Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE
Abstract
:1. Introduction
2. Femtoscopy with Lévy Shaped Sources
3. Measurement Details
4. Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QCD | quantum chromodynamics |
CERN | Conseil européen pour la recherche nucléaire |
SPS | Super Proton Synchrotron |
HBT | Hanbury Brown and Twiss |
BE | Bose-Einstein |
CEP | critical endpoint |
NA61/SHINE | North Area 61 / SPS Heavy Ion and Neutrino Experiment |
LCMS | Longitudinally Co-Moving System |
References
- Abgrall, N. et al. [NA61/SHINE Collaboration] NA61/SHINE facility at the CERN SPS: Beams and detector system. JINST 2014, 9, P06005. [Google Scholar] [CrossRef]
- Hanbury Brown, R.; Twiss, R.Q. A Test of a new type of stellar interferometer on Sirius. Nature 1956, 178, 1046. [Google Scholar] [CrossRef]
- Goldhaber, G.; Fowler, W.B.; Goldhaber, S.; Hoang, T.F. Pion-pion correlations in antiproton annihilation events. Phys. Rev. Lett. 1959, 3, 181. [Google Scholar] [CrossRef]
- Goldhaber, G.; Goldhaber, S.; Lee, W.Y.; Pais, A. Influence of Bose-Einstein statistics on the anti-proton proton annihilation process. Phys. Rev. 1960, 120, 300. [Google Scholar] [CrossRef]
- Adhikary, H. et al. [NA61/SHINE Collaboration] Measurements of two-pion HBT correlations in Be + Be collisions at 150A GeV/c beam momentum, at the NA61/SHINE experiment at CERN. arXiv 2023, arXiv:2302.04593. [Google Scholar]
- Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach. Phys. Rev. Lett. 1999, 82, 3563–3567. [Google Scholar] [CrossRef] [Green Version]
- Achard, P. et al. [L3 Collaboration] Test of the τ-Model of Bose-Einstein Correlations and Reconstruction of the Source Function in Hadronic Z-boson Decay at LEP. Eur. Phys. J. C 2011, 71, 1648. [Google Scholar] [CrossRef] [Green Version]
- Adare, A. et al. [PHENIX Collaboration] Lévy-stable two-pion Bose-Einstein correlations in = 200 GeV Au + Au collisions. Phys. Rev. C 2018, 97, 064911. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M. et al. [CMS Collaboration] Bose-Einstein correlations in pp,pPb, and PbPb collisions at = 0.9 − 7 TeV. Phys. Rev. C 2018, 97, 064912. [Google Scholar] [CrossRef] [Green Version]
- Measurement of Two-Particle Bose-Einstein Momentum Correlations and Their Levy Parameters at = 5.02 TeV PbPb Collisions; Technical Report CMS-PAS-HIN-21-011; CERN: Geneva, Switzerland, 2022.
- Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc. 2006, 828, 525–532. [Google Scholar] [CrossRef]
- Csorgo, T.; Hegyi, S.; Novak, T.; Zajc, W.A. Bose-Einstein or HBT correlations and the anomalous dimension of QCD. Acta Phys. Polon. B 2005, 36, 329–337. [Google Scholar]
- Csörgő, T. Particle interferometry from 40-MeV to 40-TeV. Acta Phys. Hung. A 2002, 15, 1–80. [Google Scholar] [CrossRef]
- Csörgő, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. C 1996, 54, 1390–1403. [Google Scholar] [CrossRef] [PubMed]
- Sinyukov, Y.; Lednicky, R.; Akkelin, S.V.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B 1998, 432, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Bowler, M.G. Coulomb corrections to Bose-Einstein correlations have been greatly exaggerated. Phys. Lett. B 1991, 270, 69–74. [Google Scholar] [CrossRef]
- Maj, R.; Mrowczynski, S. Coulomb Effects in Femtoscopy. Phys. Rev. C 2009, 80, 034907. [Google Scholar] [CrossRef]
- Csörgő, T. Correlation Probes of a QCD Critical Point. arXiv 2009, arXiv:0903.0669. [Google Scholar] [CrossRef] [Green Version]
- Kincses, D.; Stefaniak, M.; Csanád, M. Event-by-Event Investigation of the Two-Particle Source Function in Heavy-Ion Collisions with EPOS. Entropy 2022, 24, 308. [Google Scholar] [CrossRef]
- Kórodi, B.; Kincses, D.; Csanád, M. Event-by-event investigation of the two-particle source function in = 2.76 TeV PbPb collisions with EPOS. arXiv 2022, arXiv:2212.02980. [Google Scholar]
- Halasz, A.M.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. On the phase diagram of QCD. Phys. Rev. D 1998, 58, 096007. [Google Scholar] [CrossRef]
- Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 1998, 81, 4816–4819. [Google Scholar] [CrossRef] [Green Version]
- El-Showk, S.; Paulos, M.F.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents. J. Stat. Phys. 2014, 157, 869. [Google Scholar] [CrossRef] [Green Version]
- Rieger, H. Critical behavior of the three-dimensional random-field Ising model: Two-exponent scaling and discontinuous transition. Phys. Rev. B 1995, 52, 6659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincses, D.; Nagy, M.I.; Csanád, M. Coulomb and strong interactions in the final state of Hanbury-Brown–Twiss correlations for Lévy-type source functions. Phys. Rev. C 2020, 102, 064912. [Google Scholar] [CrossRef]
- Csanád, M.; Lökös, S.; Nagy, M. Expanded empirical formula for Coulomb final state interaction in the presence of Lévy sources. Phys. Part. Nucl. 2020, 51, 238–242. [Google Scholar] [CrossRef]
- Csanád, M.; Lökös, S.; Nagy, M. Coulomb final state interaction in heavy ion collisions for Lévy sources. Universe 2019, 5, 133. [Google Scholar] [CrossRef] [Green Version]
- Kurgyis, B.; Kincses, D.; Nagy, M.; Csanád, M. Coulomb interaction for Lévy sources. arXiv 2020, arXiv:2007.10173. [Google Scholar]
- Pierog, T.; Werner, K. EPOS Model and Ultra High Energy Cosmic Rays. Nucl. Phys. Proc. Suppl. 2009, 196, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Brun, R.C.F. GEANT Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013. 1993. Available online: http://wwwasdoc.web.cern.ch/wwwasdoc/geant/geantall.html (accessed on 1 May 2023).
- Csanád, M.; Vargyas, M. Observables from a solution of 1+3 dimensional relativistic hydrodynamics. Eur. Phys. J. A 2010, 44, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Sinyukov, Y.M. Spectra and correlations in locally equilibrium hadron and quark-gluon systems. Nucl. Phys. A 1994, 566, 589C–592C. [Google Scholar] [CrossRef]
- Vértesi, R.; Csörgő, T.; Sziklai, J. Significant in-medium η’ mass reduction in = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2011, 83, 054903. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.I. et al. [STAR Collaboration] Pion Interferometry in Au+Au and Cu+Cu Collisions at RHIC. Phys. Rev. C 2009, 80, 024905. [Google Scholar] [CrossRef]
- Beker, H. et al. [NA44 Collaboration] m(T) dependence of boson interferometry in heavy ion collisions at the CERN SPS. Phys. Rev. Lett. 1995, 74, 3340–3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alt, C. et al. [NA49 Collaboration] Bose-Einstein correlations of pi-pi-pairs in central Pb+Pb collisions at A-20, A-30, A-40, A-80, and A-158 GeV. Phys. Rev. C 2008, 77, 064908. [Google Scholar] [CrossRef] [Green Version]
- Vance, S.E.; Csörgő, T.; Kharzeev, D. Partial UA1 restoration from Bose-Einstein correlations. Phys. Rev. Lett. 1998, 81, 2205–2208. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pórfy, B., on behalf of the NA61/SHINE Collaboration. Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE. Universe 2023, 9, 298. https://doi.org/10.3390/universe9070298
Pórfy B on behalf of the NA61/SHINE Collaboration. Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE. Universe. 2023; 9(7):298. https://doi.org/10.3390/universe9070298
Chicago/Turabian StylePórfy, Barnabás on behalf of the NA61/SHINE Collaboration. 2023. "Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE" Universe 9, no. 7: 298. https://doi.org/10.3390/universe9070298
APA StylePórfy, B., on behalf of the NA61/SHINE Collaboration. (2023). Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE. Universe, 9(7), 298. https://doi.org/10.3390/universe9070298