Almost Ricci–Bourguignon Solitons on Doubly Warped Product Manifolds
Abstract
:1. An Introduction
- What circumstances lead a doubly warped product manifold to become a Ricci–Bourguignon soliton?
- What are the inheritable properties by a factor of the Ricci–Bourguignon soliton doubly warped product manifold?
2. Doubly Warped Product Manifolds
3. (DWP)n Manifolds Admitting an Almost Ricci–Bourguignon Soliton Structure
4. An Almost Ricci–Bourguignon Soliton on (DWST)n
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.-Y. Classification of torqued vector fields and its applications to Ricci solitons. Kragujev. J. Math. 2017, 41, 239–250. [Google Scholar] [CrossRef]
- Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci Flow. Graduate Studies in Mathematics. Am. Math. Soc. 2006, 77, 1447. [Google Scholar]
- De Uday, C.; Mantica, C.A.; Sameh, S.; Blent, U. Ricci solitons on singly warped product manifolds and applications. J. Geom. Phys. 2021, 166, 104257. [Google Scholar]
- Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Differ. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Brendle, S. Rotational symmetry of Ricci solitons in higher dimensions. J. Differ. Geom. 2014, 97, 191–214. [Google Scholar] [CrossRef]
- Brozos-Vazquez, M.; Garcia-Rio, E.; Gavino-Fernandez, S. Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal. 2013, 23, 1196–1212. [Google Scholar] [CrossRef]
- Cao, H.-D.; Zhou, D. On complete gradient shrinking Ricci solitons. J. Differ. Geom. 2010, 85, 175–186. [Google Scholar] [CrossRef]
- Manev, M. Ricci-like Solitons with Vertical Potential on Sasaki-like Almost Contact B-Metric Manifolds. Results Math. 2020, 75, 136. [Google Scholar] [CrossRef]
- Munteanu, O.; Sesum, N. On Gradient Ricci Solitons. J. Geom. Anal. 2013, 23, 539–561. [Google Scholar] [CrossRef]
- Petersen, P.; Wylie, W. Rigidity of gradient Ricci solitons. Pac. J. Math. 2009, 241, 329–345. [Google Scholar] [CrossRef]
- Petersen, P.; Wylie, W. On the classification of gradient Ricci solitons. Geom. Topol. 2010, 14, 2277–2300. [Google Scholar] [CrossRef]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159. [Google Scholar]
- Besse, A.L. Einstein Manifolds. In Classics in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Derdzinski, A. A Myers-type theorem and compact Ricci solitons. Proc. Am. Math. Soc. 2006, 134, 3645–3648. [Google Scholar] [CrossRef]
- Cao, H.-D. Geometry of Ricci solitons. Chin. Ann. Math. 2006, 27B, 121–142. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bin Turki, N.; Alsodais, H. Characterizations of Trivial Ricci Solitons. Adv. Math. Phys. 2020, 2020, 9826570. [Google Scholar] [CrossRef]
- Deshmukh, S.; Alsodais, H. A note on Ricci solitons. Symmetry 2020, 12, 289. [Google Scholar] [CrossRef]
- Deshmukh, S.; Amira, I. A Note on Generalized Solitons. Symmetry 2023, 15, 954. [Google Scholar] [CrossRef]
- Deshmukh, S.; Adara, M.; Blaga, A.; Amira, I. A Note on Solitons with Generalized Geodesic Vector Field. Symmetry 2021, 13, 1104. [Google Scholar] [CrossRef]
- Chen, L. Ricci solitons on Riemannian submanifolds. In Proceedings of the Riemannian Geometry and Applications, Riga, Latvia, 14 October 2014; pp. 30–45. [Google Scholar]
- Barros, A.; Ribeiro, E., Jr. Some characterizations for compact almost Ricci soliton. Proc. Am. Math. Soc. 2011, 140, 1033–1040. [Google Scholar] [CrossRef]
- Barros, A.; Gomes, J.N.; Ribeiro, E., Jr. A note on rigidity of the almost Ricci soliton. Arch. Math. 2013, 100, 481–490. [Google Scholar] [CrossRef]
- Pigola, S.; Rigoli, M.; Setti, A. Ricci almost solitons. Ann. Sci. Norm. Super. 2011, 10, 757–799. [Google Scholar] [CrossRef]
- Bourguignon, J.P. Ricci Curvature and Einstein Metrics. In Proceedings of the Lecture Notes in Mathematics, Global Differential Geometry and Global Analysis, Berlin, Germany, 21–24 November 1979; Springer: Berlin/Heidelberg, Germany, 1981; Volume 838, pp. 42–63. [Google Scholar]
- Catino, G. Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 2012, 271, 751–756. [Google Scholar] [CrossRef]
- Catino, G.; Mazzieri, L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. [Google Scholar] [CrossRef]
- Dwivedi, S. Some results on Ricci-Bourguignon solitons and almost solitons. Can. Math. Bull. 2021, 64, 591–604. [Google Scholar] [CrossRef]
- Hu, Z.; Li, D.; Xu, J. On generalized m-quasi-Einstein manifolds with constant scalar curvature. J. Math. Ann. Appl. 2015, 432, 733–743. [Google Scholar] [CrossRef]
- Huang, G.; Wei, Y. The classification of (m,ρ)—Quasi-Einstein manifolds. Ann. Glob. Anal. Geom. 2013, 44, 269–282. [Google Scholar] [CrossRef]
- Huang, G. Integral pinched gradient shrinking ρ-Einstein solitons. J. Math. Ann. Appl. 2017, 451, 1045–1055. [Google Scholar] [CrossRef]
- Mondal, C.K.; Shaikh, A.A. Some results on η-Ricci Soliton and gradientρ-Einstein soliton in a complete Riemannian manifold. Comm. Korean Math. Soc. 2019, 34, 1279–1287. [Google Scholar]
- Soylu, Y. Ricci-Bourguignon solitons and almost solitons with concurrent vector field. Differ. Geom. Dyn. Syst. 2022, 24, 191–200. [Google Scholar]
- Ghosh, A. Certain triviality results for Ricci-Bourguignon almost solitons. J. Geom. Phys. 2022, 182, 104681. [Google Scholar] [CrossRef]
- Chen, B.-Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific: Toh Tuck Link, Singapore, 2017. [Google Scholar]
- El-Sayed, H.K.; Mantica, C.A.; Sameh, S.; Noha, S. Gray’s Decomposition on Doubly Warped Product Manifolds and Applications. Filomat 2020, 34, 3767–3776. [Google Scholar] [CrossRef]
- Unal, B. Doubly warped products. Differ. Geom. Appl. 2001, 15, 253–263. [Google Scholar] [CrossRef]
- El-Sayied, H.K.; Sameh, S.; Noha, S. Conformal vector fields on doubly warped product manifolds and applications. Adv. Math. 2016, 2016, 6508309. [Google Scholar] [CrossRef]
- Bishop, R.L.; O’Neill, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–49. [Google Scholar] [CrossRef]
- Gebarowski, A. Doubly warped products with harmonic Weyl conformal curvature tensor. Colloq. Math. 1995, 67, 73–89. [Google Scholar] [CrossRef]
- Gebarowski, A. On conformally recurrent doubly warped products. Tensor 1996, 57, 192–196. [Google Scholar]
- Beem, J.K.; Powell, T.G. Geodesic completeness and maximality in Lorentzian warped products. Tensor 1982, 39, 31–36. [Google Scholar]
- Shenawy, S.; Unal, B. 2—Killing vector fields on warped product manifolds. Int. J. Math. 2015, 26, 1550065. [Google Scholar] [CrossRef]
- Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52, 1535–1547. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.M. Spherical doubly warped spacetimes for radiating stars and cosmology. Gen. Relativ. Gravit. 2022, 54, 98. [Google Scholar] [CrossRef]
- Banerjee, A.; Chatterjee, S. Spherical collapse of a heat conducting fluid in higher dimensions without horizon. Astrophys. Space Sci. 2005, 299, 219–225. [Google Scholar] [CrossRef]
- Wagh, S.M.; Govender, M.; Govinder, K.S.; Maharaj, S.D.; Muktibodh, P.S.; Moodley, M. Shear-free spherically symmetric spacetimes with an equation of state p = αρ. Class. Quantum Gravity 2001, 18, 2147. [Google Scholar] [CrossRef]
- Ramos, M.P.M.; Vaz, E.G.L.R.; Carot, J. Double warped space–times. J. Math. Phys. 2003, 44, 4839–4865. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenawy, S.; Bin Turki, N.; Syied, N.; Mantica, C. Almost Ricci–Bourguignon Solitons on Doubly Warped Product Manifolds. Universe 2023, 9, 396. https://doi.org/10.3390/universe9090396
Shenawy S, Bin Turki N, Syied N, Mantica C. Almost Ricci–Bourguignon Solitons on Doubly Warped Product Manifolds. Universe. 2023; 9(9):396. https://doi.org/10.3390/universe9090396
Chicago/Turabian StyleShenawy, Sameh, Nasser Bin Turki, Noha Syied, and Carlo Mantica. 2023. "Almost Ricci–Bourguignon Solitons on Doubly Warped Product Manifolds" Universe 9, no. 9: 396. https://doi.org/10.3390/universe9090396
APA StyleShenawy, S., Bin Turki, N., Syied, N., & Mantica, C. (2023). Almost Ricci–Bourguignon Solitons on Doubly Warped Product Manifolds. Universe, 9(9), 396. https://doi.org/10.3390/universe9090396