8783.125E+099.144E−038.958E−030.010
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 2D5/210115949.8853.025E+091.773E−028.819E−030.007
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 2D3/210115549.8851.013E+085.934E−042.952E−040.012
2p2(3P)3d 4F5/2 2 p 3 4 S 3 / 2 o10090099.9101.765E+061.559E−054.695E−040.006
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o2s2p2 2P3/210073559.9262.284E+062.024E−053.170E−060.003
2p2(1D)3d 2G7/2 2 p 3 2 D 5 / 2 o10062379.9385.736E+086.795E−033.632E−010.001
2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o2s2p2 2D5/210056929.9432.581E+113.061E+004.933E−010.000
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p2 2D5/210043689.9561.969E+101.756E−013.836E−020.000
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p2 2D3/210043279.9562.334E+112.082E+004.548E−010.000
2p2(3P)3d 2D5/2 2 p 3 2 D 5 / 2 o10036309.9631.132E+111.011E+002.347E−010.000
2p2(3P)3d 2D5/2 2 p 3 2 D 3 / 2 o10035459.9642.067E+101.846E−014.285E−020.001
2p2(3P)3d 2D3/2 2 p 3 2 D 5 / 2 o10034999.9651.375E+108.190E−022.926E−020.000
2p2(3P)3d 2D3/2 2 p 3 2 D 3 / 2 o10034139.9659.912E+105.903E−012.109E−010.000
2p2(1S)3s 2S1/2 2 p 3 2 D 3 / 2 o99968610.0037.901E+062.370E−057.931E−060.019
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 2D5/299283410.0722.544E+101.547E−012.627E−020.000
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 2D3/299279410.0722.424E+091.475E−022.504E−030.001
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p2 2D3/299275610.0722.773E+108.438E−022.910E−020.001
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2p2 4P1/298964910.1046.761E+064.139E−051.476E−050.101
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2p2 4P3/298893410.1115.634E+063.455E−051.230E−050.039
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2p2 4P5/298785410.1224.055E+062.492E−058.853E−060.192
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p2 2D3/298756510.1253.122E+069.598E−067.046E−060.036
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 4P3/298749410.1266.053E+061.861E−051.345E−050.065
2p2(3P)3d 4P1/2 2 p 3 2 D 3 / 2 o98739510.1271.566E+074.816E−052.091E−050.003
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 2D5/298727410.1284.924E+073.029E−041.108E−040.015
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 2D3/298723410.1291.659E+081.020E−033.731E−040.002
2p2(3P)3d 4P3/2 2 p 3 2 D 5 / 2 o98718110.1295.130E+073.157E−046.866E−050.003
2p2(1D)3d 2S1/2 2 p 3 2 P 1 / 2 o98704610.1313.566E+101.097E−011.404E−010.000
2p2(1D)3d 2S1/2 2 p 3 2 P 3 / 2 o98695510.1327.886E+102.427E−013.105E−010.001
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p2 2D5/298676410.1341.603E+091.481E−023.618E−030.003
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p2 2D3/298672310.1341.829E+081.689E−034.127E−040.003
2p2(3P)3d 4P5/2 2 p 3 2 D 5 / 2 o98664210.1352.345E+072.167E−043.147E−050.009
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p2 2D5/298230110.1809.612E+108.960E−013.235E−010.000
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p2 2D3/298226110.1809.582E+098.933E−023.225E−020.001
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 2D5/298206210.1829.924E+096.171E−023.408E−020.001
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 2D3/298202210.1839.657E+106.005E−013.316E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o2s2p2 2D5/298087010.1953.930E+064.900E−054.856E−060.046
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p2 2D5/298041710.1991.453E+091.360E−021.822E−030.001
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p2 2D3/298037610.2001.527E+081.429E−031.916E−040.002
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 2D5/298017810.2021.265E+087.897E−041.572E−040.002
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 2D3/298013810.2026.826E+084.261E−038.479E−040.001
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 2D3/298001410.2031.449E+074.524E−051.784E−050.006
2p2(1D)3d 2P3/2 2 p 3 2 P 1 / 2 o97917110.2122.670E+101.670E−015.363E−020.000
2p2(1D)3d 2P3/2 2 p 3 2 P 3 / 2 o97907910.2131.450E+119.071E−012.913E−010.001
2p2(1D)3d 2P1/2 2 p 3 2 P 1 / 2 o97865010.2181.117E+113.498E−012.265E−010.000
2p2(1D)3d 2P1/2 2 p 3 2 P 3 / 2 o97855910.2195.092E+101.594E−011.033E−010.001
2p2(3P)3d 2F7/2 2 p 3 2 D 5 / 2 o97805610.2244.304E+105.397E−014.818E−010.002
2p2(3P)3d 2P1/2 2 p 3 2 D 3 / 2 o97660910.2392.521E+107.925E−021.164E−010.001
2p2(3P)3d 2F5/2 2 p 3 2 D 5 / 2 o97654210.2403.320E+093.131E−023.615E−020.003
2p2(3P)3d 2F5/2 2 p 3 2 D 3 / 2 o97645710.2414.096E+103.865E−014.461E−010.002
2p2(3P)3d 2P3/2 2 p 3 2 D 5 / 2 o97542910.2512.201E+101.387E−011.105E−010.001
2p2(3P)3d 2P3/2 2 p 3 2 D 3 / 2 o97534410.2525.148E+093.245E−022.585E−020.000
2p2(3P)3d 4D7/2 2 p 3 2 D 5 / 2 o97450610.2611.504E+091.899E−021.580E−010.002
2p2(3P)3d 4D5/2 2 p 3 2 D 5 / 2 o97427010.2643.373E+063.197E−053.010E−040.022
2p2(3P)3d 4D5/2 2 p 3 2 D 3 / 2 o97418410.2641.025E+099.714E−039.147E−020.002
2p2(3P)3d 4D3/2 2 p 3 2 D 5 / 2 o97397310.2673.205E+092.026E−029.654E−020.001
2p2(3P)3d 4D3/2 2 p 3 2 D 3 / 2 o97388710.2684.124E+082.608E−031.242E−020.001
2p2(3P)3d 4D1/2 2 p 3 2 D 3 / 2 o97380610.2681.598E+095.052E−038.375E−020.000
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o2s2p2 2D5/296965310.3125.197E+076.629E−041.791E−020.004
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p2 2D5/296903510.3191.120E+081.072E−034.135E−020.004
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p2 2D3/296899510.3191.039E+079.956E−053.838E−030.007
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 2D5/296861810.3231.758E+071.124E−041.044E−020.005
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 2D3/296857710.3241.663E+081.063E−039.871E−020.003
2p2(1D)3d 2D 5/2 2 p 3 2 P 3 / 2 o96742510.3361.345E+111.293E+002.450E−010.001
2p2(1D)3d 2D3/2 2 p 3 2 P 1 / 2 o96700410.3419.885E+106.339E−011.805E−010.001
2p2(1D)3d 2D3/2 2 p 3 2 P 3 / 2 o96691310.3421.694E+101.087E−013.095E−020.001
2p2(1D)3s 2D5/2 2 p 3 4 S 3 / 2 o96479810.3641.645E+071.590E−042.883E−050.003
2p2(1D)3s 2D3/2 2 p 3 4 S 3 / 2 o96477910.3652.988E+061.925E−055.260E−060.006
2p2(3P)3d 4F7/2 2 p 3 2 D 5 / 2 o96444510.3686.860E+078.846E−041.833E−020.005
2p2(3P)3d 4F5/2 2 p 3 2 D 5 / 2 o96387610.3743.469E+073.359E−049.230E−030.001
2p2(1D)3d 2F5/2 2 p 3 2 P 3 / 2 o96379510.3754.536E+074.393E−045.382E−050.002
2p2(3P)3d 4F5/2 2 p 3 2 D 3 / 2 o96379010.3753.788E+073.669E−041.008E−020.006
2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o2s2p2 4P3/296350010.3781.799E+101.743E−012.974E−020.001
2p2(3P)3d 4F3/2 2 p 3 2 D 5 / 2 o96347810.3792.090E+061.350E−055.639E−040.011
2p2(3P)3d 4F3/2 2 p 3 2 D 3 / 2 o96339210.3794.293E+072.774E−041.158E−020.002
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o2s2p2 4P1/296290210.3852.482E+101.605E−014.120E−020.000
2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o2s2p2 4P5/296241910.3904.175E+104.055E−016.902E−020.000
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o2s2p2 4P3/296218810.3927.879E+095.103E−021.308E−020.001
2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o2s2p2 4P1/296218110.3939.923E+093.214E−021.651E−020.000
2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o2s2p2 4P3/296146610.4004.944E+101.604E−018.225E−020.001
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o2s2p2 4P5/296110710.4042.678E+101.738E−014.446E−020.000
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 2S1/295330510.4891.396E+114.606E−014.002E−010.003
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 2S1/295253910.4981.452E+119.598E−014.234E−010.002
2s23s 2S1/2 2 s 2 2 p 2 P 1 / 2 o95117910.5131.639E+105.433E−023.277E−020.001
2p2(3P)3d 2D5/2 2 p 3 2 P 3 / 2 o95070810.5189.149E+109.105E−011.897E−010.002
2p2(3P)3d 2D3/2 2 p 3 2 P 1 / 2 o95066710.5188.586E+105.697E−011.827E−010.002
2p2(3P)3d 2D3/2 2 p 3 2 P 3 / 2 o95057610.5191.942E+101.289E−014.132E−020.002
2p2(3P)3s 2P3/2 2 p 3 4 S 3 / 2 o94953010.5312.129E+061.416E−053.140E−060.019
2s23s 2S1/2 2 s 2 2 p 2 P 3 / 2 o94904510.5363.301E+101.099E−016.599E−020.001
2p2(3P)3s 2P1/2 2 p 3 4 S 3 / 2 o94816910.5461.221E+064.074E−061.806E−060.027
2p2(1S)3s 2S1/2 2 p 3 2 P 1 / 2 o94694110.5603.008E+101.006E−013.019E−020.001
2p2(1S)3s 2S1/2 2 p 3 2 P 3 / 2 o94684910.5615.972E+101.997E−015.995E−020.001
2p2(3P)3d 4P1/2 2 p 3 2 P 1 / 2 o93464910.6997.020E+062.410E−059.374E−060.002
2p2(3P)3d 4P1/2 2 p 3 2 P 3 / 2 o93455810.7006.207E+062.131E−058.288E−060.007
2p2(3P)3d 4P3/2 2 p 3 2 P 1 / 2 o93435010.7028.269E+065.680E−051.107E−050.004
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 2P1/293382810.7082.087E+107.177E−025.983E−020.002
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 2S1/293377910.7092.446E+101.682E−012.526E−020.001
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p2 2S1/293374110.7091.935E+106.656E−022.031E−020.002
2p2(3P)3d 4P5/2 2 p 3 2 P 1 / 2 o93371910.7094.273E+074.408E−045.733E−050.005
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 2P1/293306310.7171.446E+099.962E−034.217E−030.004
2s24s 2S1/2 2 p 3 4 S 3 / 2 o93282910.7202.180E+067.513E−069.464E−060.019
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p2 2P3/293251310.7237.565E+092.609E−022.169E−020.006
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p2 2P3/293174710.7321.846E+101.275E−015.381E−020.001
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p2 2S1/292855010.7691.880E+066.537E−064.243E−060.053
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 2S1/292821910.7731.216E+078.466E−052.736E−050.030
2p2(3P)3s 4P5/2 2 p 3 4 S 3 / 2 o92566510.8033.079E+103.232E−018.717E−020.001
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p2 2P3/292452010.8165.431E+075.716E−041.058E−040.001
2p2(3P)3s 4P3/2 2 p 3 4 S 3 / 2 o92448810.8163.055E+102.143E−018.719E−020.002
2p2(3P)3d 2P1/2 2 p 3 2 P 1 / 2 o92386410.8244.952E+101.740E−012.287E−010.000
2p2(3P)3d 2P1/2 2 p 3 2 P 3 / 2 o92377310.8252.414E+108.482E−021.115E−010.000
2p2(3P)3s 4P1/2 2 p 3 4 S 3 / 2 o92373810.8253.039E+101.068E−018.719E−020.002
2p2(3P)3d 2F5/2 2 p 3 2 P 3 / 2 o92362010.8261.925E+062.030E−052.096E−050.034
2s24d 2D5/2 2 p 3 2 D 5 / 2 o92335610.8309.675E+071.021E−031.971E−040.006
2s24d 2D3/2 2 p 3 2 D 5 / 2 o92330610.8305.988E+064.212E−051.220E−050.001
2s24d 2D5/2 2 p 3 2 D 3 / 2 o92327010.8317.477E+067.890E−051.523E−050.013
2s24d 2D3/2 2 p 3 2 D 3 / 2 o92322010.8311.016E+087.150E−042.071E−040.005
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 2S1/292300710.8344.130E+082.907E−031.418E−030.004
2p2(3P)3d 2P3/2 2 p 3 2 P 1 / 2 o92259810.8381.129E+107.956E−025.670E−020.000
2p2(3P)3d 2P3/2 2 p 3 2 P 3 / 2 o92250710.8405.237E+103.690E−012.629E−010.000
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 o 2 p 3 2 P 1 / 2 o92114110.8561.427E+091.009E−024.299E−020.001
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 2S1/292112310.8562.815E+061.989E−053.496E−060.098
2p2(3P)3d 4D1/2 2 p 3 2 P 1 / 2 o92106010.8572.615E+099.244E−031.371E−010.000
2p2(3P)3d 4D3/2 2 p 3 2 P 3 / 2 o92105010.8576.534E+094.619E−021.968E−010.000
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 2S1/292099910.8571.657E+075.857E−052.040E−050.055
2p2(3P)3d 4D1/2 2 p 3 2 P 3 / 2 o92096910.8581.290E+094.559E−036.759E−020.001
2p2(1D)3s 2D5/2 2 p 3 2 D 5 / 2 o91966510.8733.744E+103.982E−016.563E−020.002
2p2(1D)3s 2D3/2 2 p 3 2 D 5 / 2 o91964610.8732.705E+091.918E−024.761E−030.003
2p2(1D)3s 2D5/2 2 p 3 2 D 3 / 2 o91957910.8743.070E+093.265E−025.381E−030.001
2p2(1D)3s 2D3/2 2 p 3 2 D 3 / 2 o91956010.8743.666E+102.600E−016.452E−020.002
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p2 2P1/291430310.9374.960E+093.558E−025.124E−030.004
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p2 2P1/291426410.9372.867E+101.028E−013.008E−020.001
2 s 2 p ( 1 P ) 3 s 4 P 3 / 2 o2s2p2 2P3/291298710.9533.341E+102.403E−013.451E−020.002
2 s 2 p ( 1 P ) 3 s 4 P 1 / 2 o2s2p2 2P3/291294910.9531.337E+104.810E−021.403E−020.000
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 2P1/290874211.0044.927E+073.578E−041.108E−040.005
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p2 2P3/290775811.0161.987E+067.229E−064.484E−060.051
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p2 2P3/290742711.0201.683E+071.226E−043.785E−050.002
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p2 2P3/290691611.0265.461E+085.972E−031.232E−030.002
2p2(3P)3s 2P3/2 2 p 3 2 D 5 / 2 o90439611.0573.023E+102.217E−014.459E−020.002
2p2(3P)3s 2P3/2 2 p 3 2 D 3 / 2 o90431011.0581.674E+091.228E−022.469E−030.003
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 2P1/290353111.0672.869E+102.107E−019.851E−020.000
2p2(3P)3s 2P1/2 2 p 3 2 D 3 / 2 o90294911.0743.308E+101.217E−014.892E−020.002
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p2 2P3/290245411.0803.164E+103.494E−011.065E−010.000
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p2 2P3/290221511.0834.910E+093.617E−021.686E−020.001
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 2P1/290164611.0901.675E+081.235E−032.080E−040.005
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 2P1/290152311.0925.833E+062.152E−057.181E−060.012
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p2 2P3/290056911.1044.100E+084.547E−035.142E−040.001
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p2 2P3/290033111.1075.328E+073.942E−046.618E−050.007
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p2 2P3/290020711.1082.198E+068.133E−062.706E−060.003
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2p2 2D5/289906011.1222.918E+102.165E−016.372E−020.001
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2p2 2D3/289901911.1233.174E+092.355E−026.930E−030.004
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o2s2p2 2D3/289757911.1413.177E+101.182E−017.058E−020.002
2 s 2 p ( 1 P ) 3 p 2 S 1 / 2 2 p 3 4 S 3 / 2 o89119311.2202.196E+068.292E−061.278E−050.025
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 2P1/289008611.2341.683E+071.274E−049.991E−030.001
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p2 2P3/288918811.2461.004E+071.143E−043.709E−030.009
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p2 2P3/288877011.2513.302E+062.507E−051.960E−030.046
2 s 2 4 s 2 S 1 / 2 2 p 3 2 D 3 / 2 o88761011.2661.235E+064.700E−065.361E−060.009
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 p 3 4 S 3 / 2 o88659011.2792.447E+061.867E−051.419E−050.012
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 2 p 3 4 S 3 / 2 o88619111.2841.226E+064.679E−067.106E−060.007
2 p 2 ( 3 P ) 3 s 4 P 5 / 2 2 p 3 2 D 5 / 2 o88053211.3562.374E+072.754E−046.720E−050.009
2 p 2 ( 3 P ) 3 s 4 P 5 / 2 2 p 3 2 D 3 / 2 o88044611.3571.523E+061.768E−054.313E−060.001
2 p 2 ( 3 P ) 3 s 4 P 3 / 2 2 p 3 2 D 5 / 2 o87935411.3715.554E+064.307E−051.585E−050.007
2 p 2 ( 3 P ) 3 s 4 P 3 / 2 2 p 3 2 D 3 / 2 o87926911.3738.347E+066.474E−052.382E−050.010
2 p 2 ( 3 P ) 3 s 4 P 1 / 2 2 p 3 2 D 3 / 2 o87851911.3824.573E+061.776E−051.312E−050.014
2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o 2 s 2 p 2 2 D 5 / 287362511.4465.087E+065.996E−058.410E−060.081
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o 2 s 2 p 2 2 D 5 / 287231311.4639.987E+067.871E−051.658E−050.044
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o 2 s 2 p 2 2 D 3 / 287227311.4644.127E+063.253E−056.852E−060.021
2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o 2 s 2 p 2 2 D 3 / 287155111.4735.052E+061.994E−058.404E−060.030
2 s 2 4 d 2 D 3 / 2 2 p 3 2 P 1 / 2 o87047511.4875.099E+074.035E−041.039E−040.000
2 s 2 4 d 2 D 5 / 2 2 p 3 2 P 3 / 2 o87043311.4886.253E+077.423E−041.274E−040.007
2 s 2 4 d 2 D 3 / 2 2 p 3 2 P 3 / 2 o87038411.4891.967E+071.557E−044.009E−050.012
2 p 2 ( 1 D ) 3 s 2 D 3 / 2 2 p 3 2 P 1 / 2 o86681411.5369.374E+097.481E−021.650E−020.002
2 p 2 ( 1 D ) 3 s 2 D 5 / 2 2 p 3 2 P 3 / 2 o86674211.5371.203E+101.441E−012.109E−020.002
2 p 2 ( 1 D ) 3 s 2 D 3 / 2 2 p 3 2 P 3 / 2 o86672311.5373.600E+092.874E−026.337E−030.003
2 p 2 ( 3 P ) 3 s 2 P 3 / 2 2 p 3 2 P 1 / 2 o85156511.7435.311E+094.392E−027.833E−030.003
2 p 2 ( 3 P ) 3 s 2 P 3 / 2 2 p 3 2 P 3 / 2 o85147411.7442.166E+101.792E−013.195E−020.003
2 p 2 ( 3 P ) 3 s 2 P 1 / 2 2 p 3 2 P 1 / 2 o85020411.7611.737E+107.206E−022.569E−020.003
2 p 2 ( 3 P ) 3 s 2 P 1 / 2 2 p 3 2 P 3 / 2 o85011311.7638.241E+093.419E−021.218E−020.003
2 s 2 p ( 1 P ) 3 p 2 S 1 / 2 2 p 3 2 D 3 / 2 o84597311.8203.501E+071.467E−042.037E−040.007
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 p 3 2 D 5 / 2 o84145611.8848.410E+097.123E−024.877E−020.001
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 p 3 2 D 3 / 2 o84137111.8857.533E+086.382E−034.369E−030.003
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 2 p 3 2 D 3 / 2 o84097211.8909.457E+094.009E−025.484E−020.001
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o 2 s 2 p 2 2 S 1 / 284000511.9049.640E+098.193E−022.105E−020.007
2 s 2 p ( 1 P ) 3 p 2 D 5 / 2 2 p 3 2 D 5 / 2 o83974011.9081.766E+082.253E−033.209E−030.014
2 s 2 p ( 1 P ) 3 p 2 D 5 / 2 2 p 3 2 D 3 / 2 o83965411.9099.749E+061.244E−041.771E−040.028
2 s 2 p ( 1 P ) 3 p 2 D 3 / 2 2 p 3 2 D 5 / 2 o83958511.9102.161E+071.838E−043.941E−040.007
2 s 2 p ( 1 P ) 3 p 2 D 3 / 2 2 p 3 2 D 3 / 2 o83950011.9112.362E+082.010E−034.308E−030.011
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o 2 s 2 p 2 2 S 1 / 283856411.9251.020E+104.349E−022.266E−020.005
2 s 2 4 s 2 S 1 / 2 2 p 3 2 P 1 / 2 o83486411.9771.565E+076.731E−056.791E−050.020
2 s 2 4 s 2 S 1 / 2 2 p 3 2 P 3 / 2 o83477311.9795.054E+072.175E−042.194E−040.017
2 p 2 ( 3 P ) 3 s 4 P 1 / 2 2 p 3 2 P 3 / 2 o82568212.1111.210E+065.320E−063.471E−060.035
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o 2 s 2 p 2 2 P 1 / 282052812.1877.388E+086.580E−031.613E−030.005
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o 2 s 2 p 2 2 P 3 / 281921212.2062.309E+092.063E−025.041E−030.000
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o 2 s 2 p 2 2 P 1 / 281908712.2081.465E+096.548E−033.255E−030.008
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o 2 s 2 p 2 2 P 3 / 281777212.2288.547E+083.832E−031.899E−030.014
2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o 2 s 2 p 2 2 S 1 / 281325812.2961.938E+061.757E−053.217E−060.161
2 s 2 3 p 2 P 3 / 2 o 2 s 2 p 2 2 D 5 / 280286312.4553.213E+092.989E−022.120E−010.011
2 s 2 3 p 2 P 3 / 2 o 2 s 2 p 2 2 D 3 / 280282312.4563.541E+083.294E−032.336E−020.025
2 s 2 3 p 2 P 1 / 2 o 2 s 2 p 2 2 D 3 / 280227712.4643.609E+091.681E−022.371E−010.021
2 s 2 p ( 1 P ) 3 p 2 S 1 / 2 2 p 3 2 P 1 / 2 o79322812.6068.607E+074.102E−045.007E−040.016
2 s 2 p ( 1 P ) 3 p 2 S 1 / 2 2 p 3 2 P 3 / 2 o79313712.6083.590E+081.711E−032.088E−030.005
2 s 2 p ( 3 P ) 3 p 2 D 5 / 2 2 p 3 4 S 3 / 2 o78886112.6761.074E+061.552E−053.129E−060.003
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 p 3 2 P 1 / 2 o78862512.6804.618E+084.452E−032.678E−030.002
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 p 3 2 P 3 / 2 o78853412.6812.328E+092.245E−021.350E−020.000
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 2 p 3 2 P 1 / 2 o78822712.6861.936E+099.341E−031.122E−020.001
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 2 p 3 2 P 3 / 2 o78813512.6887.107E+083.431E−034.121E−030.002
2 s 2 p ( 1 P ) 3 p 2 D 5 / 2 2 p 3 2 P 3 / 2 o78681712.7092.326E+073.379E−044.225E−040.019
2 s 2 p ( 1 P ) 3 p 2 D 3 / 2 2 p 3 2 P 1 / 2 o78675412.7103.405E+073.299E−046.211E−040.008
2 s 2 p ( 1 P ) 3 p 2 D 3 / 2 2 p 3 2 P 3 / 2 o78666312.7118.950E+068.673E−051.633E−040.031
2 s 2 p ( 3 P ) 3 p 4 P 5 / 2 2 p 3 4 S 3 / 2 o78182512.7901.056E+081.554E−033.193E−020.007
2 s 2 p ( 3 P ) 3 p 4 P 3 / 2 2 p 3 4 S 3 / 2 o78114812.8011.025E+081.007E−034.166E−020.007
2 s 2 p ( 3 P ) 3 p 4 P 1 / 2 2 p 3 4 S 3 / 2 o78059912.8101.015E+084.992E−044.176E−020.004
2 s 2 p ( 3 P ) 3 p 2 S 1 / 2 2 p 3 2 D 3 / 2 o75983113.1601.804E+069.371E−065.144E−060.030
2 s 2 3 p 2 P 3 / 2 o 2 s 2 p 2 2 S 1 / 274380813.4445.175E+085.609E−033.415E−020.009
2 s 2 p ( 3 P ) 3 p 2 D 5 / 2 2 p 3 2 D 5 / 2 o74372813.4451.127E+091.833E−023.284E−030.001
2 s 2 p ( 3 P ) 3 p 2 D 5 / 2 2 p 3 2 D 3 / 2 o74364213.4476.453E+071.050E−031.880E−040.004
2 s 2 3 p 2 P 1 / 2 o 2 s 2 p 2 2 S 1 / 274326213.4544.767E+082.587E−033.132E−020.005
2 s 2 p ( 3 P ) 3 p 2 D 3 / 2 2 p 3 2 D 5 / 2 o74234413.4701.005E+081.093E−032.921E−040.000
2 s 2 p ( 3 P ) 3 p 2 D 3 / 2 2 p 3 2 D 3 / 2 o74225813.4721.124E+091.223E−023.268E−030.002
2 s 2 p ( 3 P ) 3 p 4 P 5 / 2 2 p 3 2 D 5 / 2 o73669113.5742.686E+064.451E−058.120E−040.019
2 s 2 p ( 3 P ) 3 p 4 S 3 / 2 2 p 3 2 D 5 / 2 o72771213.7416.472E+067.329E−053.240E−030.003
2 s 2 3 p 2 P 3 / 2 o 2 s 2 p 2 2 P 1 / 272433113.8051.467E+071.676E−049.677E−040.010
2 s 2 3 p 2 P 1 / 2 o 2 s 2 p 2 2 P 1 / 272378613.8161.267E+087.251E−048.322E−030.005
2 s 2 3 p 2 P 3 / 2 o 2 s 2 p 2 2 P 3 / 272301613.8301.274E+081.461E−038.404E−030.003
2 s 2 3 p 2 P 1 / 2 o 2 s 2 p 2 2 P 3 / 272247013.8414.193E+072.409E−042.755E−030.012
2 s 2 p ( 3 P ) 3 p 4 D 3 / 2 2 p 3 2 D 5 / 2 o71681313.9501.487E+081.735E−036.607E−030.002
2 s 2 p ( 3 P ) 3 p 4 D 3 / 2 2 p 3 2 D 3 / 2 o71672713.9521.356E+071.583E−046.029E−040.005
2 s 2 p ( 3 P ) 3 p 4 D 1 / 2 2 p 3 2 D 3 / 2 o71635313.9592.389E+081.396E−037.379E−030.003
2 s 2 p ( 3 P ) 3 p 2 P 3 / 2 2 p 3 2 D 5 / 2 o71493513.9872.012E+092.361E−026.522E−030.002
2 s 2 p ( 3 P ) 3 p 2 P 3 / 2 2 p 3 2 D 3 / 2 o71484913.9882.028E+082.380E−036.572E−040.000
2 s 2 p ( 3 P ) 3 p 2 P 1 / 2 2 p 3 2 D 3 / 2 o71420414.0012.174E+091.278E−027.214E−030.002
2 s 2 p ( 3 P ) 3 p 2 S 1 / 2 2 p 3 2 P 1 / 2 o70708614.1421.948E+091.168E−025.553E−030.001
2s2p(3P)3p 2S1/2 2 p 3 2 P 3 / 2 o70699414.1443.921E+092.352E−021.118E−020.001
2s2p(3P)3p 2D5/2 2 p 3 2 P 3 / 2 o69080514.4757.547E+081.422E−022.199E−030.001
2s2p(3P)3p 2D3/2 2 p 3 2 P 1 / 2 o68951314.5026.198E+087.817E−031.802E−030.001
2s2p(3P)3p 2D3/2 2 p 3 2 P 3 / 2 o68942214.5041.074E+081.355E−033.122E−040.007
2s2p(3P)3p 4P5/2 2 p 3 2 P 3 / 2 o68376914.6242.422E+064.660E−057.324E−040.022
2s2p(3P)3p 4P1/2 2 p 3 2 P 3 / 2 o68254314.6511.137E+067.316E−064.679E−040.034
2s2p(3P)3p 2P3/2 2 p 3 2 P 1 / 2 o66210415.1032.016E+062.757E−056.533E−060.015
2s2p(3P)3p 2P3/2 2 p 3 2 P 3 / 2 o66201215.1051.641E+062.246E−055.320E−060.036
2s2p(3P)3p 2P1/2 2 p 3 2 P 1 / 2 o66145915.1185.478E+063.754E−051.818E−050.023
2s2p(3P)3p 2P1/2 2 p 3 2 P 3 / 2 o66136815.1201.596E+061.094E−055.296E−060.018
2s23d 2D5/2 2 p 3 2 D 5 / 2 o64822615.4261.244E+072.664E−042.331E−050.005
2s23d 2D3/2 2 p 3 2 D 5 / 2 o64809515.4291.164E+061.662E−052.174E−060.020
2s23d 2D3/2 2 p 3 2 D 3 / 2 o64801015.4311.213E+071.733E−042.266E−050.010
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s23s 2S1/248226520.7359.529E+062.457E−041.001E−050.113
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s23s 2S1/248079120.7999.342E+061.212E−049.788E−060.107
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s23s 2S1/245166022.1406.173E+071.815E−035.613E−040.058
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s23s 2S1/245078022.1836.475E+079.554E−045.979E−040.048
2p2(1D)3d 2S1/2 2 s 2 3 p 2 P 1 / 2 o44446722.4981.460E+072.216E−045.749E−050.036
2p2(1D)3d 2S1/2 2 s 2 3 p 2 P 3 / 2 o44392222.5262.707E+074.118E−041.066E−040.044
2p2(1D)3d 2P3/2 2 s 2 3 p 2 P 1 / 2 o43659222.9041.228E+073.863E−042.466E−050.000
2p2(1D)3d 2P1/2 2 s 2 3 p 2 P 1 / 2 o43607222.9315.046E+077.956E−041.023E−040.002
2p2(1D)3d 2P3/2 2 s 2 3 p 2 P 3 / 2 o43604622.9336.439E+072.031E−031.294E−040.003
2p2(1D)3d 2P1/2 2 s 2 3 p 2 P 3 / 2 o43552622.9602.689E+074.251E−045.453E−050.005
2p2(1D)3d 2D3/2 2 s 2 3 p 2 P 1 / 2 o42442523.5611.835E+076.109E−043.351E−050.054
2p2(1D)3d 2D5/2 2 s 2 3 p 2 P 3 / 2 o42439123.5631.839E+079.184E−043.349E−050.038
2p2(1D)3d 2D3/2 2 s 2 3 p 2 P 3 / 2 o42387923.5913.128E+061.044E−045.713E−060.065
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s23s 2S1/240969724.4085.154E+079.206E−042.132E−040.019
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s23s 2S1/240958124.4155.460E+071.952E−032.215E−040.017
2p2(3P)3d 2D3/2 2 s 2 3 p 2 P 1 / 2 o40808924.5042.808E+061.011E−045.976E−060.076
2p2(3P)3d 2D5/2 2 s 2 3 p 2 P 3 / 2 o40767524.5294.070E+062.203E−048.439E−060.062
2p2(1S)3s 2S1/2 2 s 2 3 p 2 P 1 / 2 o40436224.7301.375E+072.521E−041.380E−050.029
2p2(1S)3s 2S1/2 2 s 2 3 p 2 P 3 / 2 o40381624.7632.731E+075.022E−042.742E−050.028
2p2(3P)3d 2P1/2 2 s 2 3 p 2 P 1 / 2 o38128526.2273.687E+067.603E−051.703E−050.012
2p2(3P)3d 2P1/2 2 s 2 3 p 2 P 3 / 2 o38073926.2641.729E+063.577E−057.986E−060.003
2p2(3P)3d 2P3/2 2 s 2 3 p 2 P 3 / 2 o37947426.3525.067E+062.110E−042.544E−050.011
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s23s 2S1/237653126.5581.884E+063.985E−056.980E−060.016
2 s 2 4 p 2 P 3 / 2 o2s23s 2S1/237240226.8523.600E+091.557E−014.388E−030.023
2 s 2 4 p 2 P 1 / 2 o2s23s 2S1/237221426.8663.609E+097.810E−024.370E−030.023
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s23d 2D3/237149126.9181.039E+062.257E−051.088E−060.525
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s23s 2S1/235554828.1251.870E+098.872E−026.206E−030.009
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s23s 2S1/235535528.1401.905E+094.524E−026.327E−030.010
2p2(1D)3d 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o34916628.6391.130E+072.779E−044.449E−050.033
2p2(1D)3d 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o34772528.7582.578E+076.393E−041.015E−040.024
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s23d 2D5/234222929.2205.522E+062.827E−045.021E−050.135
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s23d 2D3/234148029.2845.642E+061.451E−045.210E−050.146
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o34129029.3004.543E+062.339E−049.127E−060.015
2p2(1D)3d 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o34077029.3451.719E+074.439E−043.487E−050.010
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o33985029.4242.176E+071.130E−034.371E−050.007
2p2(1D)3d 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o33932929.4699.160E+062.385E−041.857E−050.005
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s23d 2D3/233248030.0763.932E+072.133E−031.501E−040.003
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s23d 2D5/233234930.0883.739E+062.030E−041.427E−050.035
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s23d 2D3/233232430.0914.713E+063.838E−041.791E−050.028
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s23d 2D5/233219330.1023.899E+073.178E−031.481E−040.004
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o32912330.3831.135E+076.284E−042.073E−050.025
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o32819530.4691.297E+071.083E−032.363E−050.022
2s24d 2D3/2 2 s 2 3 p 2 P 1 / 2 o32789630.4971.255E+107.003E−012.559E−020.004
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o32768330.5173.107E+061.735E−045.674E−060.020
2s24d 2D5/2 2 s 2 3 p 2 P 3 / 2 o32740030.5431.510E+101.267E+003.076E−020.007
2s24d 2D3/2 2 s 2 3 p 2 P 3 / 2 o32735030.5482.516E+091.408E−015.128E−030.007
2p2(1D)3s 2D3/2 2 s 2 3 p 2 P 1 / 2 o32423630.8416.078E+083.467E−021.070E−030.003
2p2(1D)3s 2D5/2 2 s 2 3 p 2 P 3 / 2 o32370930.8917.188E+086.170E−021.260E−030.000
2p2(1D)3s 2D3/2 2 s 2 3 p 2 P 3 / 2 o32369030.8931.168E+086.688E−032.057E−040.001
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o32279630.9791.015E+072.920E−041.355E−050.001
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o32249731.0072.590E+071.494E−033.467E−050.002
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o32207531.0486.130E+071.772E−038.184E−050.003
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o/232177631.0771.212E+077.019E−041.622E−050.003
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o32123631.1291.597E+071.392E−032.143E−050.005
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o32046431.2043.226E+071.884E−034.318E−050.003
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o31992431.2575.286E+074.645E−037.092E−050.000
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s23d 2D5/231776031.4708.360E+089.931E−028.692E−030.015
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s23d 2D3/231751331.4947.939E+087.084E−028.322E−030.015
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s23d 2D5/231738231.5075.945E+075.309E−036.232E−040.016
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o31278731.9702.808E+061.721E−045.976E−060.006
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o31201132.0505.384E+061.658E−042.487E−050.001
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o31147832.1044.541E+064.210E−049.417E−060.028
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o31133832.1196.435E+067.962E−047.202E−050.001
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o31113732.1402.614E+062.429E−042.847E−050.003
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o31074532.1806.313E+063.920E−043.169E−050.002
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o31002432.2556.636E+064.140E−043.332E−050.007
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o30928832.3324.728E+072.964E−031.424E−030.009
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o30920732.3409.671E+073.033E−035.068E−030.011
2p2(1S)3s 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o30906032.3562.923E+079.176E−042.934E−050.034
2p2(3P)3s 2P3/2 2 s 2 3 p 2 P 1 / 2 o30898632.3634.185E+062.629E−046.173E−060.014
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o30886432.3768.479E+077.995E−037.568E−030.007
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o30856732.4075.419E+073.413E−031.632E−030.011
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o30848632.4161.720E+075.420E−049.017E−040.014
2p2(3P)3s 2P3/2 2 s 2 3 p 2 P 3 / 2 o30844032.4215.832E+073.676E−038.602E−050.005
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o30778932.4891.086E+081.374E−021.141E−020.008
2p2(3P)3s 2P1/2 2 s 2 3 p 2 P 1 / 2 o30762532.5074.097E+071.298E−036.057E−050.007
2p2(1S)3s 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o30761932.5077.124E+072.257E−037.151E−050.019
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o30755232.5142.911E+072.768E−032.598E−030.012
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o.30725532.5463.995E+062.538E−041.203E−040.014
2p2(3P)3s 2P1/2 2 s 2 3 p 2 P 3 / 2 o30707932.5642.276E+077.236E−043.365E−050.002
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 2P1/230677032.5973.211E+082.046E−023.374E−040.018
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 2P3/230612632.6661.734E+091.110E−011.822E−030.017
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 2P1/230529732.7541.418E+094.561E−021.486E−030.016
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 2P3/230465232.8248.088E+082.613E−028.474E−040.015
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4D1/230462232.8274.286E+072.770E−034.504E−050.018
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4D3/230424832.8671.669E+081.081E−021.754E−040.016
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4D5/230359332.9386.010E+063.910E−046.315E−060.001
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 4D1/230314832.9871.895E+086.181E−031.985E−040.015
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 4D3/230277433.0273.840E+071.256E−034.023E−050.020
2 p 3 2 D 5 / 2 o2s2p2 4P5/229570133.8171.164E+061.198E−043.317E−040.067
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 2P3/229556333.8331.767E+061.820E−043.369E−060.016
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 2P1/229485833.9143.277E+072.260E−036.254E−050.010
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 2P3/229421333.9881.854E+081.285E−023.539E−040.011
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 2P1/229413033.9982.608E+089.037E−034.995E−040.011
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4D3/229368534.0508.372E+078.731E−031.596E−040.011
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 2P3/229348534.0731.010E+083.517E−031.935E−040.009
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4S3/229334934.0891.401E+079.762E−041.472E−050.015
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4D5/229303034.1268.051E+088.434E−021.535E−030.010
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4D1/229270934.1631.977E+081.384E−023.774E−040.010
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4D3/229233534.2071.353E+099.491E−022.582E−030.010
2s24s 2S1/2 2 s 2 3 p 2 P 1 / 2 o29228634.2131.594E+095.594E−026.919E−030.018
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 4D1/229198234.2482.224E+097.823E−024.261E−030.010
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4D7/229188834.2593.967E+094.188E−017.562E−030.009
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 4S3/229187534.2616.487E+062.283E−046.797E−060.014
2s24s 2S1/2 2 s 2 3 p 2 P 3 / 2 o29174034.2773.164E+091.115E−011.373E−020.024
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4D5/229168034.2843.229E+092.276E−016.163E−030.009
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 4D3/229160834.2922.504E+098.829E−024.796E−030.009
2 s 2 p ( 3 P ) 4 s 2 P 5 / 2 o2s23d 2D3/228972434.5151.376E+081.474E−027.227E−040.003
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s23d 2D3/228826034.6905.466E+063.944E−042.908E−050.024
2 s 2 4 f 2 F 5 / 2 o2s23d 2D3/228743034.7913.720E+104.050E+001.969E−010.004
2 s 2 4 f 2 F 7 / 2 o2s23d 2D5/228737934.7974.006E+105.817E+002.135E−010.004
2 s 2 4 f 2 F 5 / 2 o2s2 3d 2D5/228729934.8062.673E+092.913E−011.415E−020.004
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o28598334.9672.177E+067.980E−051.005E−050.049
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4P1/228559535.0141.651E+061.214E−041.735E−060.039
2s2p2 2P3/2 2 s 2 2 p 2 P 1 / 2 o28532335.0471.986E+091.463E−011.651E−010.002
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4P3/228504635.0824.300E+063.173E−044.518E−060.032
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o28454335.1441.507E+065.581E−056.960E−060.040
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 4P5/228436935.1651.170E+068.679E−051.230E−060.074
2s2p2 2P1/2 2 s 2 2 p 2 P 1 / 2 o28400735.2107.499E+092.787E−016.265E−010.001
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o28327735.3013.161E+062.362E−041.587E−050.050
2s2p2 2P3/2 2 s 2 2 p 2 P 3 / 2 o28318835.3121.005E+107.512E−018.349E−010.000
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4S3/228278635.3629.896E+081.113E−011.887E−030.008
2p2(3P)3s 4P1/2 2 s 2 3 p 2 P 3 / 2 o28264935.3791.635E+066.136E−054.691E−060.025
2s2p2 2P1/2 2 s 2 3 p 2 P 3 / 2 o28187335.4764.470E+091.687E−013.735E−010.001
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4S3/228143635.5311.307E+099.895E−022.494E−030.006
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 4S3/228070935.6241.500E+095.709E−022.874E−030.005
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 2D3/227871635.8783.626E+082.799E−023.810E−040.003
2 s 2 p ( 3 P ) 3 p 4 P 7 / 2 o2s2 3d 2D5/227775036.0033.670E+065.706E−042.915E−050.006
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 2D5/227733336.0572.986E+092.328E−013.137E−030.002
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 2D3/227724336.0693.199E+091.248E−013.351E−030.001
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2P1/227616536.2108.586E+076.751E−037.808E−040.010
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2P3/227552136.2944.665E+083.685E−024.242E−030.008
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p 2P1/227528636.3253.632E+081.437E−023.354E−030.007
2 s 2 p ( 1 P ) 3 p 2 P 1 / 2 o3 2s2p(P)3p 2P3/227464136.4112.165E+088.605E−031.999E−030.005
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4P3/227448336.4321.520E+091.814E−012.897E−030.007
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D1/227401736.4948.312E+066.639E−047.559E−050.005
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 4P5/227380636.5223.138E+093.765E−015.981E−030.007
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4P1/227368336.5381.833E+091.468E−013.499E−030.008
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D3/227364336.5432.750E+072.202E−032.501E−040.007
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D1/227313736.6113.511E+071.411E−033.242E−040.002
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4P3/227313336.6124.887E+083.928E−029.327E−040.009
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D5/227298836.6311.335E+061.074E−041.214E−050.057
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 4P1/227295536.6357.006E+082.820E−021.342E−030.008
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D3/227276336.6612.287E+079.218E−042.112E−040.010
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 4P5/227245736.7031.856E+091.500E−013.543E−030.007
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2s2p(3P)3p 4P3/227240636.7093.192E+091.290E−016.115E−030.008
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 2D3/226680437.4801.092E+069.195E−052.083E−060.030
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2s2p(3P)3p 2D5/226677037.4858.208E+061.038E−031.565E−050.024
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s23s 2S1/226665637.5014.912E+082.071E−021.408E−030.004
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2P1/226628537.5537.880E+066.664E−043.008E−050.044
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s23s 2S1/226589137.6095.328E+084.519E−021.553E−030.002
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2P3/226548437.6668.059E+061.028E−033.062E−050.051
2s2p2 2S1/2 2 s 2 2 p 2 P 1 / 2 o26453037.8022.542E+091.089E−014.113E−010.004
2 s 2 4 p 2 P 3 / 2 o2s23d 2D3/226310238.0081.333E+071.155E−031.625E−050.124
2 s 2 4 p 2 P 3 / 2 o2s23d 2D5/226297038.0271.126E+089.767E−031.373E−040.092
2 s 2 4 p 2 P 1 / 2 o2s23d 2D3/226291438.0351.297E+085.626E−031.571E−040.123
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(3P)3p 4S3/226274438.0591.508E+061.310E−041.371E−050.007
2s2p2 2S1/2 2 s 2 2 p 2 P 3 / 2 o26239638.1103.638E+091.584E−015.887E−010.005
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(3P)3p 2S1/226114438.2931.712E+091.505E−011.798E−030.005
2 p 3 2 P 3 / 2 o2s2p2 2D5/225983038.4864.356E+093.869E−015.083E−010.002
2 p 3 2 P 3 / 2 o2s2p2 2D3/225978938.4925.459E+084.851E−026.370E−020.011
2 p 3 2 P 1 / 2 o2s2p2 2D3/225969838.5065.026E+092.235E−015.840E−010.001
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(3P)3p 2S1/225967038.5101.597E+097.103E−021.674E−030.007
2p2(1D)3d 2P3/2 2 s 2 p ( 3 p ) 3 d 4 D 5 / 2 o25849338.6858.462E+067.594E−041.700E−050.015
2p2(1D)3d 2P1/2 2 s 2 p ( 3 p ) 3 d 4 D 3 / 2 o25821138.7274.555E+062.048E−049.236E−060.022
2p2(1D)3d 2P3/2 2 s 2 P ( 3 p ) 3 d 2 D 3 / 2 o25684738.9332.625E+072.386E−035.273E−050.015
2p2(1D)3d 2P3/2 2 s 2 p ( 3 p ) 3 d 2 D 5 / 2 o25660838.9692.365E+082.154E−024.750E−040.015
2p2(1D)3d 2P1/2 2 s 2 p ( 3 p ) 3 d 2 D 3 / 2 o25632739.0122.439E+081.113E−024.946E−040.018
2p2(1D)3d 2S1/2 2 s 2 p ( 1 p)3s 2 P 1 / 2 o25398939.3714.076E+081.895E−021.605E−030.004
2p2(1D)3d 2S1/2 2 s 2 p ( 1 p)3s 2 P 3 / 2 o25395039.3777.916E+083.680E−023.117E−030.003
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4P5/225376439.4061.725E+061.607E−041.569E−050.035
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(3P)3p 4P3/225356139.4381.214E+065.662E−051.121E−050.055
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o25294739.5333.572E+065.022E−046.261E−060.001
2 p 3 4 S 3 / 2 o2s2p2 4P1/225236339.6251.829E+091.722E−011.692E−010.003
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o25214639.6597.902E+067.454E−041.588E−050.012
2 p 3 4 S 3 / 2 o2s2p2 4P3/225164839.7373.624E+093.432E−013.352E−010.002
2p2(1D)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o25111539.8221.266E+066.022E−052.568E−060.013
2s2p(1P)3p 2S1/2 2 s 2 3 p 2 P 1 / 2 o25064939.8963.025E+091.444E−011.760E−020.009
2 p 3 4 S 3 / 2 o2s2p2 4P5/225056839.9095.359E+095.119E−014.957E−010.001
2s2p(1P)3p 2S1/2 2 s 2 3 p 2 P 3 / 2 o25010339.9837.076E+093.392E−014.116E−020.007
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(3P)3p 2S1/224923140.1231.146E+061.107E−042.188E−060.098
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2D3/224811140.3042.152E+082.097E−021.957E−030.004
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s2p(3P)3p 4D7/224737740.4243.431E+066.724E−043.567E−050.022
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(3P)3p 2D3/224723240.4471.610E+097.896E−021.486E−020.001
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s23s 2S1/224713140.4644.909E+094.820E−015.071E−030.001
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s23s 2S1/224709240.4704.976E+092.444E−015.222E−030.002
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2D5/224672740.5301.486E+091.464E−011.351E−020.001
2p2(1D)3d 2D5/2 2 s 2 p( 3 P ) 3 d 4 D 7 / 2 o24638440.5862.206E+063.269E−044.018E−060.006
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s23d 2D3/224624840.6097.688E+087.603E−022.552E−030.004
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s23d 2D5/224611740.6316.681E+096.614E−012.217E−020.000
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s23d 2D3/224605540.6417.447E+093.688E−012.473E−020.004
2s2p(1P)3p 2P3/2 2 s 2 3 p 2 P 1 / 2 o24604640.6425.848E+085.792E−023.391E−030.001
2s2p(1P)3p 2P1/2 2 s 2 3 p 2 P 1 / 2 o24564840.7083.852E+091.914E−012.234E−020.000
2p2(1D)3d 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o24555540.7241.164E+065.790E−052.361E−060.027
2s2p(1P)3p 2P3/2 2 s 2 3 p 2 P 3 / 2 o24550140.7334.665E+094.641E−012.705E−020.001
2s2p(1P)3p 2P1/2 2 s 2 3 p 2 P 3 / 2 o24510240.7991.426E+097.115E−028.266E−030.001
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o24495340.8248.711E+071.306E−021.587E−040.006
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o24468040.8698.082E+078.095E−031.476E−040.009
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(3P)3p 4P3/224456140.8891.114E+061.117E−044.250E−060.019
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o24444140.9092.428E+062.437E−044.435E−060.022
2s2p(1P)3p 2D3/2 2 s 2 3 p 2 P 1 / 2 o24417540.9543.306E+093.326E−016.031E−020.003
2s2p(1P)3p 2D5/2 2 s 2 3 p 2 P 3 / 2 o24378441.0193.603E+095.453E−016.544E−020.002
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(3P)3p 4P5/224372841.0294.386E+066.642E−041.667E−050.022
2s2p(1P)3p 2D3/2 2 s 2 3 p 2 P 3 / 2 o24362941.0453.165E+083.198E−025.774E−030.005
2p2(1D)3d 2F5/2 2 s 2 p ( 3 p ) 3 d 4 D 3 / 2 o24344741.0761.099E+061.668E−041.304E−060.004
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s23d 2D3/224327541.1053.328E+085.059E−025.183E−040.002
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s23d 2D5/224314441.1274.631E+097.046E−017.212E−030.002
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s23d 2D3/224307441.1394.447E+094.514E−016.906E−030.002
2p2(1D)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o24295541.1592.235E+064.541E−042.633E−060.003
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s23d 2D5/224294341.1615.199E+085.282E−028.073E−040.002
2p2(1D)3d 2G9/2 2 s 2 p ( 3 P ) 3 d 4 F 9 / 2 o24273941.1961.676E+064.265E−044.007E−030.009
2p2(1D)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o24156341.3972.057E+083.172E−022.441E−040.011
2p2(1D)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o24132441.4384.826E+067.453E−045.726E−060.021
2p2(1D)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o24107041.4812.030E+084.188E−022.391E−040.012
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o24049141.5811.537E+062.391E−042.800E−060.017
2p2(3P)3s 2P3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o23899041.8421.604E+061.684E−042.366E−060.023
2p2(3P)3s 2P1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o23835141.9541.799E+069.494E−052.660E−060.022
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2D3/223823241.9752.503E+082.645E−029.553E−040.004
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2D3/223807542.0032.241E+073.556E−038.514E−050.008
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2D5/223684842.2214.106E+074.390E−031.567E−040.006
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2D5/223669142.2492.838E+084.557E−021.078E−030.006
2p2(1D)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o23660842.2631.854E+063.971E−042.184E−060.001
2p2(1D)3d 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o23519042.5184.879E+072.644E−031.921E−040.018
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o23454242.6361.610E+061.755E−043.234E−060.002
2p2(1D)3d 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o23442542.6571.463E+077.981E−045.759E−050.017
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o23442042.6581.517E+072.483E−032.763E−050.002
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p P1/223420242.6985.558E+083.038E−022.300E−030.005
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2P1/223408642.7191.429E+081.564E−025.798E−040.004
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o23394642.7441.484E+071.626E−032.710E−050.004
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o23390842.7512.425E+062.658E−044.429E−060.009
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p 2P3/223355842.8152.339E+081.286E−029.680E−040.010
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2P3/223344142.8376.359E+086.998E−022.581E−030.006
2s24d 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o23259442.9935.447E+086.037E−021.110E−030.043
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o2s23d 2D3/223219843.0666.460E+071.078E−028.968E−050.142
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o2s23d 2D5/223206743.0903.886E+066.491E−045.395E−060.144
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o2s23d 2D5/223206243.0917.233E+071.611E−021.004E−040.156
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p 4D1/223205443.0938.536E+074.753E−033.532E−040.000
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D1/223193743.1142.198E+072.450E−038.918E−050.001
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p 4D3/223168043.1622.710E+071.514E−031.121E−040.012
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 4D3/223156343.1846.105E+076.828E−032.477E−040.005
2s24d 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o23120343.2516.566E+081.105E−011.338E−030.048
2s24d 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o23115443.2611.187E+081.333E−022.420E−040.046
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2S1/223053843.3762.047E+072.309E−031.861E−040.014
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o23012143.4551.440E+062.447E−042.987E−060.033
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(3P)3p 2S1/222965943.5423.108E+071.767E−032.870E−040.013
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o22893443.6805.928E+066.782E−041.043E−050.036
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o22847543.7682.448E+064.218E−045.076E−060.027
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o22834443.7937.584E+078.722E−031.614E−040.021
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o22823643.8147.016E+071.211E−021.455E−040.020
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o22810543.8398.122E+069.360E−041.728E−050.027
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o22751243.9531.619E+072.814E−032.838E−050.024
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o22749343.9574.465E+075.174E−037.859E−050.003
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o22731543.9911.338E+071.552E−032.687E−050.010
2p2(1D)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o22679544.0922.765E+061.612E−045.608E−060.023
2p2(1D)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o22654944.1402.648E+063.094E−045.320E−060.016
2p2(1D)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o22602944.2421.078E+076.329E−042.187E−050.011
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p(3P)3p D3/222326544.7891.312E+072.367E−031.375E−040.046
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o22288744.8652.177E+073.942E−033.965E−050.015
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2P3/222288544.8662.908E+085.266E−021.528E−030.008
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p(3P)3p 4S3/222286544.8704.079E+064.924E−041.963E−050.002
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o22237544.9691.824E+082.211E−023.331E−040.020
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s2p(3P)3p 2D5/222225944.9921.758E+074.267E−031.827E−040.051
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2P1/222206545.0312.249E+082.735E−021.197E−030.010
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o22156245.1332.470E+084.526E−024.499E−040.018
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2P3/222142145.1623.858E+074.719E−032.053E−040.009
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 4D3/222100745.2473.072E+075.657E−031.614E−040.010
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 4D5/222035245.3811.276E+072.364E−036.704E−050.012
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 4D1/221991745.4712.903E+073.600E−031.545E−040.015
2p2(1S)3s 2S1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o21940545.5771.437E+068.951E−051.443E−060.020
2p2(1D)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o21925745.6081.800E+083.367E−022.135E−040.005
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 4D7/221921045.6183.550E+076.645E−031.865E−040.010
2p2(1D)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o21900445.6618.763E+062.191E−031.032E−050.009
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 4D5/221888845.6855.856E+067.330E−043.116E−050.005
2p2(1D)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o21793345.8851.432E+062.712E−041.699E−060.013
2p2(3P)3d 2D5/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o21770345.9331.244E+072.360E−032.579E−050.014
2p2(1D)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o21767945.9391.911E+084.837E−022.251E−040.004
2p2(3P)3d 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o21761045.9537.768E+069.837E−041.653E−050.022
2p2(3P)3d 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o21757245.9611.819E+062.304E−043.871E−060.011
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 2P3/221640446.2093.963E+077.612E−032.200E−040.001
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 2P1/221636146.2182.580E+073.305E−031.431E−040.005
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 2P1/221599346.2978.434E+075.420E−034.675E−040.011
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 2P3/221571646.3573.708E+074.779E−032.058E−040.006
2p2(1D)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o21566046.3694.900E+069.476E−048.924E−060.031
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p(3P)3p 2P3/221534846.4364.593E+072.970E−032.546E−040.015
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o21531046.4441.944E+075.029E−032.176E−040.018
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o21512646.4841.230E+092.390E−013.482E−030.002
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2s2p(3P)3p 4P1/221511246.4877.954E+081.031E−013.828E−030.000
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o21498546.5141.096E+087.110E−035.062E−040.013
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 21467046.5821.698E+092.210E−014.847E−030.002
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 2s2p(3P)3p 4P3/221456246.6061.521E+091.982E−017.323E−030.001
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 2s2p(3P)3p 4D3/221452646.6144.571E+078.935E−032.538E−040.005
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 4 F 9 / 2 21445546.6291.326E+083.458E−021.484E−030.015
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 21441446.6381.692E+073.310E−031.842E−040.016
2p2(1D)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 21438246.6454.667E+066.089E−048.523E−060.019
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 21433446.6561.903E+091.242E−012.541E−030.009
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 2s2p(3P)3p 4D1/221421346.6821.280E+081.672E−027.100E−040.004
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 21421046.6831.651E+091.079E−012.205E−030.009
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 21403546.7212.344E+083.068E−023.137E−040.009
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 21394946.7405.385E+087.054E−021.537E−030.003
2p2(3P)3s 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 21392146.7466.712E+084.397E−021.926E−030.003
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 21391146.7481.331E+091.744E−011.781E−030.009
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 2s2p(3P)3p 4P5/221388646.7532.127E+092.788E−011.024E−020.000
2p2(1S)3s 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 21388346.7542.494E+091.635E−012.504E−030.002
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 2s2p(3P)3p 4D5/221387146.7574.967E+089.769E−022.758E−030.003
2p2(1S)3s 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 21384546.7625.019E+093.291E−015.038E−030.002
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 2s2p(3P)3p 4D1/221384546.7621.216E+097.971E−026.739E−030.003
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 2s2p(3P)3p 4D3/221383946.7648.257E+081.083E−014.581E−030.003
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 21381446.7692.813E+095.535E−017.964E−030.003
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 21379746.7736.589E+071.297E−027.176E−040.016
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 21371946.7906.061E+077.957E−033.043E−040.012
2p2(3P)3s 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 21368446.7971.090E+091.431E−011.607E−030.004
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 21367246.8002.068E+092.717E−012.768E−030.010
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 2s2p(3P)3p 4D3/221347146.8441.100E+097.235E−026.096E−030.002
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 21337146.8661.185E+082.342E−021.590E−040.009
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 21330246.8812.189E+082.886E−021.099E−030.014
2p2(3P)3s 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 21319946.9043.322E+092.191E−019.531E−030.003
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 2s2p(3P)3p 4D5/221318346.9071.380E+091.821E−017.659E−030.002
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 21313346.9199.013E+081.785E−011.209E−030.009
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 2s2p(3P)3p 4D7/221272947.0071.703E+093.385E−019.457E−030.001
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 21267947.0193.032E+096.029E−014.067E−030.009
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P)3s 4 P 5 / 2 21263747.0281.777E+092.356E−015.071E−030.004
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 F 3 / 2 21256047.0453.501E+076.969E−033.124E−030.012
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 21237847.0851.987E+075.282E−032.087E−030.011
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P)3d 2 D 3 / 2 21232647.0971.919E+071.276E−032.562E−050.002
2p2(3P)3s 2P1/2 2 s 2 p ( 3 P)3s 2 P 1 / 2 21232347.0974.206E+092.798E−016.219E−030.003
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P)3d 2 F 3 / 2 21226247.1115.777E+087.690E−021.740E−020.013
2p2(3P)3s 2P3/2 2 s 2 p ( 3 P)3s 2 P 3 / 2 21224447.1155.187E+096.905E−017.650E−030.002
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P)3d 4 F 3 / 2 21218147.1292.773E+091.847E−011.453E−010.013
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 21214247.1385.557E+081.111E−014.960E−020.012
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P)3d 2 D 3 / 2 21202747.1635.517E+067.359E−047.384E−060.004
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 21184547.2042.008E+092.683E−016.047E−020.013
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P)3d 2 D 5 / 2 21178747.2176.700E+078.957E−038.967E−050.003
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 4 F 7 / 2 21176147.2223.290E+088.798E−023.457E−020.012
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 F 7 / 2 21152547.2752.160E+094.343E−011.928E−010.014
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 4 F 9 / 2 21090647.4142.284E+096.158E−012.400E−010.015
2p2(3P)3s 2P1/2 2 s 2 p ( 3 P)3s 2 P 3 / 2 21088347.4192.064E+091.391E−013.051E−030.001
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 2s2p(3P)3p 4S3/221010847.5943.068E+076.252E−031.612E−040.001
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 2s2p(3P)3p 2P3/220999747.6194.626E+079.436E−033.671E−040.000
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 2s2p(3P)3p 2P1/220988647.6447.802E+071.062E−026.192E−040.001
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 2s2p(3P)3p 2P1/220943247.7481.720E+081.176E−021.366E−030.002
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 2s2p(3P)3p 2P3/220924147.7919.074E+071.243E−027.202E−040.002
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 2s2p(3P)3p 2P3/220878747.8951.135E+087.805E−039.013E−040.003
2p2(1D)3d 2G7/2 2 s 2 p ( 3 P)3d 2 F 5 / 2 20877647.8988.865E+062.439E−035.612E−030.006
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 2s2p(3P)3p 4S3/220864447.9285.162E+067.111E−042.746E−050.004
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 2s2p(3P)3p 4D5/220850947.9594.972E+081.372E−013.949E−030.000
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 2s2p(3P)3p 4D3/220811948.0497.129E+081.481E−015.657E−030.001
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 2s2p(3P)3p 4D1/220773748.1377.018E+089.752E−025.570E−030.001
2p2(1D)3d 2G9/2 2 s 2 p ( 3 P)3d 2 F 7 / 2 20755548.1799.125E+063.176E−032.199E−020.000
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 2s2p(3P)3p 4D5/220746448.2011.690E+093.532E−011.341E−020.001
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 2s2p(3P)3p 4D7/220736748.2232.719E+097.583E−012.160E−020.001
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 2s2p(3P)3p 4D3/220736348.2241.042E+091.453E−018.268E−030.002
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P)3d 4 P 5 / 2 20732548.2337.446E+081.039E−019.967E−040.001
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 2s2p(3P)3p 4D1/220728448.2421.311E+099.145E−021.041E−020.002
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P)3d 4 P 3 / 2 20711448.2821.148E+098.023E−021.533E−030.000
2 p 3 2 D 3 / 2 2s2p2 2D5/220699348.3103.360E+084.703E−029.606E−020.007
2 p 3 2 D 3 / 2 2s2p2 2D3/220695348.3202.509E+093.512E−017.172E−010.005
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 2s2p(3P)3p 4D3/220691048.3301.525E+091.068E−011.212E−020.001
2 p 3 2 D 5 / 2 2s2p2 2D5/220690748.3302.677E+095.624E−017.627E−010.004
2 p 3 2 D 5 / 2 2s2p2 2D3/220686748.3402.091E+084.396E−025.959E−020.001
2 p 2 ( 3 P ) 3 d 4 P 3 / 2 2 s 2 p ( 3 P)3d 4 P 3 / 2 20681548.3526.809E+079.547E−039.114E−050.004
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P)3d 4 P 5 / 2 20678648.3595.623E+081.183E−017.544E−040.001
2p2(3P)3d 4P1/2 2 s 2 p ( 3 P)3d 4 P 1 / 2 20678248.3592.536E+081.778E−023.386E−040.000
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 2s2p(3P)3p 4D5/220670848.3771.227E+091.722E−019.740E−030.001
2p2(3P)3d 4P3/2 2 s 2 p ( 3 P)3d 4 P 1 / 2 20648348.4294.387E+086.170E−025.872E−040.001
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 2s2p(3P)3p 4D7/220632248.4677.224E+081.526E−015.732E−030.000
2p2(3P)3d 4P5/2 2 s 2 p ( 3 P)3d 4 P 3 / 2 20627548.4783.144E+086.646E−024.218E−040.001
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P)3d 2 F 5 / 2 20617048.5031.048E+082.218E−022.173E−040.018
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 2s2p(3P)3p 2D3/220614848.5082.475E+091.746E−011.024E−020.004
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P)3d 2 F 5 / 2 20603848.5342.497E+093.527E−015.312E−030.015
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 2s2p(3P)3p 2D3/220603248.5362.543E+083.592E−021.032E−030.005
2s2p2 2D3/2 2 s 2 2 p 2 P 1 / 2 20551648.6571.193E+091.694E−018.524E−010.005
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P)3d 2 F 7 / 2 20484648.8172.282E+094.893E−014.733E−030.013
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 2s2p(3P)3p 2D5/220464848.8642.175E+093.115E−018.828E−030.002
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P)3d 4 D 7 / 2 20409348.9972.868E+068.257E−043.210E−050.020
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 4S3/220362749.1091.216E+092.639E−016.753E−030.000
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o20354849.1282.444E+061.769E−041.129E−050.020
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o20342449.1582.943E+072.133E−031.359E−040.020
2s2p2 2D3/2 2 s 2 2 p 2 P 3 / 2 o20338249.1682.065E+082.994E−021.476E−010.005
2s2p2 2D5/2 2 s 2 2 p 2 P 3 / 2 o20334149.1781.354E+092.946E−011.000E+000.006
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 4S3/220294049.2751.051E+091.531E−015.833E−030.001
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P)3d 2 D 5 / 2 o20266249.3439.407E+062.747E−031.053E−040.023
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p(3P)3p 4S3/220257249.3659.727E+087.107E−025.392E−030.002
2p2(3P)3d 4F9/2 2 s 2 p ( 3 P)3d 4 F 7 / 2 o20244849.3951.449E+085.301E−024.033E−020.004
2p2(3P)3d 4F7/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 o20231749.4272.235E+086.548E−025.972E−020.004
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P)3d 4 D 1 / 2 o20228349.4352.555E+063.745E−041.283E−050.022
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P)3d 4 F 3 / 2 o20216649.4642.182E+084.802E−025.805E−020.004
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P)3d 4 D 5 / 2 o20192049.5244.584E+076.742E−032.301E−040.020
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(P)3p P3/220180549.5523.717E+068.209E−041.953E−050.005
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P)3d 4 F 3 / 2 o20176849.5611.265E+091.863E−013.414E−010.003
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 o20174849.5661.062E+092.347E−012.825E−010.003
2p2(3P)3d 4F7/2 2 s 2 p ( 3 P)3d 4 F 7 / 2 o20170049.5781.198E+093.533E−013.203E−010.003
2p2(3P)3d 4F9/2 2 s 2 p ( 3 P)3d 4 F 9 / 2 o20159349.6041.528E+095.637E−014.253E−010.003
2p2(3P)3d 4P1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o20155349.6141.077E+067.951E−051.438E−060.001
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P)3d 2 D 3 / 2 o20154049.6172.923E+092.158E−011.350E−020.011
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P)3d 2 D 3 / 2 o20138749.6559.648E+062.140E−031.051E−040.023
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P)3d 4 F 5 / 2 o20135049.6643.956E+085.852E−021.068E−010.004
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P)3d 4 F 7 / 2 o20113049.7183.841E+088.540E−021.022E−010.005
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(P)3p P5/220112849.7193.677E+068.177E−041.932E−050.030
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(P)3p P1/220103649.7421.614E+091.197E−015.978E−030.002
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 D 3 / 2 o20099949.7512.036E+074.532E−031.817E−030.017
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 4 D 5 / 2 o20099749.7512.414E+077.166E−032.536E−030.012
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(P)3p P1/220089049.7781.958E+062.910E−041.042E−050.001
2p2(3P)3d 4F7/2 2 s 2 p ( 3 P)3d 4 F 9 / 2 o20084449.7892.468E+087.336E−026.594E−020.006
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P)3d 4 D 1 / 2 o20082649.7941.178E+071.752E−033.549E−040.023
2 p 3 2 P 3 / 2 o2s2p2 2S1/220077549.8069.413E+081.400E−011.098E−010.004
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 D 5 / 2 o20076149.8102.104E+074.695E−031.878E−030.032
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P)3d 4 D 1 / 2 o20074549.8141.456E+071.084E−037.633E−040.035
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P)3d 4 D 3 / 2 o20070249.8251.156E+071.721E−033.481E−040.038
2 p 3 2 P 1 / 2 o2s2p2 2S1/220068349.8296.846E+085.097E−027.954E−020.012
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P)3d 4 D 3 / 2 o20062149.8451.148E+078.555E−046.019E−040.035
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 4 D 7 / 2 o20054449.8647.077E+072.110E−027.436E−030.022
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P)3d 4 D 5 / 2 o20046349.8844.450E+066.641E−041.340E−040.039
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(P)3p P3/220039249.9023.426E+092.558E−011.269E−020.000
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P)3d 4 D 7 / 2 o20030749.9231.640E+073.677E−031.464E−030.021
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P)3d 2 D 3 / 2 o20027549.9312.998E+084.483E−021.505E−030.011
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P)3d 2 D 5 / 2 o20003549.9912.384E+093.573E−011.197E−020.011
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P)3d 2 D 5 / 2 o19911250.2223.099E+069.374E−043.256E−040.006
2p2(3P)3d 2D5/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o19894350.2652.360E+075.363E−034.894E−050.030
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(3P)3d 4D1/219888850.2791.320E+081.001E−024.890E−040.006
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o19887650.2824.491E+061.021E−034.008E−040.008
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o19881850.2972.110E+073.201E−036.354E−040.010
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o19881250.2983.323E+065.042E−047.072E−060.039
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o19873750.3171.297E+089.849E−036.799E−030.011
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o19857950.3572.979E+084.531E−028.973E−030.010
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(3P)3p 4D3/219851450.3741.841E+081.401E−026.821E−040.004
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19819950.4541.158E+073.535E−031.296E−040.016
2p2(3P)3d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o19804650.4932.623E+074.010E−035.581E−050.029
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 4S3/219722050.7041.608E+073.719E−031.276E−040.002
2s24s 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o19698450.7653.392E+062.621E−041.473E−050.370
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19668650.8422.364E+065.496E−042.574E−050.007
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p(3P)3p 4S3/219646450.8991.301E+072.022E−031.033E−040.001
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19632850.9351.114E+078.666E−045.145E−050.005
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19617550.9743.296E+067.703E−043.589E−050.015
2 s 2 4 p 2 P 1 / 2 o2s2p(3P)3p 2P3/219607551.0002.265E+061.766E−042.743E−060.007
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p(3P)3p 4S3/219601151.0174.160E+063.247E−043.305E−050.001
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o19599751.0218.603E+066.715E−043.973E−050.009
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19557351.1314.783E+077.499E−032.401E−040.007
2s24s 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o19554351.1399.309E+067.300E−044.041E−050.375
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2D3/219547551.1571.467E+083.453E−027.706E−040.003
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 4P3/219532451.1962.366E+085.578E−021.314E−030.003
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 4P1/219518651.2334.466E+087.029E−022.478E−030.002
2p2(1S)3s 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o19508551.2594.560E+083.593E−024.578E−040.006
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19506351.2658.041E+061.267E−034.037E−050.007
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p(3P)3p 4P1/219481851.3291.742E+081.376E−029.655E−040.003
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o19473151.3528.195E+061.296E−034.114E−050.013
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19465051.3741.674E+085.300E−021.759E−020.009
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 4P5/219464851.3749.681E+082.298E−015.375E−030.003
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 4P3/219463751.3772.606E+084.126E−021.446E−030.001
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19441451.4368.903E+072.119E−027.946E−030.005
2p2(1S)3s 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o19431951.4612.200E+081.747E−022.209E−040.007
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2s2p(3P)3p 4P3/219426951.4741.182E+099.388E−026.550E−030.002
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o19411651.5156.436E+061.024E−031.938E−040.011
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(3P)3p 2D5/219409251.5212.126E+095.077E−011.117E−020.002
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2D3/219401251.5432.105E+093.354E−011.120E−020.002
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 4P5/219396051.5565.980E+089.532E−023.318E−030.004
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19390351.5711.010E+082.415E−029.010E−030.010
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19360651.6511.121E+081.794E−023.377E−030.006
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o19352551.6723.942E+073.156E−032.066E−030.006
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o19327451.7395.243E+078.417E−031.579E−030.009
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o19319351.7611.470E+081.181E−027.707E−030.007
2 s 2 4 f 2 F 5 / 2 o2s2p(3P)3p 2D3/219318151.7641.534E+073.698E−038.121E−050.008
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(3P)3p 2D5/219262851.9132.225E+083.596E−021.184E−030.001
2 s 2 4 f 2 F 7 / 2 o2s2p(3P)3p 2D5/219187752.1161.959E+076.381E−031.044E−040.002
2 s 2 4 f 2 F 5 / 2 o2s2p(3P)3p 2D5/219179752.1381.235E+073.020E−036.537E−050.000
2p2(3P)3d 4F9/2 2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o19123152.2921.069E+074.384E−032.976E−030.025
2p2(3P)3d 4F7/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o19093652.3739.771E+063.214E−032.611E−030.013
2p2(3P)3d 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o19080652.4094.285E+073.529E−031.979E−040.005
2p2(3P)3d 2P1/2 2 s 2 p( 1 P) 3 s 2 P 3 / 2 o19076852.4192.611E+072.151E−031.206E−040.010
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o19060552.4649.643E+062.388E−032.566E−030.007
2p2(3P)3d 4F7/2 2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o19048252.4988.231E+062.721E−032.200E−030.013
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o19036752.5309.866E+062.449E−032.625E−030.010
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o19033152.5391.124E+071.861E−033.033E−030.004
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o19020752.5748.846E+061.466E−032.387E−030.007
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o18996952.6401.571E+062.611E−044.240E−040.004
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o18991352.6551.244E+063.103E−043.310E−040.000
2p2(3P)3d 2P3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o18954152.7591.030E+071.720E−035.173E−050.002
2p2(3P)3d 2P3/2 2 s 2 p( 1 P) 3 s 2 P 3 / 2 o18950252.7694.473E+077.470E−032.246E−040.006
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o2s2p(3P)3p 4P5/218928652.8308.834E+082.957E−017.016E−030.003
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 2D3/218899552.9111.610E+064.055E−048.940E−060.016
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p(3P)3p 4P3/218891752.9336.557E+081.653E−015.203E−030.003
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p(3P)3p 4P1/218871152.9904.137E+086.966E−023.283E−030.003
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(3P)3p 2S1/218857553.0297.340E+086.189E−023.037E−030.002
2p2(3P)3d 4F5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o18848253.0551.040E+062.634E−042.767E−040.012
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(3P)3p 2S1/218845953.0616.986E+081.179E−012.835E−030.002
2p2(3P)3d 4F3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o18832353.1001.876E+063.172E−045.062E−040.011
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(3P)3p 2D3/218830753.1045.444E+069.206E−043.021E−050.016
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p(3P)3p 4P1/218825753.1187.963E+086.737E−026.325E−030.002
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2s2p(3P)3p 4P5/218824153.1232.424E+086.152E−021.923E−030.001
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p(3P)3p 4P3/218816153.1454.685E+087.936E−023.719E−030.001
2p2(3P)3d 4D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o18808453.1671.108E+061.878E−043.337E−050.002
2p2(3P)3d 4D3/2 2 s 2 p( 1 P) 3 s 2 P 3 / 2 o18804553.1786.127E+061.039E−031.845E−040.007
2p2(3P)3d 4D1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o18800353.1902.502E+062.122E−041.311E−040.006
2p2(3P)3d 4D1/2 2 s 2 p( 1 P) 3 s 2 P 3 / 2 o18796453.2011.535E+061.302E−048.043E−050.008
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p(3P)3p 4P3/218770853.2741.415E+081.204E−021.124E−030.001
2 p 2 ( 3 P ) 3 p 4 S 1 / 2 o2s2p(3P)3p 4S3/218761553.3001.638E+061.395E−046.069E−060.001
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(3P)3p 2D5/218761153.3012.014E+075.147E−031.118E−040.017
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2s2p(3P)3p 4P5/218748553.3373.764E+076.422E−032.988E−040.004
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o2s2p(3P)3p 2D5/218224954.8692.103E+067.593E−041.670E−050.008
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2D3/218147555.1031.815E+073.306E−031.908E−050.035
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2s2p(3P)3p 2D3/218137855.1331.425E+061.299E−041.132E−050.041
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2D5/218132155.1502.135E+083.894E−022.243E−040.014
2 p 3 2 P 3 / 2 o2s2p2 2P1/218129855.1573.602E+086.571E−024.202E−020.004
2 p 3 2 P 1 / 2 o2s2p2 2P1/218120755.1852.005E+091.831E−012.330E−010.006
2p2(3P)3d2F7/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o18059555.3722.414E+078.878E−032.702E−040.007
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2P1/218005355.5399.533E+061.763E−033.164E−050.005
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(1P)3p 2D3/218000155.5542.446E+082.263E−022.562E−040.018
2 p 3 2 P 3 / 2 o2s2p2 2P3/217998355.5602.366E+094.380E−012.761E−010.007
2 p 3 2 P 1 / 2 o2s2p2 2P3/217989155.5888.901E+088.247E−021.034E−010.008
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(3P)3p 4P1/217986255.5981.003E+069.294E−053.715E−060.025
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2P1/217986155.5984.167E+073.863E−031.384E−040.008
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(1P)3p 2P3/217960455.6771.733E+073.221E−031.821E−050.029
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2P3/217940855.7384.985E+079.288E−031.655E−040.007
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(3P)3p 4P3/217931255.7683.365E+063.138E−041.247E−050.030
2p2(3P)3d 2F7/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o17927155.7817.109E+082.653E−017.957E−030.004
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2P3/217921655.7981.986E+071.854E−036.595E−050.009
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o17908255.8407.317E+082.052E−017.968E−030.006
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(1P)3p 2P1/217852956.0132.047E+071.926E−032.145E−050.038
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 4D1/217790456.2091.035E+061.960E−043.434E−060.001
2p2(3P)3d 2F5/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o17775756.2563.610E+071.028E−023.932E−040.000
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 4D1/217771256.2704.571E+064.340E−041.518E−050.007
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 4D3/217753056.3283.458E+066.580E−041.148E−050.006
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 4D3/217733856.3891.791E+061.707E−045.946E−060.003
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o17704656.4821.261E+064.827E−041.326E−040.002
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2P1/217688056.5352.626E+075.034E−034.078E−050.016
2p2(3P)3d 4D5/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o17681056.5572.063E+075.937E−031.841E−030.001
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2P3/217643656.6773.446E+079.956E−035.366E−050.017
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2P3/217623556.7425.585E+061.078E−038.672E−060.006
2p2(3P)3d 4D7/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o17572256.9083.498E+071.359E−023.675E−030.000
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s2p(1P)3p 2S1/217500157.1424.346E+088.510E−024.566E−040.023
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 4D1/217473157.2302.518E+064.945E−043.909E−060.019
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 4D3/217455857.2872.265E+066.685E−043.527E−060.020
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2p(1P)3p 2S1/217352857.6274.205E+084.187E−024.406E−040.027
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o17200858.1361.732E+081.755E−027.997E−040.002
2p2(3P)3d 2P1/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o17124258.3962.818E+082.881E−021.301E−030.002
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o17074258.5673.223E+086.629E−021.618E−030.002
2p2(3P)3d 2P3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o16997758.8316.179E+071.283E−023.102E−040.000
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o16928559.0713.985E+078.339E−031.200E−030.002
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o16920459.0999.256E+069.693E−044.851E−040.001
2 s 2 4 p 2 P 3 / 2 o 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o16885359.2222.265E+064.764E−042.760E−060.098
2 s 2 4 p 2 P 1 / 2 o2s2p(3P)3p 2D3/216866659.2882.191E+072.309E−032.653E−050.109
2p2(3P)3d 4D3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o16852059.3408.674E+061.832E−032.612E−040.002
2p2(3P)3d 4D1/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o16843959.3681.540E+071.628E−038.073E−040.002
2 s 2 4 p 2 P 3 / 2 o2s2p(3P)3p 2D5/216746959.7121.809E+073.868E−032.205E−050.079
2s2p(3P)3p 2S1/2 2 s 2 3 p 2 P 1 / 2 o16450760.7877.306E+078.094E−032.083E−040.005
2s2p(3P)3p 2S1/2 2 s 2 3 p 2 P 3 / 2 o16396160.9891.662E+081.854E−024.738E−040.006
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2s2p(1P)3p 2S1/216308961.3161.487E+063.353E−042.839E−060.060
2s2p(1P)3p 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o15534764.3713.238E+084.023E−021.884E−030.018
2s2p(1P)3p 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o15390764.9746.144E+087.777E−023.574E−030.019
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s2 3s 2S1/215335665.2071.673E+084.267E−023.654E−040.016
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p(3P)3p 2D3/215199965.7895.599E+061.453E−031.858E−050.056
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o2s2 3s 2S1/215191565.8251.532E+081.991E−023.404E−040.020
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2D3/215180765.8735.129E+076.673E−031.703E−040.055
2 s 2 4 p 2 P 3 / 2 o2s2p(3P)3p 2S1/215128066.1028.208E+072.151E−021.000E−040.053
2 s 2 4 p 2 P 1 / 2 o2s2p(3P)3p 2S1/215109366.1848.308E+071.091E−021.006E−040.050
2s2p(1P)3p 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o15074566.3371.099E+072.900E−036.372E−050.016
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2D5/215071566.3491.164E+063.073E−041.059E−050.034
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2D5/215061566.3944.633E+071.225E−021.537E−040.040
2s2p(1P)3p 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o15034666.5135.634E+067.473E−043.267E−050.039
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2D3/214999166.6705.147E+066.860E−044.753E−050.004
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2P1/214939766.9352.540E+076.825E−032.310E−040.030
2s2p(1P)3p 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o14930466.9777.668E+062.063E−034.447E−050.022
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2D3/214902767.1015.555E+062.250E−038.651E−060.007
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2P3/214899967.1141.360E+083.674E−021.237E−030.013
2s2p(1P)3p 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o14890567.1561.110E+071.501E−036.438E−050.000
2s2p(1P)3p 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o14887367.1702.781E+087.526E−025.073E−030.005
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2D3/214882667.1929.289E+072.515E−021.442E−040.007
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2P1/214851867.3317.765E+071.056E−027.170E−040.011
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2P3/214811967.5124.618E+076.311E−034.264E−040.005
2 p 3 2 D 3 / 2 o2s2p2 2S1/214793867.5955.280E+061.447E−031.509E−030.042
2s2p(3P)3p 2D5/2 2 s 2 3 p 2 P 3 / 2 o14777267.6713.092E+081.274E−019.009E−040.007
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2D5/214764367.7309.296E+073.836E−021.448E−040.005
2s2p(1P)3p 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o14758867.7563.358E+081.387E−016.100E−030.005
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2D5/214744267.8231.021E+072.817E−031.586E−050.000
2s2p(1P)3p 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o14743367.8276.006E+071.657E−021.096E−030.003
2s2p(3P)3p 2D3/2 2 s 2 3 p 2 P 1 / 2 o14693468.0572.594E+087.205E−027.541E−040.008
2s2p(3P)3p 2D3/2 2 s 2 3 p 2 P 3 / 2 o14638868.3115.853E+071.638E−021.702E−040.006
2p2(1D)3d 2S1/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o14572668.6213.671E+085.184E−021.445E−030.042
2p2(1D)3d 2S1/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o14553368.7127.072E+081.001E−012.784E−030.044
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o14451069.1992.355E+061.014E−034.128E−060.021
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o14449169.2081.424E+074.090E−032.506E−050.030
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2S1/214439669.2534.984E+081.433E−014.532E−030.012
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o14427169.3131.482E+076.406E−032.598E−050.029
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o14425269.3231.294E+063.728E−042.277E−060.029
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2S1/214351769.6785.251E+087.644E−024.849E−030.009
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2D3/214099070.9264.168E+081.257E−011.591E−030.001
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2D5/214083671.0045.441E+071.645E−022.077E−040.008
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2D3/214083471.0056.362E+072.885E−022.417E−040.006
2p2(1D)3d 2P3/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o14083171.0063.099E+079.371E−036.226E−050.018
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2D5/214067971.0834.544E+082.065E−011.727E−030.002
2p2(1D)3d 2P3/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o14063071.1083.376E+081.024E−016.783E−040.019
2p2(1D)3d 2P1/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o14031171.2703.706E+085.644E−027.514E−040.018
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o14005771.3993.387E+071.553E−026.170E−050.023
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o14005271.4011.691E+067.754E−043.080E−060.016
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o13954071.6632.753E+078.477E−035.027E−050.026
2 p 2 ( 1 D ) 3 d 2 D 3 / 2 o2s2p(1P)3p 2P1/213951871.6751.899E+085.850E−027.247E−040.018
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2P3/213911971.8804.419E+071.369E−021.687E−040.002
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2P3/213896371.9611.826E+088.504E−026.937E−040.018
2 p 2 ( 1 D ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2D3/213795072.4891.187E+065.610E−041.647E−060.061
2p2(1D)3d 2P3/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o13785072.5421.114E+083.517E−022.239E−040.011
2p2(1D)3d 2P3/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o13765872.6435.732E+081.814E−011.151E−030.012
2s24d 2D5/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o13742972.7643.796E+061.808E−037.733E−060.256
2s24d 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o13741772.7703.655E+061.161E−037.449E−060.227
2p2(1D)3d 2P1/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o13733072.8174.433E+087.048E−028.990E−040.011
2p2(1D)3d 2P1/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o13713872.9192.309E+083.681E−024.682E−040.016
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o2s2p(3P)3p 2D5/213656173.2271.879E+061.208E−032.608E−060.052
2p2(1D)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o13642873.2982.160E+071.044E−022.563E−050.007
2p2(1D)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o13642373.3015.005E+082.419E−015.938E−040.001
2p2(1D)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o13617473.4354.981E+083.221E−015.867E−040.002
2p2(1D)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o13616973.4372.343E+071.515E−022.760E−050.015
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2S1/213451774.3401.167E+063.867E−044.454E−060.052
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2S1/213442674.3904.161E+071.381E−021.381E−040.039
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2S1/213423474.4964.052E+076.743E−031.346E−040.043
2p2(1D)3s 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o13375774.7621.071E+093.591E−011.886E−030.009
2p2(1D)3s 2D5/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o13373874.7721.322E+096.646E−012.316E−030.008
2p2(1D)3s 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o13371974.7832.482E+088.324E−024.369E−040.008
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s2 4s 2S1/213189175.8191.209E+062.084E−041.267E−060.665
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2p2 (P3)3s 4P3/213114376.2525.703E+062.983E−031.087E−050.093
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2p2 (3P)3s 4P1/213054376.6027.840E+062.759E−031.496E−050.094
2 s 2 p ( 3 P ) 4 s 4 P 5 / 2 o2p2 (3P)3s 4P5/212996676.9421.341E+077.141E−032.556E−050.097
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2p2(3P)3s 4P1/212981577.0323.168E+065.637E−046.069E−060.097
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2p2 (3P)3s 4P3/212979377.0452.517E+068.960E−044.804E−060.096
2p2(3P)3s 2P3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o12924177.3742.026E+067.273E−042.988E−060.017
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o12917677.4133.674E+071.981E−026.692E−050.007
2 s 2 p ( 3 P ) 4 s 4 P 1 / 2 o2p2 (3P)3s 4P3/212906677.4791.603E+072.886E−033.071E−050.099
2p2(3P)3s 2P3/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o12900277.5173.202E+071.154E−024.722E−050.014
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o12897577.5337.752E+084.192E−011.412E−030.004
2p2(1D)3d 2S1/2 2 s 2 4 p 2 P 1 / 2 o12886777.5991.014E+081.831E−023.992E−040.059
2p2(1D)3d 2S1/2 2 s 2 4 p 2 P 3 / 2 o12867977.7121.932E+083.499E−027.607E−040.061
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o12866477.7217.639E+082.767E−011.395E−030.004
2 s 2 p ( 3 P ) 4 s 4 P 3 / 2 o2p2 (3P)3s 4P5/212861677.7508.763E+063.177E−031.672E−050.100
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o12846377.8428.134E+072.956E−021.486E−040.007
2 p 3 2 D 3 / 2 o2s2p2 2P1/212846177.8445.543E+082.014E−011.585E−010.004
2p2(3P)3s 2P1/2 2 s 2 p ( 3 P ) 3 d 3 D 3 / 2 o12788078.1973.773E+076.918E−035.579E−050.012
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2 3d 2D5/212716778.6363.700E+062.058E−031.246E−050.001
2 p 3 2 D 3 / 2 o2s2p2 2P3/212714678.6499.337E+073.463E−022.669E−020.012
2 p 3 2 D 5 / 2 o2s2p2 2P3/212706078.7026.224E+083.468E−011.774E−010.004
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2 3d 2D3/212705978.7033.455E+061.283E−031.186E−050.002
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o2s2p(1P)3p 2D5/212624779.2097.875E+085.926E−018.188E−030.004
2p2(1D)3d 2G9/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o12605079.3337.849E+077.406E−021.892E−010.107
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p(1P)3p 2D3/212602379.3497.203E+084.080E−017.550E−030.005
2p2(1D)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o12600379.3621.274E+087.219E−022.321E−040.030
2p2(1D)3d 2G7/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o12594779.3988.408E+066.357E−035.323E−030.055
2p2(1D)3d 2G7/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o12594279.4016.999E+075.292E−024.431E−020.104
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p(1P)3p 2D5/212586979.4476.191E+073.515E−026.489E−040.002
2s24d 2D3/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o12584679.4621.272E+064.817E−042.593E−060.179
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o12568379.5641.097E+084.163E−022.003E−040.034
2p2(1D)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o12554779.6511.299E+087.410E−021.541E−040.010
2p2(1D)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o12549179.6861.800E+076.855E−033.288E−050.041
2p2(1D)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o12509279.9401.155E+088.853E−021.361E−040.008
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2s2p(1P)3p 2P3/212415280.5451.295E+077.555E−031.357E−040.002
2p2(3P)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o12333581.0791.872E+061.107E−033.883E−060.041
2p2(1D)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o12237481.7162.088E+061.254E−032.478E−060.014
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o12220581.8292.338E+061.408E−034.099E−060.023
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o12218581.8424.290E+071.723E−027.551E−050.017
2s2p(3P)3p 4D3/2 2 s 2 3 p 2 P 1 / 2 o12140282.3701.225E+064.984E−045.445E−050.021
2s2p(3P)3p 4D1/2 2 s 2 3 p 2 P 1 / 2 o12102982.6245.598E+061.146E−031.729E−040.009
2p2(1D)3d 2P3/2 2 s 2 4 p 2 P 1 / 2 o12099182.6503.882E+071.590E−027.799E−050.006
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o12088082.7264.131E+072.543E−027.241E−050.019
2s2p(3P)3p 4D3/2 2 s 2 3 p 2 P 3 / 2 o12085782.7424.536E+061.862E−032.016E−040.004
2p2(1D)3d 2P3/2 2 s 2 4 p 2 P 3 / 2 o12080482.7781.857E+087.630E−023.730E−040.010
2s2p(3P)3p 4D1/2 2 s 2 3 p 2 P 3 / 2 o12048382.9992.382E+064.920E−047.357E−050.016
2p2(1D)3d 2P1/2 2 s 2 4 p 2 P 1 / 2 o12047183.0071.396E+082.884E−022.831E−040.009
2p2(1D)3d 2P1/2 2 s 2 4 p 2 P 3 / 2 o12028483.1367.592E+071.573E−021.540E−040.007
2s2p(3P)3p 2P3/2 2 s 2 3 p 2 P 1 / 2 o11952583.6641.785E+077.491E−035.784E−050.006
2s2p(3P)3p 2P3/2 2 s 2 3 p 2 P 3 / 2 o11897984.0487.050E+072.987E−022.285E−040.001
2s2p(3P)3p 2P1/2 2 s 2 3 p 2 P 1 / 2 o11888084.1175.830E+071.237E−021.935E−040.000
2p2(3P)3s 2P3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o11850784.3826.636E+072.834E−029.788E−050.012
2p2(3P)3s 2P3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o11846984.4091.898E+088.111E−022.800E−040.010
2s2p(3P)3p 2P1/2 2 s 2 3 p 2 P 3 / 2 o11833484.5052.533E+075.424E−038.408E−050.005
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2p2 (2P)3s 3P1/211802584.7272.917E+061.256E−033.064E−060.493
2p2(3P)3s 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o11714685.3621.673E+083.655E−022.474E−040.013
2p2(3P)3s 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o11710885.3907.402E+071.618E−021.094E−040.011
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o11667485.7081.090E+084.802E−022.190E−040.037
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2p2(3P)3s 2P3/211666485.7151.820E+078.020E−031.913E−050.428
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2p2 (3P)3s 2P1/211655285.7981.506E+073.323E−031.577E−050.422
2p2(1D)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o11615486.0921.271E+082.824E−022.576E−040.031
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2p2 (3P)3s 2P3/211519186.8129.374E+062.118E−039.822E−060.392
2p2(1D)3s 2D5/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o11497886.9723.060E+072.082E−025.364E−050.011
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o11495986.9874.430E+062.010E−037.797E−060.017
2p2(1D)3s 2D3/2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o11419387.5702.174E+079.996E−033.826E−050.012
2p2(3P)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o11246088.9201.042E+067.408E−042.160E−060.041
2p2(3P)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o11232889.0242.322E+071.104E−024.941E−050.003
2p2(3P)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 P 5 / 2 o11225989.0793.662E+072.614E−027.594E−050.002
2p2(3P)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 5 / 2 o11212789.1842.008E+069.580E−044.274E−060.031
2p2(3P)3d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o10934791.4513.253E+061.631E−036.921E−060.038
2p2(3P)3d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o10928691.5024.997E+063.764E−031.036E−050.050
2p2(1D)3d 2D5/2 2 s 2 4 p 2 P 3 / 2 o10914991.6172.040E+071.540E−023.716E−050.097
2p2(1D)3d 2D3/2 2 s 2 4 p 2 P 1 / 2 o10882491.8901.880E+079.520E−033.434E−050.110
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2D3/210879191.9193.079E+061.560E−031.249E−050.001
2p2(1D)3d 2D3/2 2 s 2 4 p 2 P 3 / 2 o10863792.0493.161E+061.606E−035.774E−060.113
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2P1/210743493.0792.855E+087.417E−021.182E−030.002
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2P1/210731893.1807.992E+074.161E−023.243E−040.001
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2P3/210703693.4261.594E+084.173E−026.597E−040.003
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o10702293.4382.641E+062.074E−037.477E−060.031
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2P3/210692093.5273.700E+081.941E−011.502E−030.001
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o10656993.8351.636E+071.296E−024.631E−050.031
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o10608494.2645.905E+063.147E−031.686E−050.026
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o10584594.4771.370E+077.335E−033.911E−050.027
2p2(1S)3s 2S1/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o10562094.6781.096E+072.945E−031.100E−050.007
2p2(3P)3s 4P1/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o10545894.8241.024E+072.760E−032.937E−050.026
2p2(1S)3s 2S1/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o10542894.8512.333E+076.294E−032.342E−050.007
2p2(3P)3s 4P1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o10533494.9351.110E+073.000E−033.185E−050.027
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s2 4s 2S1/210276097.3133.673E+072.086E−023.340E−040.084
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2p(1P)3p 2S1/210243397.6243.625E+071.036E−021.500E−040.022
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2s2p(1P)3p 2S1/210231797.7352.652E+071.519E−021.076E−040.017
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s2 4s 2S1/210188098.1533.473E+071.003E−023.207E−040.080
2s24s 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o10180798.2242.937E+078.498E−031.275E−040.057
2s24s 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o10176998.2615.839E+071.690E−022.534E−040.057
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2p2 (1D)3s 2D3/210141598.6044.089E+062.384E−034.296E−060.337
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2p2 (1D)3s 2D5/210139698.6232.110E+071.231E−022.217E−050.332
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o10067599.3284.119E+063.656E−031.166E−050.027
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o10066299.3413.344E+061.979E−036.718E−060.048
2p2(3P)3s 4P5/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o10016599.8351.576E+061.413E−034.462E−060.024
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2p2 (1D)3s 2D3/299941100.0582.503E+077.514E−032.623E−050.318
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o99498100.5031.120E+066.781E−043.195E−060.020
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o98988101.0221.026E+066.277E−042.927E−060.024
2p2(3P)3s 4P3/2 2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o98656101.3612.075E+061.279E−035.923E−060.021
2p2(3P)3s 4P1/2 2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o98238101.7932.805E+068.716E−048.049E−060.026
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2D3/298234101.7971.743E+071.624E−029.155E−050.009
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2D5/298080101.9571.576E+071.474E−028.281E−050.020
2p2(3P)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o97766102.2844.605E+075.778E−025.154E−040.010
2p2(3P)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o97761102.2901.827E+062.293E−032.045E−050.030
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s24d 2D3/297754102.2961.572E+069.863E−041.651E−060.346
2 s 2 p ( 3 P ) 4 s 2 P 3 / 2 o2s24d 2D5/297705102.3481.507E+079.466E−031.583E−050.360
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2D3/296770103.3361.044E+076.687E−035.556E−050.024
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2D5/296616103.5021.401E+068.998E−047.452E−060.012
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2s2p(1P)3p 2P3/296363103.7733.405E+083.299E−011.789E−030.002
2 s 2 p ( 3 P ) 4 s 2 P 1 / 2 o2s24d 2D3/296281103.8621.630E+075.271E−031.708E−050.340
2p2(3P)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o96252103.8921.923E+061.867E−032.094E−050.018
2p2(3P)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o96247103.8984.430E+074.301E−024.824E−040.009
2 s 2 4 f 2 F 5 / 2 o2s2p(1P)3p 2D3/295940104.2319.240E+079.030E−024.890E−040.001
2 s 2 4 f 2 F 7 / 2 o2s2p(1P)3p 2D5/295865104.3121.046E+081.365E−015.576E−040.003
2 s 2 4 f 2 F 5 / 2 o2s2p(1P)3p 2D5/295785104.3997.900E+067.745E−034.181E−050.000
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o95645104.5522.076E+071.361E−024.171E−050.020
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2P1/295298104.9332.912E+081.923E−011.550E−030.000
2p2(1D)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o95125105.1242.108E+086.985E−024.275E−040.022
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2s2p(1P)3p 2P3/294899105.3746.571E+074.376E−023.496E−040.000
2p2(3P)3d 4D7/2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o94216106.1373.014E+064.073E−033.167E−040.009
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o94181106.1771.851E+081.251E−013.717E−040.023
2 s 2 4 f 2 F 5 / 2 o2s2p(1P)3p 2P3/294069106.3043.563E+063.622E−031.886E−050.002
2p2(3P)3d 4D5/2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o93975106.4101.500E+061.528E−031.339E−040.013
2p2(3P)3d 2D3/2 2 s 2 4 p 2 P 1 / 2 o92488108.1213.708E+062.599E−037.889E−060.080
2p2(3P)3d 2D5/2 2 s 2 4 p 2 P 3 / 2 o92432108.1864.025E+064.238E−038.347E−060.049
2p2(1D)3d 2S1/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o91500109.2881.749E+086.262E−026.884E−040.000
2p2(1D)3d 2S1/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o91384109.4277.826E+072.810E−023.081E−040.009
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2P1/291162109.6942.592E+089.352E−027.430E−040.005
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2P3/290517110.4751.330E+084.866E−023.811E−040.003
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2P1/290396110.6236.445E+074.730E−021.879E−040.007
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2s2p(1P)3p 2P3/289883111.2555.861E+066.526E−033.254E−050.002
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2P3/289751111.4183.450E+082.568E−011.006E−030.005
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2s2p(1P)3p 2P1/289593111.6141.415E+061.057E−037.853E−060.003
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 4D1/289013112.3422.757E+071.043E−027.903E−050.005
2p2(1D)3d 2D5/2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o89007112.3492.083E+062.365E−033.795E−060.063
2p2(1S)3s 2S1/2 2 s 2 4 p 2 P 1 / 2 o88761112.6613.551E+061.352E−033.565E−060.091
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 4D3/288639112.8169.274E+063.539E−032.658E−050.003
2p2(1S)3s 2S1/2 2 s 2 4 p 2 P 3 / 2 o88574112.8997.492E+062.863E−037.520E−060.106
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 4D1/288248113.3166.864E+065.285E−032.001E−050.007
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 4D3/287874113.7992.482E+071.927E−027.236E−050.005
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2p2(3P)3s 2P1/287420114.3896.020E+074.724E−025.474E−040.005
2p2(3P)3d 2F7/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o86684115.3611.628E+072.598E−021.822E−040.015
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2p2(3P)3s 2P1/286541115.5513.197E+081.280E−012.953E−030.008
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2p2(3P)3s 2P3/286059116.1984.030E+083.263E−013.665E−030.004
2p2(3F)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o85372117.1341.379E+071.702E−021.501E−040.004
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2p2(3P)3s 2P3/285180117.3981.992E+088.233E−021.840E−030.007
2p2(3P)3d 2F5/2 2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o85170117.4101.296E+061.607E−031.412E−050.038
2p2(1D)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o83990119.0609.756E+061.244E−021.777E−050.005
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o83625119.5801.059E+089.084E−022.128E−040.012
2p2(1D)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o83509119.7472.714E+072.334E−025.453E−050.016
2p2(1D)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o83478119.7901.475E+081.270E−012.695E−040.010
2p2(1D)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o83105120.3294.042E+071.755E−028.196E−050.002
2s24s 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o83009120.4684.680E+062.037E−032.032E−050.053
2p2(1D)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o82988120.4988.003E+073.484E−021.623E−040.013
2p2(3P)3d 2P1/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o82543121.1474.875E+062.145E−032.251E−050.028
2p2(1D)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o82527121.1721.635E+082.160E−012.979E−040.011
2p2(3P)3d 2P1/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o82351121.4301.901E+068.405E−048.780E−060.008
2s24s 2S1/2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o82243121.5902.365E+061.048E−031.026E−050.066
2p2(1D)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o82015121.9281.929E+071.720E−023.523E−050.010
2p2(1D)3d 2F5/2 2 s 2 4 f 2 F 5 / 2 o81192123.1649.949E+061.358E−021.180E−050.007
2p2(3P)3d 2P3/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o81085123.3255.475E+064.994E−032.749E−050.042
2p2(1D)3d 2F7/2 2 s 2 4 f 2 F 7 / 2 o80858123.6729.904E+061.817E−021.167E−050.016
2p2(1D)3d 2F5/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o80361124.4374.978E+066.934E−035.906E−060.145
2p2(1D)3d 2F7/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o78644127.1554.285E+068.308E−035.047E−060.207
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2p2(3P)3s 2P1/277540128.9642.943E+082.935E−011.123E−030.010
2s2p(3P)3p 2D5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o77010129.8521.393E+062.113E−034.059E−060.011
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 4S3/276975129.9121.034E+061.047E−033.015E−060.012
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o2p2(3P)3s 2P3/276179131.2682.635E+072.723E−021.006E−040.007
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2p2(3P)3s 2P3/276023131.5383.333E+085.187E−011.266E−030.010
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(1P)3p 2P1/274269134.6452.884E+071.567E−021.068E−040.010
2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o2s2p(1P)3p 2P3/273870135.3714.131E+072.270E−021.530E−040.015
2p2(3P)3d 2D5/2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o72290138.3291.120E+061.928E−032.323E−060.136
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2p2(3P)3s 4P1/271972138.9411.091E+081.263E−015.252E−040.018
2p2(1D)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o71970138.9457.817E+061.357E−021.424E−050.086
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p(3P)3p 2P1/271598139.6681.834E+061.073E−031.925E−060.008
2p2(1D)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o71458139.9412.516E+062.954E−034.595E−060.036
2 s 2 4 p 2 P 3 / 2 o2s2p(1P)3p 2D5/271457139.9436.853E+068.048E−038.352E−060.025
2 s 2 4 p 2 P 1 / 2 o2s2p(1P)3p 2D3/271424140.0079.974E+065.862E−031.208E−050.069
2p2(1D)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o71342140.1699.937E+061.171E−021.815E−050.052
2s2p(3P)3p 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o71330140.1922.158E+082.543E−018.769E−020.002
2s2p(3P)3p 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o71285140.2801.663E+082.943E−015.027E−020.002
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2p2(3P)3s 4P3/271222140.4042.232E+082.639E−011.075E−030.016
2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o2s2p(3P)3p 2P3/270991140.8613.639E+064.330E−033.758E−060.016
2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o2s2p(3P)3p 2P3/270953140.9371.032E+066.144E−041.083E−060.017
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2p2(1D)3s 2D3/270810141.2229.817E+071.174E−018.927E−040.007
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2p2(1D)3s 2D5/270790141.2604.885E+085.846E−014.442E−030.006
2s2p(3P)3p 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o70781141.2809.271E+075.548E−023.816E−020.002
2p2(1D)3d 2G9/2 2 s 2 4 f 2 F 7 / 2 o70733141.3743.306E+069.907E−037.969E−030.569
2p2(1D)3d 2G7/2 2 s 2 4 f 2 F 5 / 2 o70711141.4203.475E+068.335E−032.200E−030.555
2s2p(3P)3p 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o70609141.6246.540E+077.866E−022.658E−020.002
2 s 2 4 p 2 P 3 / 2 o2s2p(1P)3p 2P1/270139142.5727.554E+069.208E−039.206E−060.043
2s2p(3P)3p 4P1/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o70059142.7354.765E+082.911E−011.961E−010.002
2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o2p2(3P)3s 4P5/270045142.7633.493E+084.269E−011.681E−030.012
2s2p(3P)3p 4P5/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o69973142.9104.061E+087.461E−011.228E−010.001
2 s 2 4 p 2 P 1 / 2 o2s2p(1P)3p 2P1/269952142.9542.537E+071.555E−023.072E−050.014
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2p2(1D)3s 2D3/269930142.9985.321E+083.263E−014.914E−030.008
2 s 2 4 p 2 P 3 / 2 o2s2p(1P)3p 2P3/269741143.3873.493E+074.307E−024.257E−050.009
2 s 2 4 p 2 P 1 / 2 o2s2p(1P)3p 2P3/269553143.7731.223E+077.582E−031.481E−050.003
2s2p(3P)3p 4P3/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o69297144.3052.878E+083.594E−011.170E−010.002
2s2p(3P)3p 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o69205144.4971.728E+081.082E−014.925E−040.001
2p2(1D)3d 2F5/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o68341146.3241.387E+062.672E−031.646E−060.011
2s2p(3P)3p 2S1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o67764147.5683.464E+082.262E−019.877E−040.000
2p2(3P)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o67274148.6455.151E+061.024E−021.068E−050.048
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s24d 2D3/267149148.9201.752E+062.331E−031.594E−050.129
2p2(3P)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o67142148.9367.452E+079.913E−021.586E−040.030
2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o2s24d 2D5/267100149.0301.100E+071.466E−021.001E−040.121
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p(3P)3p 2P1/266407150.5852.119E+061.441E−034.784E−060.001
2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o2s24d 2D3/266270150.8961.229E+078.390E−031.135E−040.115
2p2(3P)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o65810151.9516.211E+071.290E−011.288E−040.032
2p2(3P)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o65678152.2566.142E+068.539E−031.307E−050.029
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 2P3/265431152.8311.924E+062.694E−034.327E−060.005
2 s 2 4 p 2 P 3 / 2 o2s2p(1P)3p 2S1/265138153.5191.238E+071.750E−021.509E−050.473
2 s 2 4 p 2 P 1 / 2 o2s2p(1P)3p 2S1/264950153.9621.454E+071.033E−021.760E−050.437
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p(3P)3p 2P3/264920154.0331.685E+063.597E−033.803E−060.002
2s2p(1P)3p 2D3/2 2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o64430155.2055.654E+068.168E−031.031E−040.014
2s2p(1P)3p 2D5/2 2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o64346155.4085.094E+061.107E−029.254E−050.016
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 4D1/264259155.6191.593E+071.157E−023.596E−050.007
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 4D3/263885156.5302.211E+071.624E−024.991E−050.007
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4D3/263553157.3468.316E+061.235E−021.871E−050.006
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o2s2p(3P)3p 2D3/263108158.4573.121E+072.350E−028.946E−050.003
2s2p(3P)3p 4S3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o63027158.6607.768E+071.173E−013.889E−020.001
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4D5/262898158.9862.813E+074.264E−026.328E−050.007
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p(3P)3p 4D5/262388160.2874.202E+069.712E−039.484E−060.006
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2D3/262342160.4041.580E+062.438E−034.606E−060.016
2s2p(3P)3p 4S3/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o62306160.4971.323E+082.044E−016.624E−020.001
2p2(3P)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o61367162.9511.643E+081.308E−017.590E−040.003
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p(3P)3p 4D7/261246163.2753.378E+078.101E−027.624E−050.007
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o2p2(3P)3s 2P3/261213163.3631.166E+062.800E−031.222E−050.010
2s2p(3P)3p 4S3/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o60994163.9491.425E+082.297E−017.134E−020.002
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o 2 s 2 p( 3 P) 3 p 2 D 5 / 260958164.0452.473E+073.990E−027.209E−050.003
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 3 / 260930164.1212.552E+084.123E−019.742E−040.013
2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 5 / 260911164.1734.696E+077.590E−021.792E−040.008
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o 2 s 2 p ( 3 P ) 3 p 2 P 1 / 260864164.3001.768E+082.863E−016.072E−040.002
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2p2(1D)3s 2D3/260773164.5449.989E+062.433E−023.795E−050.018
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2p2(1D)3s 2D5/260754164.5962.744E+086.687E−011.043E−030.012
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2P3/260458165.4022.122E+085.221E−017.141E−040.002
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2P3/260219166.0582.857E+074.725E−029.811E−050.002
2s2p(1P)3p 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o60170166.1939.978E+078.264E−025.805E−040.004
2s2p(1P)3p 2S1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o60132166.2991.585E+081.314E−019.219E−040.004
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o60102166.3821.538E+082.554E−017.723E−040.005
2p2(1D)3d 2S1/2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o59301168.6301.508E+061.286E−035.939E−060.080
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 2P1/258856169.9053.957E+063.425E−034.872E−060.002
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 4D1/258715170.3111.921E+073.342E−026.597E−050.001
2p2(3P)3d 4D3/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o58645170.5162.378E+074.146E−027.162E−040.013
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 4D3/258581170.7031.418E+073.717E−024.774E−050.001
2p2(3P)3d 4D1/2 2 p 2 ( 3 P ) 3 p 2 S 1 / 2 o58564170.7521.252E+071.095E−026.563E−040.016
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 4D3/258341171.4033.881E+066.838E−031.333E−050.004
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 2P3/258335171.4224.398E+067.750E−035.462E−060.004
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 2P3/258211171.7872.376E+062.102E−032.925E−060.002
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2p2(3P)3s 4P5/257288174.5553.786E+061.038E−021.989E−050.006
2 p 2 ( 1 P ) 3 p 2 D 3 / 2 o2s24d 2D3/257270174.6101.625E+062.971E−036.203E−060.041
2p2(3P)3d 4P1/2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o57196174.8342.337E+072.142E−023.121E−050.020
2 s 2 3 p 2 P 3 / 2 o2s23s 2S1/257159174.9482.631E+084.829E−011.736E−020.001
2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o2s24d 2D5/257063175.2421.736E+064.796E−036.596E−060.041
2p2(3P)3d 4P3/2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o56897175.7535.928E+071.098E−017.935E−050.020
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 4D1/256831175.9581.346E+072.499E−021.671E−050.004
2p2(3P)3d 4P1/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o56828175.9671.279E+081.187E−011.708E−040.018
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 4D1/256707176.3422.523E+072.352E−023.106E−050.006
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p(3P)3p 4D3/256696176.3781.296E+073.626E−021.625E−050.004
2 s 2 3 p 2 P 1 / 2 o2s23s 2S1/256614176.6342.554E+082.390E−011.678E−020.001
2p2(3P)3d 4P3/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o56529176.8972.256E+074.233E−023.019E−050.018
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o2s2p(3P)3p 4D5/256494177.0085.397E+062.028E−026.669E−060.004
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 4D3/256457177.1232.212E+074.161E−022.747E−050.005
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 4D3/256333177.5132.231E+072.107E−022.746E−050.005
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p(3P)3p 4D5/256041178.4403.650E+071.045E−014.578E−050.004
2p2(3P)3d 4P5/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o55990178.6024.090E+071.173E−015.487E−050.019
2p2(3P)3d 4P3/2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o55842179.0766.992E+071.345E−019.358E−050.018
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 4D5/255802179.2031.512E+072.911E−021.878E−050.004
2s2p(1P)3p 2P3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o55568179.9595.604E+071.088E−013.250E−040.004
2s2p(1P)3p 2P3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o55529180.0831.744E+083.392E−011.011E−030.002
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o2s2p(3P)3p 4D7/255352180.6594.942E+071.935E−016.107E−050.004
2p2(3P)3d 4P5/2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o55302180.8231.116E+083.282E−011.497E−040.017
2p2(3P)3d 2D5/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o55253180.9822.009E+085.919E−014.166E−040.043
2s2p(1P)3p 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o55169181.2591.406E+081.385E−018.151E−040.004
2s2p(1P)3p 2P1/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o55131181.3858.578E+078.462E−024.974E−040.002
2p2(3P)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o55122181.4153.581E+077.067E−027.619E−050.031
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p(3P)3p 2D3/255115181.4362.459E+087.280E−014.791E−040.004
2 s 2 p ( 3 P ) 3 d 2 F 7 / 2 o2s2p(3P)3p 2D5/255056181.6312.638E+081.044E+005.043E−040.004
2p2(3P)3d 2D3/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o55005181.7991.599E+083.168E−013.401E−040.040
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o2s2p(3P)3p 4D7/254899182.1516.375E+061.903E−027.996E−060.004
2p2(1D)3d 2D5/2 2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o54737182.6896.158E+061.849E−021.122E−050.012
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(1P)3p 2D5/254603183.1382.296E+064.618E−037.621E−060.030
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(1P)3p 2D3/254566183.2643.766E+063.792E−031.251E−050.053
2p2(1D)3d 2D5/2 2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o54360183.9583.411E+071.038E−016.212E−050.032
2p2(1D)3d 2D3/2 2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o54225184.4143.828E+077.806E−026.990E−050.031
2s2p(1P)3p 2D5/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o53813185.8271.903E+085.911E−013.457E−030.001
2 s 2 p ( 3 P ) 3 d 2 F 5 / 2 o2s2p(3P)3p 2D5/253731186.1091.782E+075.551E−023.472E−050.003
2s2p(1P)3p 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 1 / 2 o53696186.2301.429E+082.972E−012.607E−030.001
2s2p(1P)3p 2D3/2 2 s 2 p ( 1 P ) 3 s 2 P 3 / 2 o53658186.3634.715E+079.821E−028.601E−040.002
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(1P)3p 2P1/253285187.6673.865E+068.163E−031.283E−050.023
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(1P)3p 2P1/253093188.3473.685E+073.919E−021.224E−040.011
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p(3P)3p 4S3/252986188.7281.250E+081.335E−012.821E−040.003
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o2s2p(1P)3p 2P3/252887189.0813.664E+077.855E−021.216E−040.001
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o2s2p(1P)3p 2P3/252694189.7711.317E+071.422E−024.373E−050.008
2s23d 2D3/2 2 s 2 3 p 2 P 1 / 2 o52685189.8041.588E+083.430E−012.965E−040.007
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4S3/252654189.9161.289E+082.787E−012.898E−040.003
2p2(3P)3d 2P1/2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o52518190.4081.206E+061.311E−035.569E−060.008
2s23d 2D5/2 2 s 2 3 p 2 P 3 / 2 o52271191.3091.864E+086.136E−013.491E−040.001
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p(3P)3p 4S3/252144191.7751.365E+084.515E−013.080E−040.002
2s23d 2D3/2 2 s 2 3 p 2 P 3 / 2 o52140191.7903.083E+076.800E−025.758E−050.006
2s2p(3P)3p 4D3/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o52128191.8329.042E+071.995E−014.019E−030.006
2p2(3P)3d 2F7/2 2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o52078192.0192.543E+061.124E−022.846E−050.008
2s2p(3P)3p 4D5/2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o52062192.0761.560E+085.177E−012.176E−010.006
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o2p2(3P)3s 4P1/252046192.1349.307E+072.060E−015.164E−040.005
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o2p2(3P)3s 4P3/251984192.3635.849E+071.947E−013.248E−040.006
2s2p(3P)3p 4D7/2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o51892192.7072.136E+089.512E−012.963E−010.005
2s2p(3P)3p 4D1/2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o51754193.2181.608E+081.800E−014.966E−030.006
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o51706193.3971.575E+063.532E−037.907E−060.003
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o2p2(3P)3s 4P1/251678193.5033.387E+073.802E−021.877E−040.005
2s2p(3P)3p 2D3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o51632193.6751.656E+083.725E−014.814E−040.004
2 s 2 p( 1 P) 3 d 2 D 5 / 2 o2s2p(1P)3p 2D5/251631193.6804.378E+071.477E−016.817E−050.003
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(1P)3p 2D3/251585193.8544.763E+071.073E−017.396E−050.003
2p2(1D)3d 2P3/2 2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o51582193.8643.405E+077.674E−026.840E−050.025
2s2p(3P)3p 2D5/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o51576193.8882.022E+086.837E−015.891E−040.003
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o2s2p(1P)3p 2D5/251430194.4374.608E+061.045E−027.155E−060.009
2 p 2 ( 1 D ) 3 d 2 P 3 / 2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o51425194.4541.447E+063.282E−032.908E−060.051
2 s 2 p ( 3 D ) 3 p 4 D 3 / 2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o51407194.5259.731E+072.208E−014.325E−030.007
2 p 2 ( 1 S ) 3 s 2 S 1 / 2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o51395194.5709.401E+061.067E−029.436E−060.097
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 3 / 251297194.9424.153E+079.464E−022.304E−040.005
2 p 2 ( 1 S ) 3 s 2 S 1 / 2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o51278195.0115.090E+065.804E−035.109E−060.096
2 p 2 ( 3 P ) 3 d 2 P 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o51253195.1101.854E+064.234E−039.311E−060.008
2 p 2 ( 1 D ) 3 d 2 F 5 / 2 2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o51108195.6623.173E+071.093E−013.765E−050.004
2 s 2 p ( 3 P ) 3 p 4 D 1 / 2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o51033195.9502.822E+073.249E−028.716E−040.008
2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 3 / 250929196.3511.932E+082.233E−011.071E−030.005
2 p 2 ( 1 D ) 3 d 2 P 1 / 2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o50905196.4424.445E+075.143E−029.012E−050.027
2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 5 / 250807196.8201.671E+085.823E−019.279E−040.003
2 s 2 p ( 3 P ) 3 p 4 D 5 / 2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o50750197.0425.526E+071.930E−017.708E−020.007
2 p 2 ( 1 D ) 3 d 2 F 5 / 2 2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o50730197.1184.221E+061.475E−025.008E−060.012
2 p 2 ( 3 P ) 3 d 2 P 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o50497198.0302.058E+064.840E−031.033E−050.008
2 p 2 ( 1 D ) 3 d 2 F 7 / 2 2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o50477198.1093.616E+071.702E−014.259E−050.002
2 p 2 ( 1 D ) 3 d 2 S 1 / 2 2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o50301198.8036.790E+078.047E−022.673E−040.048
2 s 2 p ( 3 P ) 3 p 2 P 3 / 2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o50251199.0003.721E+068.838E−031.206E−050.009
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o50249199.0051.079E+072.563E−023.251E−040.009
2 s 2 p ( 3 P ) 3 p 2 D 3 / 2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o50192199.2343.408E+078.112E−029.908E−050.004
2 p 2 ( 3 P ) 3 d 4 D 1 / 2 2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o50168199.3262.286E+072.724E−021.198E−030.017
2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 5 / 250120199.5209.335E+072.229E−015.180E−040.002
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o 2 s 2 p ( 1 P ) 3 p 2 P 1 / 250112199.5518.963E+072.140E−011.392E−040.005
2 s 2 p ( 3 P ) 3 p 4 D 3 / 2 2 s 2 p ( 3 P ) 3 s 4 P 5 / 2 o50095199.6198.398E+062.007E−023.733E−040.009
2 p 2 ( 3 P ) 3 d 4 D 5 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o50093199.6261.174E+074.209E−021.048E−030.002
2 s 2 p ( 1 P ) 3 d 2 D 5 / 2 o 2 s 2 p ( 1 P ) 3 p 2 P 3 / 249914200.3401.094E+083.951E−011.704E−040.006
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o49796200.8181.747E+074.226E−025.263E−040.018
2 p 2 ( 3 P ) 3 d 4 D 1 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o49715201.1462.265E+072.748E−021.187E−030.016
2 s 2 p ( 1 P ) 3 d 2 D 3 / 2 o 2 s 2 p ( 1 P ) 3 p 2 P 3 / 249713201.1501.240E+073.009E−021.926E−050.004
2 s 2 p ( 3 P ) 3 p 2 P 1 / 2 2 s 2 p ( 3 P ) 3 s 4 P 1 / 2 o49606201.5861.550E+071.889E−025.144E−050.010
2 p 2 ( 3 P ) 3 d 4 D 7 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o49574201.7187.223E+063.525E−027.589E−040.017
2 s 2 p ( 3 P ) 3 p 2 P 3 / 2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o49529201.8999.947E+062.431E−023.224E−050.009
2 p 2 ( 1 D ) 3 d 2 S 1 / 2 2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o49421202.3401.295E+081.589E−015.098E−040.060
2 p 2 ( 3 P ) 3 d 4 D 5 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o49337202.6842.867E+071.059E−012.558E−030.015
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o49040203.9131.521E+073.792E−024.580E−040.014
2 s 2 p ( 3 P ) 3 p 2 P 1 / 2 2 s 2 p ( 3 P ) 3 s 4 P 3 / 2 o48884204.5623.411E+064.280E−031.132E−050.005
2 p 2 ( 3 P ) 3 d 4 P 5 / 2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o48821204.8251.060E+064.000E−031.422E−060.016
2 p 2 ( 3 P ) 3 d 4 D 7 / 2 2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o48528206.0624.373E+072.227E−014.595E−030.008
2 p 2 ( 3 P ) 3 d 4 D 5 / 2 2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o48292207.0709.415E+063.631E−028.403E−040.011
2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o 2 s 2 p ( 1 P ) 3 p 2 S 1 / 248284207.1061.573E+084.047E−015.221E−040.073
2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o 2 s 2 p ( 1 P ) 3 p 2 S 1 / 248092207.9341.468E+081.903E−014.874E−040.076
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o 2 s 2 p ( 3 P ) 3 p 2 P 1 / 247419210.8821.249E+073.330E−027.413E−030.000
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 P 3 / 247192211.8978.986E+063.629E−023.318E−030.000
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o 2 s 2 p ( 3 P ) 3 p 2 P 3 / 246775213.7883.033E+068.312E−031.800E−030.002
2 p 2 ( 3 P ) 3 d 2 P 1 / 2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o46411215.4647.595E+061.057E−023.508E−050.002
2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 5 / 246322215.8791.922E+081.074E+001.999E−030.001
2 p 2 ( 3 P ) 3 d 2 P 1 / 2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o46043217.1861.031E+061.459E−034.763E−060.020
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 3 / 245963217.5631.773E+087.550E−011.859E−030.001
2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 5 / 245944217.6549.611E+064.095E−021.007E−040.006
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 S 3 / 245797218.3533.424E+061.468E−024.294E−060.000
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 3 / 245577219.4051.244E+085.389E−019.875E−040.003
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o 2 p 2 ( 3 P ) 3 s 4 P 1 / 245571219.4357.653E+072.210E−016.075E−040.002
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o 2 s 2 p ( 3 P ) 3 p 4 S 3 / 245558219.4972.117E+066.117E−032.630E−060.000
2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o 2 s 2 p ( 3 P ) 3 p 2 S 1 / 245535219.6088.841E+071.278E−012.534E−040.000
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o 2 p 2 ( 3 P ) 3 s 2 P 1 / 245457219.9847.204E+071.045E−012.981E−040.009
2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o 2 p 2 ( 3 P ) 3 s 2 P 1 / 245445220.0421.637E+089.503E−011.300E−030.003
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o 2 p 2 ( 3 P ) 3 s 2 P 1 / 245341220.5491.972E+075.752E−028.002E−050.011
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 D 3 / 245314220.6789.277E+074.064E−013.426E−020.002
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o2s2p(3P)3p 4D5/245277220.8611.147E+086.710E−013.954E−020.002
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p(3P)3p 4D1/245271220.8908.263E+072.418E−014.905E−020.002
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p(3P)3p 4P1/245232221.0794.935E+067.232E−031.114E−050.001
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o45145221.5047.843E+062.308E−023.938E−050.006
2 p 2 ( 3 P ) 3 d 4 D 1 / 2 o2p2(3P)3s 4P1/245117221.6421.369E+082.016E−011.087E−030.002
2 s 2 p ( 3 P ) 3 d 4 F 9 / 2 o2s2p(3P)3p 4D7/244990222.2681.287E+089.528E−014.938E−010.002
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4P1/244901222.7101.241E+073.692E−022.792E−050.002
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p(3P)3p 4D3/244897222.7303.168E+079.424E−021.881E−020.001
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2p2(3P)3s 4P3/244821223.1047.857E+072.345E−016.236E−040.003
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o44777223.3256.489E+061.941E−023.258E−050.012
2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o2s2p(3P)3p 2S1/244769223.3658.105E+072.425E−012.363E−040.003
2 s 2 p ( 3 P ) 3 d 4 P 1 / 2 o2s2p(3P)3p 4P3/244683223.7974.568E+076.860E−021.031E−040.000
2 s 2 p ( 3 P ) 3 d 4 F 5 / 2 o2s2p(3P)3p 4D5/244659223.9152.836E+071.279E−011.047E−020.002
2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o2p2(3P)3s 4P5/244400225.2223.752E+071.712E−012.977E−040.003
2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o2p2(3P)3s 4P3/244368225.3862.192E+073.338E−021.741E−040.004
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4P3/244351225.4691.292E+073.938E−022.906E−050.000
2 s 2 p ( 3 P ) 3 d 4 F 3 / 2 o2s2p(3P)3p 4D5/244242226.0282.121E+066.497E−031.259E−030.001
2 s 2 p ( 3 P ) 3 d 4 F 7 / 2 o2s2p(3P)3p 4D7/244135226.5741.512E+079.308E−025.211E−030.002
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o2p2(3P)3s 2P3/244096226.7743.415E+075.265E−021.413E−040.009
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2p2(3P)3s 2P3/243980227.3748.362E+072.593E−013.393E−040.010
2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o2s23d 2D5/243925227.6587.436E+062.311E−021.624E−050.028
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o2s2p(3P)3p 4P3/243841228.0953.038E+061.422E−026.856E−060.003
2p2(3P)3d 4D3/2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o43688228.8903.873E+071.217E−011.167E−030.009
2 s 2 p ( 3 P ) 3 d 4 P 3 / 2 o2s2p(3P)3p 4P5/243675228.9631.919E+076.034E−024.318E−050.000
2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o2p2(3P)3s 4P5/243644229.1225.060E+061.593E−024.016E−050.008
2p2(3P)3d 4D5/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o43618229.2607.416E+073.506E−016.619E−030.005
2p2(3P)3d 4D1/2 2 p 2 ( 3 P ) 3 p 4 P 1 / 2 o43607229.3168.428E+071.329E−014.417E−030.012
2 s 2 p 2 ( 1 P ) 3 s 2 P 1 / 2 o2s2p(3P)3p 2D3/243544229.6511.190E+061.881E−031.249E−060.042
2p2(3P)3d 4D3/2 2 p 2 ( 3 P ) 3 p 4 P 3 / 2 o43320230.8354.905E+071.567E−011.477E−030.013
2 p 2 ( 3 P ) 3 d 4 D 1 / 2 2 p 2 ( 3 P ) 3 d 4 P 3 / 2 o43239231.2681.622E+072.601E−028.501E−040.017
2 p 2 ( 3 P ) 3 d 4 D 7 / 2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o43166231.6589.735E+076.266E−011.023E−020.001
2 s 2 p ( 3 P ) 3 d 4 P 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 P 5 / 243164231.6713.041E+071.468E−016.863E−050.002
2 s 2 4 d 2 2 D 5 / 2 2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o43066232.2002.535E+071.230E−015.165E−050.545
2 s 2 4 d 2 2 D 5 / 2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o43061232.2271.249E+066.059E−032.544E−060.503
2 s 2 4 d 2 2 D 3 / 2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o43011232.4952.616E+078.479E−025.331E−050.509
2 p 2 ( 3 P ) 3 d 4 D 5 / 2 2 p 2 ( 3 P ) 3 p 4 P 5 / 2 o42930232.9332.747E+071.340E−012.451E−030.015
2 p 2 ( 3 P ) 3 d 4 D 3 / 2 2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o42633234.5593.953E+061.304E−021.191E−040.018
2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o 2 s 2 3 d 2 D 3 / 242615234.6547.746E+061.279E−021.721E−050.027
2 p 2 ( 1 D ) 3 d 2 P 3 / 2 2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o42425235.7061.323E+074.408E−022.658E−050.055
2 p 2 ( 1 D ) 3 d 2 P 1 / 2 2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o41905238.6335.162E+078.814E−021.047E−040.066
2 p 2 ( 1 D ) 3 d 2 P 1 / 2 2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o41546240.6966.245E+072.170E−011.255E−040.072
2 p 2 ( 1 D ) 3 d 2 P 1 / 2 2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o41025243.7481.937E+073.450E−023.927E−050.087
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o 2 s 2 p ( 1 P ) 3 p 2 D 3 / 240709245.6456.640E+073.604E−019.217E−050.003
2 p 2 ( 1 D ) 3 d 2 G 7 / 2 2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o40627246.1381.114E+088.093E−017.052E−020.013
2 s 2 p ( 1 P ) 3 d 2 F 5 / 2 o 2 s 2 p ( 1 P ) 3 p 2 D 5 / 240554246.5824.790E+062.620E−026.650E−060.002
2 s 2 p ( 1 P ) 3 d 2 F 7 / 2 o 2 s 2 p ( 1 P ) 3 p 2 D 5 / 240549246.6127.120E+075.193E−019.884E−050.002
2 p 2 ( 1 D ) 3 d 2 G 9 / 2 2 p 2 ( 1 D ) 3 d 2 F 7 / 2 o40352247.8161.122E+081.033E+002.703E−010.004
2 p 2 ( 1 D ) 3 d 2 G 7 / 2 2 p 2 ( 1 D ) 3 d 2 F 7 / 2 o40249248.4482.981E+062.207E−021.888E−030.022
2 p 2 ( 3 P ) 3 d 2 F 7 / 2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o40235248.5368.931E+076.617E−019.996E−040.014
2 p 2 ( 3 P ) 3 d 2 F 5 / 2 2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o40186248.8418.363E+074.658E−019.107E−040.020
2 p 2 ( 1 D ) 3 d 2 D 5 / 2 2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o39927250.4541.928E+071.088E−013.512E−050.019
2 p 2 ( 1 D ) 3 d 2 D 5 / 2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o39770251.4402.939E+061.671E−025.353E−060.021
2 p 2 ( 3 P ) 3 d 4 F 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 1 / 2 o39755251.5376.800E+072.580E−011.835E−020.039
2 p 2 ( 3 P ) 3 d 4 F 5 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o39699251.8927.278E+074.154E−011.936E−020.033
2 p 2 ( 3 P ) 3 d 4 F 7 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o39512253.0828.167E+076.274E−012.183E−020.026
2 p 2 ( 1 D ) 3 d 2 D 3 / 2 2 p 2 ( 3 D ) 3 p 2 D 5 / 2 o39415253.7072.925E+061.129E−025.343E−060.001
2 p 2 ( 1 D ) 3 s 2 D 5 / 2 2 s 2 p ( 1 P ) 3 p 2 F 7 / 2 o39375253.9651.308E+067.588E−032.293E−060.290
2 p 2 ( 1 D ) 3 s 2 D 3 / 2 2 s 2 p ( 1 P ) 3 p 2 F 5 / 2 o39351254.1201.469E+065.688E−032.585E−060.253
2 p 2 ( 3 P ) 3 d 4 F 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 3 / 2 o39301254.4422.442E+079.480E−026.589E−030.042
2 p 2 ( 1 D ) 3 d 2 D 3 / 2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o39258254.7192.395E+079.320E−024.375E−050.007
2 p 2 ( 3 P ) 3 d 4 F 9 / 2 2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o39216254.9979.082E+078.853E−012.527E−020.019
2 p 2 ( 3 P ) 3 d 4 F 5 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o38943256.7801.980E+071.174E−015.267E−030.040
2 p 2 ( 3 P ) 3 d 4 F 5 / 2 2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o38722258.2495.707E+063.424E−026.214E−050.037
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 P 5 / 238702258.3821.402E+068.417E−034.718E−060.005
2 p 2 ( 3 P ) 3 d 4 F 3 / 2 2 p 2 ( 3 P ) 3 p 4 D 5 / 2 o38545259.4311.443E+065.825E−033.894E−040.048
2 p 2 ( 3 P ) 3 d 4 F 7 / 2 2 p 2 ( 3 P ) 3 p 4 D 7 / 2 o38467259.9581.048E+078.495E−022.801E−030.038
2 p 2 ( 3 P ) 3 d 2 D 3 / 2 2 p 2 ( 1 D ) 3 p 2 F 5 / 2 o37889263.9261.739E+067.264E−033.700E−060.006
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o 2 s 2 p ( 3 P ) 3 d 4 P 1 / 237805264.5142.574E+071.080E−013.197E−050.001
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o 2 s 2 p ( 3 P ) 3 d 4 P 1 / 237681265.3834.779E+071.009E−015.883E−050.001
2 p 2 ( 3 P ) 3 d 2 D 5 / 2 2 p 2 ( 1 D ) 3 p 2 F 7 / 2 o37643265.6502.072E+061.315E−024.297E−060.009
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o 2 s 2 p ( 3 P ) 3 p 4 P 3 / 237494266.7063.965E+072.537E−014.973E−050.000
2 s 2 p ( 3 P ) 3 d 4 D 7 / 2 o 2 s 2 p ( 3 P ) 3 p 4 P 5 / 237271268.3045.288E+074.566E−016.534E−050.001
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 4P3/237255268.4152.598E+071.122E−013.227E−050.000
2 s 2 p ( 3 P ) 3 d 4 D 1 / 2 o2s2p(3P)3p 4P3/237131269.3107.601E+061.653E−029.357E−060.001
2 p 2 ( 3 P ) 3 d 4 P 1 / 2 2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o36903270.9794.188E+079.220E−025.592E−050.007
2 s 2 p ( 3 P ) 3 d 4 D 5 / 2 o 2 s 2 p ( 3 P)3p 4 P 5 / 236817271.6081.158E+077.682E−021.452E−050.000
2 s 2 p ( 1 P ) 3 p 2 P 3 / 2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o36769271.9621.314E+065.826E−037.618E−060.014
2 p 2 ( 3 P ) 3 d 4 P 3 / 2 2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o36604273.1933.948E+071.767E−015.284E−050.004
2 s 2 p ( 3 P ) 3 d 4 D 3 / 2 o2s2p(3P)3p 4P5/236579273.3801.710E+067.662E−032.124E−060.001
2p2(1D)3d 2F5/2 2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o36298275.4957.341E+065.012E−028.710E−060.020
2 p 2 ( 1 D ) 3 d 2 F 5 / 2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o36141276.6895.200E+073.581E−016.170E−050.024
2 p 2 ( 3 P ) 3 d 4 P 5 / 2 2 p 2 ( 3 P ) 3 p 4 S 3 / 2 o36064277.2803.561E+072.462E−014.777E−050.002
2 p 2 ( 1 D ) 3 d 2 F 7 / 2 2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o36044277.4345.838E+075.389E−016.877E−050.028
2 s 2 p ( 1 P ) 3 p 2 D 5 / 2 2 s 2 p ( 3 P ) 3 d 2 P 3 / 2 o35053285.2791.769E+061.295E−023.213E−050.020
2 s 2 p ( 1 P ) 3 p 2 D 3 / 2 2 s 2 p ( 3 P ) 3 d 2 P 1 / 2 o34132292.9721.085E+065.582E−031.978E−050.022
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2p2(3P)3s 2P3/233423299.1883.649E+072.938E−011.917E−040.011
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2p2(3P)3s 2P1/233320300.1123.108E+071.679E−011.654E−040.012
2 s 2 p ( 3 P ) 3 d 2 D 3 / 2 o2s2p(3P)3p 2D3/232810304.7819.805E+065.462E−023.367E−050.003
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2p2 (3P)3s 2P3/231959312.8926.481E+063.805E−023.448E−050.013
2 s 2 p ( 3 P ) 3 d 2 D 5 / 2 o2s2p(3P)3p 2D5/231665315.7998.109E+067.274E−022.729E−050.004
2p2(1D)3d 2D3/2 2 p 2 ( 1 D ) 3 p 2 P 1 / 2 o30258330.4831.602E+071.049E−012.925E−050.074
2p2(1D)3d 2D5/2 2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o29891334.5471.999E+072.013E−013.641E−050.084
2p2(1D)3d 2D3/2 2 p 2 ( 1 D ) 3 p 2 P 3 / 2 o29379340.3762.253E+061.565E−024.115E−060.086
2s24d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 1 / 2 o29154342.9975.189E+073.661E−011.058E−040.074
2s24d 2D5/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o29012344.6836.116E+076.536E−011.246E−040.087
2s24d 2D3/2 2 s 2 p ( 1 P ) 3 d 2 P 3 / 2 o28962345.2741.017E+077.270E−022.072E−050.079
2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o 2 p 2 ( 1 D ) 3 s 2 D 3 / 228847346.6547.648E+062.756E−023.165E−050.007
2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o2p2(1D)3s 2D5/228711348.2906.298E+064.581E−022.556E−050.010
2p2(3P)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o28318353.1265.043E+061.885E−022.329E−050.021
2p2(3P)3d 2P1/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o28202354.5821.075E+074.054E−024.966E−050.006
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 P 3 / 2 o27052369.6451.010E+078.274E−025.069E−050.015
2p2(3P)3d 2P3/2 2 p 2 ( 3 P ) 3 p 2 P 1 / 2 o26936371.2422.066E+061.708E−021.038E−050.014
2s2p(3P)3p 4D1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o25727388.6921.551E+067.024E−034.789E−050.008
2s2p(3P)3p 4D3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o24660405.5031.146E+061.130E−025.094E−050.013
2s2p(3P)3p 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o24223412.8223.151E+063.220E−021.021E−050.010
2s2p(3P)3p 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 1 / 2 o23578424.1081.028E+075.542E−023.410E−050.012
2 s 2 4 p 2 P 3 / 2 o2s24s 2S1/223501425.4975.146E+075.587E−016.271E−050.003
2 s 2 4 p 2 P 1 / 2 o2s24s 2S1/223314428.9165.008E+072.762E−016.063E−050.008
2p2(3P)3d 2D5/2 2 p 2 ( 1 D ) 3 p 2 D 5 / 2 o23210430.8341.857E+063.101E−023.851E−060.016
2p2(3P)3d 2D3/2 2 p 2 ( 1 D ) 3 p 2 D 3 / 2 o22922436.2531.552E+061.772E−023.303E−060.002
2s2p(3P)3p 2P3/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o22782438.9241.135E+071.311E−013.679E−050.015
2s2p(3P)3p 2P1/2 2 s 2 p ( 3 P ) 3 s 2 P 3 / 2 o22138451.7053.913E+062.394E−021.299E−050.016
2 p 2 ( 3 P ) 3 p 2 D 5 / 2 o2p2 (1D)3s 2D5/218155550.8082.046E+065.584E−021.075E−050.039
2 p 2 ( 3 P ) 3 p 2 D 3 / 2 o2p2 (1D)3s 2D3/216710598.4301.342E+062.883E−027.142E−060.045
2s24d 2D3/2 2 s 2 4 p 2 P 1 / 2 o12295813.2836.276E+062.489E−011.279E−050.091
2 s 2 4 f 2 F 7 / 2 o2s24d 2D5/212249816.3347.948E+066.352E−014.237E−050.186
2 s 2 4 f 2 F 5 / 2 o2s24d 2D3/212219818.3587.342E+064.423E−013.886E−050.170
2s24d 2D5/2 2 s 2 4 p 2 P 3 / 2 o12158822.4947.300E+064.442E−011.487E−050.082
2s24d 2D3/2 2 s 2 4 p 2 P 3 / 2 o12108825.8651.200E+064.908E−022.445E−060.101
2 p 2 ( 3 P)3p 2 S 1 / 2 o2p2(3P)3s 2P3/210930914.8331.051E+062.637E−023.894E−060.100

Share and Cite

MDPI and ACS Style

Jönsson, P.; Ekman, J.; Träbert, E. MCDHF Calculations and Beam-Foil EUV Spectra of Boron-Like Sodium Ions (Na VII). Atoms 2015, 3, 195-259. https://doi.org/10.3390/atoms3020195

AMA Style

Jönsson P, Ekman J, Träbert E. MCDHF Calculations and Beam-Foil EUV Spectra of Boron-Like Sodium Ions (Na VII). Atoms. 2015; 3(2):195-259. https://doi.org/10.3390/atoms3020195

Chicago/Turabian Style

Jönsson, Per, Jörgen Ekman, and Elmar Träbert. 2015. "MCDHF Calculations and Beam-Foil EUV Spectra of Boron-Like Sodium Ions (Na VII)" Atoms 3, no. 2: 195-259. https://doi.org/10.3390/atoms3020195

APA Style

Jönsson, P., Ekman, J., & Träbert, E. (2015). MCDHF Calculations and Beam-Foil EUV Spectra of Boron-Like Sodium Ions (Na VII). Atoms, 3(2), 195-259. https://doi.org/10.3390/atoms3020195

Article Metrics

Back to TopTop