Modified Ji-Huan He’s Frequency Formulation for Large-Amplitude Electron Plasma Oscillations
Abstract
:1. Introduction
2. Exact Numerical Solutions for γ = 1
3. Approximate Solutions for γ = 1
4. The Case of γ = 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abouelregal, A.E.; Mohammad-Sedighi, H.; Faghidian, S.A.; Shirazi, A.H. Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. 2021, 19, 633–656. [Google Scholar] [CrossRef]
- Sedighi, H.M.; Shirazi, K.H. Dynamic pull-in instability of double-sided actuated nano-torsional switches. Acta Mech. Solida Sin. 2015, 28, 91–101. [Google Scholar] [CrossRef]
- Anjum, N.; He, J.H. Two modifications of the homotopy perturbation method for nonlinear oscillators. J. Appl. Comput. Mech. 2020, 6, 1420–1425. [Google Scholar]
- Anjum, N.; He, J.H. Homotopy perturbation method for N/MEMS oscillators. Math. Meth. Appl. Sci. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Anjum, N.; He, J.H. Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly. Int. J. Mod. Phys. 2020, 34, 2050313. [Google Scholar] [CrossRef]
- Qie, N.; Houa, W.F.; He, J.H. The fastest insight into the large amplitude vibration of a string. Rep. Mech. Eng. 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Hosen, M.A.; Chowdhury, M.S.H. A new reliable analytical solution for strongly nonlinear oscillator with cubic and harmonic restoring force. Results Phys. 2015, 5, 111–114. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Malamou, A. Exploring oscillations with a nonlinear restoring force. Eur. J. Phys. 2022, 43, 015006. [Google Scholar] [CrossRef]
- Xu, L. Application of He’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire. Phys. Lett. A 2007, 368, 259–262. [Google Scholar]
- Li, S.; Niu, J.; Li, X. Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method. Chin. Phys. B 2018, 27, 120502. [Google Scholar] [CrossRef]
- He, J.H.; Amer, T.S.; Elnaggar, S.; Galal, A.A. Periodic property and instability of a rotating pendulum system. Axioms 2021, 10, 191. [Google Scholar] [CrossRef]
- Ju, P.; Xue, X. Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators. Appl. Math. Model. 2014, 38, 6144–6152. [Google Scholar] [CrossRef]
- Wu, B.; Liu, W.; Chen, X.; Lim, C.W. Asymptotic analysis and accurate approximate solutions for strongly nonlinear conservative symmetric oscillators. Appl. Math. Model. 2017, 49, 243–254. [Google Scholar] [CrossRef]
- He, J.H.; Yang, Q.; He, C.H.; Khan, Y. A simple frequency formulation for the tangent oscillator. Axioms 2021, 10, 320. [Google Scholar] [CrossRef]
- Tian, Y. Frequency formula for a class of fractal vibration system. Rep. Mech. Eng. 2022, 3, 55–61. [Google Scholar] [CrossRef]
- Mickens, R.E. A generalization of the method of harmonic balance. J. Sound Vib. 1986, 111, 515–518. [Google Scholar] [CrossRef]
- Mickens, R.E. Truly Nonlinear Oscillations; World Scientific: Singapore, 2010. [Google Scholar]
- He, J.H.; Wu, X.H. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef]
- Wu, H.G.; Hu, Y. On variational iteration method for fractional calculus. Therm. Sci. 2017, 21, 1707–1712. [Google Scholar] [CrossRef]
- Liao, S.J.; Cheung, A.T. Application of homotopy analysis method in nonlinear oscillations. ASME J. Appl. Mech. 1998, 65, 914–922. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wu, Z.Q. Homotopy analysis method for approximations of Duffing oscillator with dual frequency excitations. Chaos Soliton Fract. 2019, 127, 342–353. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.H. Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass. Results Phys. 2018, 10, 270–271. [Google Scholar] [CrossRef]
- He, J.H.; El-Dib, Y.O.; Mady, A.A. Homotopy perturbation method for the fractal Toda oscillator. Fractal Fract. 2021, 5, 93. [Google Scholar] [CrossRef]
- Anjum, N.; He, J.H.; Ain, Q.T.; Tian, D. Li–He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. Facta Univ. Ser. Mech. 2021, 19, 601–612. [Google Scholar] [CrossRef]
- He, J.H.; El-Dib, Y.O. The enhanced homotopy perturbation method for axial vibration of strings. Facta Univ. Ser. Mech. 2021, 19, 735–750. [Google Scholar] [CrossRef]
- Belendez, A.; Hernandez, A.; Belendez, T. Asymptotic representation of the period for the nonlinear oscillator. J. Sound Vib. 2007, 299, 403–408. [Google Scholar] [CrossRef]
- Cveticanin, L.; Kovacic, I.; Rakaric, Z. Asymptotic methods for vibrations of the pure non-integer order oscillator. Comput. Math. Appl. 2010, 60, 2616–2628. [Google Scholar] [CrossRef]
- Molla, M.H.U.; Alam, M.S. Higher accuracy analytical approximations to nonlinear oscillators with discontinuity by energy balance method. Results Phys. 2017, 7, 2104–2110. [Google Scholar] [CrossRef]
- Ebaid, A.E. Approximate periodic solutions for the non-linear relativistic harmonic oscillator via differential transformation method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1921–1927. [Google Scholar] [CrossRef]
- Wang, S.Q.; He, J.H. Nonlinear oscillator with discontinuity by parameter expansion method. Chaos Soliton Fract. 2008, 35, 688–691. [Google Scholar] [CrossRef]
- Sedighi, H.M.; Shirazi, K.H.; Noghrehabadi, A.R.; Yildirim, A. Asymptotic investigation of buckled beam nonlinear vibration. IJST-T Mech. Eng. 2012, 36, 107–116. [Google Scholar]
- He, J.H.; Anjum, N.; Skrzypacz, P. A variational principle for a nonlinear oscillator arising in the microelectromechanical system. J. Appl. Comput. Mech. 2021, 7, 78–83. [Google Scholar]
- Lu, J.; Shen, S.; Chen, L. Variational approach for time-space fractal Bogoyavlenskii equation. Alex. Eng. J. 2024, 97, 294–301. [Google Scholar] [CrossRef]
- He, C.H. A Variational principle for a fractal Nano/Microelectromechanical (N/MEMS) system. J. Numer. Methods Heat Fluid Flow 2023, 33, 351–359. [Google Scholar] [CrossRef]
- Lu, J.F.; Ma, L. Analysis of a fractal modification of attachment oscillator. Therm. Sci. 2024, 28, 2153–2163. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, J.; Zhu, M.; Alsolami, A.A. Numerical analysis of fractional nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass. J. Low Freq. Noise Vib. Act. Control 2024. [Google Scholar] [CrossRef]
- Qian, Y.; Pan, J.; Qiang, Y.; Wang, J. The spreading residue harmonic balance method for studying the doubly clamped beam-type N/MEMS subjected to the Van der Waals attraction. J. Low Freq. Noise Vib. Act. Control 2019, 38, 1261–1271. [Google Scholar] [CrossRef]
- He, J.H.; Hou, W.F.; Qie, N.; Gepreel, K.A.; Shirazi, A.H.; Mohammad-Sedighi, H. Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Univ. Ser. Mech. 2021, 19, 199–208. [Google Scholar] [CrossRef]
- Hosen, M.A.; Ismail, G.; Yildirim, A.; Kamal, M.A.S. A modified energy balance method to obtain higher-order approximations to the oscillators with cubic and harmonic restoring force. J. Appl. Comput. Mech. 2020, 6, 320–331. [Google Scholar]
- El-Dib, Y.O.; Matoog, R.T. The rank upgrading technique for a harmonic restoring force of nonlinear oscillators. J. Appl. Comput. Mech. 2021, 7, 782–789. [Google Scholar]
- Kontomaris, S.V.; Mazi, I.; Chliveros, G.; Malamou, A. Generic numerical and analytical methods for solving nonlinear oscillators. Phys. Scr. 2024, 99, 025231. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Chliveros, G.; Malamou, A. Approximate solutions for undamped nonlinear oscillations using He’s formulation. J 2023, 6, 140–151. [Google Scholar] [CrossRef]
- Big-Alabo, A. Approximate periodic solution for the large-amplitude oscillations of a simple pendulum. Int. J. Mech. Eng. Educ. 2020, 48, 335–350. [Google Scholar] [CrossRef]
- He, J.H. The simplest approach to nonlinear oscillators. Results Phys. 2019, 15, 102546. [Google Scholar] [CrossRef]
- Chen, B.; Lu, J.; Xia, Z. Numerical investigation of the fractal capillary oscillator. J. Low Freq. Noise Vib. Act. Control 2023, 42, 579–588. [Google Scholar] [CrossRef]
- Jin, X.; Liu, M.; Pan, F.; Li, Y.; Fan, J. Low frequency of a deforming capillary vibration, part 1: Mathematical model. J. Low Freq. Noise Vib. Act. Control 2019, 38, 1676–1680. [Google Scholar] [CrossRef]
- Big-Alabo, A.; Ezekwem, C. Periodic solution of capillary vibration in lotus-rhizome-node-like deforming structure using quasistatic quintication method. Uniport J. Eng. Sci. Res. 2021, 5, 131–139. [Google Scholar]
- Stenflo, L.; Brodin, G. Temperature effects on large amplitude electron plasma oscillations. Phys. Plasmas 2016, 23, 074501. [Google Scholar] [CrossRef]
- Amiranashvili, S.; Yu, M.Y. Lagrangian Approach for Bounded Plasmas. Phys. Scr. 2004, 2004, 9. [Google Scholar] [CrossRef]
- Cveticanin, L.; Ismail, G.M. Higher-Order Approximate Periodic solution for the oscillator with strong nonlinearity of polynomial type. Eur. Phys. J. Plus 2019, 134, 266. [Google Scholar] [CrossRef]
- Cialdi, S.; Castelli, F.; Prati, F. Lasers as Toda oscillators: An experimental confirmation. Opt. Commun. 2013, 287, 76–179. [Google Scholar] [CrossRef]
- Elías-Zúñiga, A.; Palacios-Pineda, L.M.; Jiménez-Cedeño, I.H.; Martínez-Romero, O.; Trejo, D.O. Equivalent power-form representation of the fractal Toda oscillator. Fractals 2021, 29, 2150034. [Google Scholar] [CrossRef]
- Mboupda Pone, J.R.; Kingni, S.T.; Kol, G.R.; Pham, V.T. Hopf bifurcation, antimonotonicity and amplitude controls in the chotic Toda jerk oscillator: Analysis, circuit realization and combination synchronization in its fractional-order form. Automatika 2019, 60, 149–161. [Google Scholar] [CrossRef]
- Takahashi, D.A. Newton’s equation of motion with quadratic drag force and Toda’s potential as a solvable one. Phys. Scr. 2018, 93, 075204. [Google Scholar] [CrossRef]
- Niu, J.-Y. Pull-down plateau of a Toda-like fractal-fractional oscillator and its application in grass carp’s roes’ agglomeration. J. Low Freq. Noise Vib. Active Control 2023, 42, 1775–1785. [Google Scholar] [CrossRef]
- Feng, G.-q.; Niu, J.-Y. An analytical solution of the fractal Toda oscillator. Results Phys. 2023, 44, 106208. [Google Scholar] [CrossRef]
- He, J.-H. Frequency formulation for nonlinear oscillators (part 1). Sound Vib. 2024, 59, 1687. [Google Scholar] [CrossRef]
- He, J.H.; Yang, Q.; He, C.H. Pull-down instability of quadratic nonlinear oscillators. Facta Univ. Ser. Mech. Eng. 2023, 21, 191–200. [Google Scholar] [CrossRef]
- He, J.H. Periodic solution of a micro-electromechanical system. Facta Univ. Ser. Mech. Eng. 2024, 22, 187–198. [Google Scholar] [CrossRef]
- He, J.H.; He, C.H.; Qian, M.Y.; Alsolami, A.A. Piezoelectric biosensor based on ultrasensitive MEMS system. Sens. Actuators A 2024, 376, 115664. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. A modified frequency-amplitude formulation for fractal vibration systems. Fractals 2022, 30, 2250046. [Google Scholar] [CrossRef]
- Beléndez, A.; Beléndez, T.; Martínez, F.J.; Pascual, C.; Alvarez, M.L.; Arribas, E. Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities. Nonlinear Dyn. 2016, 86, 1687–1700. [Google Scholar] [CrossRef]
- Belendez, A.; Alvarez, M.L.; Francés, J.; Bleda, S.; Beléndez, T.; Nájera, A.; Arribas, E. Analytical approximate solutions for the cubic-quintic Duffing oscillator in terms of elementary functions. J. Appl. Math. 2012, 2012, 286290. [Google Scholar] [CrossRef]
- He, C.H.; El-Dib, Y.O. A heuristic review on the homotopy perturbation method for non-conservative oscillators. J. Low Freq. Noise Vib. Act. Control. 2022, 41, 572–603. [Google Scholar] [CrossRef]
- He, J.H.; He, C.H.; Alsolami, A.A. A good initial guess for approximating nonlinear oscillators by the homotopy perturbation method. Facta Univ. Ser. Mech. Eng. 2023, 21, 21–29. [Google Scholar] [CrossRef]
0 | 0.65 | 1 | 2π | 2π | 0 | 2π | 0 |
0.02 | 0.648328 | 0.99920 | 6.2826 | 6.2860 | 0.0541 | 6.2860 | 0.0541 |
0.04 | 0.643287 | 0.99679 | 6.2941 | 6.2943 | 0.0032 | 6.2946 | 0.0079 |
0.06 | 0.634808 | 0.99275 | 6.3088 | 6.3087 | 0.0016 | 6.3092 | 0.0063 |
0.08 | 0.622765 | 0.98703 | 6.3290 | 6.3295 | 0.0079 | 6.3305 | 0.0237 |
0.10 | 0.606966 | 0.97958 | 6.3583 | 6.3577 | 0.0094 | 6.3595 | 0.0189 |
0.12 | 0.587134 | 0.97032 | 6.3963 | 6.3947 | 0.0250 | 6.3977 | 0.0219 |
0.14 | 0.562867 | 0.95913 | 6.4407 | 6.4425 | 0.0279 | 6.4473 | 0.1025 |
0.16 | 0.533573 | 0.94587 | 6.5053 | 6.5042 | 0.0169 | 6.5121 | 0.1045 |
0.18 | 0.498349 | 0.93035 | 6.5869 | 6.5853 | 0.0243 | 6.5984 | 0.1746 |
0.20 | 0.455598 | 0.91231 | 6.7053 | 6.6951 | 0.1521 | 6.7182 | 0.1924 |
0.22 | 0.402806 | 0.89141 | 6.8731 | 6.8530 | 0.2924 | 6.8974 | 0.3536 |
0.24 | 0.332835 | 0.86715 | 7.1758 | 7.1098 | 0.9198 | 7.2146 | 0.5407 |
0.25 | 0.284787 | 0.85355 | 7.4731 | 7.3258 | 1.9711 | 7.5182 | 0.6035 |
0 | 0.65 | 1 | 2π | 2π | 0 |
0.02 | 0.651669 | 1.0008 | 6.2779 | 6.2804 | 0.0398 |
0.04 | 0.656653 | 1.0032 | 6.2689 | 6.2723 | 0.0542 |
0.06 | 0.664886 | 1.0072 | 6.2591 | 6.2590 | 0.0016 |
0.08 | 0.676266 | 1.0126 | 6.2398 | 6.2411 | 0.0208 |
0.10 | 0.690660 | 1.0196 | 6.2156 | 6.2189 | 0.0531 |
0.12 | 0.707910 | 1.0280 | 6.1906 | 6.1933 | 0.0436 |
0.14 | 0.727848 | 1.0378 | 6.1609 | 6.1647 | 0.0617 |
0.16 | 0.750298 | 1.0488 | 6.1303 | 6.1338 | 0.0571 |
0.18 | 0.775085 | 1.0611 | 6.1004 | 6.1012 | 0.0131 |
0.20 | 0.802041 | 1.0745 | 6.0638 | 6.0673 | 0.0577 |
0.22 | 0.831003 | 1.0889 | 6.0293 | 6.0326 | 0.0547 |
0.24 | 0.861821 | 1.1043 | 5.9936 | 5.9975 | 0.0651 |
0.25 | 0.877881 | 1.1124 | 5.9796 | 5.9799 | 0.0050 |
0.26 | 0.894355 | 1.1206 | 5.9607 | 5.9622 | 0.0252 |
0.30 | 0.964073 | 1.1557 | 5.8921 | 5.8922 | 0.0017 |
0.35 | 1.058830 | 1.2046 | 5.8045 | 5.8077 | 0.0551 |
0.40 | 1.160770 | 1.2550 | 5.7246 | 5.7148 | 0.1712 |
0.45 | 1.268800 | 1.3093 | 5.6492 | 5.6507 | 0.0266 |
0 | 0.65 | 1 | 2π | 2π | 0 | 2π | 0 |
0.02 | 0.647911 | 0.9992 | 6.2919 | 6.2934 | 0.023837 | 6.2941 | 0.0350 |
0.04 | 0.641503 | 0.9968 | 6.3263 | 6.3252 | 0.017389 | 6.3283 | 0.0316 |
0.06 | 0.630308 | 0.9926 | 6.3850 | 6.3827 | 0.036028 | 6.3908 | 0.0908 |
0.08 | 0.613345 | 0.9867 | 6.4830 | 6.4745 | 0.131198 | 6.4923 | 0.1433 |
0.10 | 0.588593 | 0.9787 | 6.6384 | 6.6201 | 0.276049 | 6.6583 | 0.2993 |
0.12 | 0.551076 | 0.9683 | 6.9260 | 6.8701 | 0.810374 | 6.9629 | 0.5314 |
0 | 0.65 | 1 | 2π | 2π | 0 |
0.02 | 0.652067 | 1.0008 | 6.2712 | 6.2732 | 0.0319 |
0.04 | 0.658140 | 1.0032 | 6.2439 | 6.2441 | 0.0032 |
0.06 | 0.667872 | 1.0071 | 6.1956 | 6.1990 | 0.0549 |
0.08 | 0.680775 | 1.0123 | 6.1364 | 6.1414 | 0.0814 |
0.10 | 0.696315 | 1.0189 | 6.0697 | 6.0754 | 0.0939 |
0.12 | 0.713982 | 1.0266 | 5.9965 | 6.0044 | 0.1317 |
0.14 | 0.733326 | 1.0353 | 5.9239 | 5.9312 | 0.1232 |
0.16 | 0.753975 | 1.0449 | 5.8502 | 5.8577 | 0.1281 |
0.18 | 0.775628 | 1.0557 | 5.7767 | 5.7857 | 0.1557 |
0.20 | 0.798050 | 1.0660 | 5.7035 | 5.7147 | 0.1962 |
0.22 | 0.821055 | 1.0774 | 5.6352 | 5.6465 | 0.2003 |
0.24 | 0.844501 | 1.0892 | 5.5697 | 5.5811 | 0.2045 |
0.25 | 0.856353 | 1.0952 | 5.5409 | 5.5494 | 0.1533 |
0.26 | 0.868277 | 1.1012 | 5.5098 | 5.5183 | 0.1542 |
0.30 | 0.916499 | 1.1261 | 5.3928 | 5.4011 | 0.1539 |
0.35 | 0.977472 | 1.1578 | 5.2647 | 5.2689 | 0.0798 |
0.40 | 1.038730 | 1.1899 | 5.1398 | 5.1512 | 0.2218 |
0.45 | 1.099970 | 1.2220 | 5.0405 | 5.0461 | 0.1111 |
) | ||||||
---|---|---|---|---|---|---|
0 | 2π | 2π | 0.3500 | 2π | 0 | 0 |
0.02 | 6.2779 | 6.2804 | 0.3492 | 6.2814 | 0.0398 | 0.0558 |
0.04 | 6.2689 | 6.2723 | 0.3468 | 6.2759 | 0.0542 | 0.1117 |
0.06 | 6.2591 | 6.2590 | 0.3428 | 6.2670 | 0.0016 | 0.1262 |
0.08 | 6.2398 | 6.2411 | 0.3374 | 6.2546 | 0.0208 | 0.2372 |
0.10 | 6.2156 | 6.2189 | 0.3304 | 6.2389 | 0.0531 | 0.3749 |
0.12 | 6.1906 | 6.1933 | 0.3220 | 6.2201 | 0.0436 | 0.4765 |
0.14 | 6.1609 | 6.1647 | 0.3122 | 6.1985 | 0.0617 | 0.6103 |
0.16 | 6.1303 | 6.1338 | 0.3012 | 6.1743 | 0.0571 | 0.7177 |
0.18 | 6.1004 | 6.1012 | 0.2889 | 6.1476 | 0.0131 | 0.7737 |
0.20 | 6.0638 | 6.0673 | 0.2755 | 6.1188 | 0.0577 | 0.9070 |
0.22 | 6.0293 | 6.0326 | 0.2611 | 6.0882 | 0.0547 | 0.9769 |
0.24 | 5.9936 | 5.9975 | 0.2457 | 6.0558 | 0.0651 | 1.0378 |
0.25 | 5.9796 | 5.9799 | 0.2376 | 6.0391 | 0.0050 | 0.9950 |
0.26 | 5.9607 | 5.9622 | 0.2294 | 6.0221 | 0.0252 | 1.0301 |
0.30 | 5.8921 | 5.8922 | 0.1943 | 5.9512 | 0.0017 | 1.0030 |
0.35 | 5.8045 | 5.8077 | 0.1454 | 5.8587 | 0.0551 | 0.9338 |
0.40 | 5.7246 | 5.7148 | 0.0950 | 5.7631 | 0.1712 | 0.6725 |
0.45 | 5.6492 | 5.6507 | 0.0407 | 5.6675 | 0.0266 | 0.3239 |
) | ||||||
---|---|---|---|---|---|---|
0 | 2π | 2π | 0.3500 | 2π | 0 | 0 |
0.02 | 6.2712 | 6.2732 | 0.3492 | 6.2792 | 0.0319 | 0.1276 |
0.04 | 6.2439 | 6.2441 | 0.3468 | 6.2675 | 0.0032 | 0.3780 |
0.06 | 6.1956 | 6.1990 | 0.3429 | 6.2483 | 0.0549 | 0.8506 |
0.08 | 6.1364 | 6.1414 | 0.3377 | 6.2221 | 0.0814 | 1.3966 |
0.10 | 6.0697 | 6.0754 | 0.3311 | 6.1895 | 0.0939 | 1.9737 |
0.12 | 5.9965 | 6.0044 | 0.3234 | 6.1513 | 0.1317 | 2.5815 |
0.14 | 5.9239 | 5.9312 | 0.3147 | 6.1082 | 0.1232 | 3.1111 |
0.16 | 5.8502 | 5.8577 | 0.3051 | 6.0609 | 0.1281 | 3.6016 |
0.18 | 5.7767 | 5.7857 | 0.2943 | 6.0103 | 0.1557 | 4.0438 |
0.20 | 5.7035 | 5.7147 | 0.2840 | 5.9565 | 0.1962 | 4.4359 |
0.22 | 5.6352 | 5.6465 | 0.2726 | 5.9007 | 0.2003 | 4.7115 |
0.24 | 5.5697 | 5.5811 | 0.2608 | 5.8433 | 0.2045 | 4.9123 |
0.25 | 5.5409 | 5.5494 | 0.2548 | 5.8142 | 0.1533 | 4.9324 |
0.26 | 5.5098 | 5.5183 | 0.2488 | 5.7847 | 0.1542 | 4.9893 |
0.30 | 5.3928 | 5.4011 | 0.2239 | 5.6657 | 0.1539 | 5.0605 |
0.35 | 5.2647 | 5.2689 | 0.1922 | 5.5164 | 0.0798 | 4.7809 |
0.40 | 5.1398 | 5.1512 | 0.1601 | 5.3699 | 0.2218 | 4.4768 |
0.45 | 5.0405 | 5.0461 | 0.1280 | 5.2283 | 0.1111 | 3.7258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontomaris, S.V.; Malamou, A.; Psychogios, I.; Ismail, G.M. Modified Ji-Huan He’s Frequency Formulation for Large-Amplitude Electron Plasma Oscillations. Atoms 2024, 12, 68. https://doi.org/10.3390/atoms12120068
Kontomaris SV, Malamou A, Psychogios I, Ismail GM. Modified Ji-Huan He’s Frequency Formulation for Large-Amplitude Electron Plasma Oscillations. Atoms. 2024; 12(12):68. https://doi.org/10.3390/atoms12120068
Chicago/Turabian StyleKontomaris, Stylianos Vasileios, Anna Malamou, Ioannis Psychogios, and Gamal M. Ismail. 2024. "Modified Ji-Huan He’s Frequency Formulation for Large-Amplitude Electron Plasma Oscillations" Atoms 12, no. 12: 68. https://doi.org/10.3390/atoms12120068
APA StyleKontomaris, S. V., Malamou, A., Psychogios, I., & Ismail, G. M. (2024). Modified Ji-Huan He’s Frequency Formulation for Large-Amplitude Electron Plasma Oscillations. Atoms, 12(12), 68. https://doi.org/10.3390/atoms12120068