Constraining Young Hot Jupiter Occurrence Rate in Stellar Associations Using 2-min Cadence TESS Data
Abstract
:1. Introduction
2. Data and Observation
Cluster/Association | Distance (pc) | Age (Myr) | Targets Number | Reference |
---|---|---|---|---|
Upper CrA | ∼10 | 2 | [32] | |
Upper Scorpius | 4 | [46] | ||
Chamaeleontis | 9 | [47] | ||
Lower Centaurus Crux | 83 | [46] | ||
Upper Centaurus Lupus | 70 | [46] | ||
32 Orionis | 6 | [47] | ||
Pictoris | 39 | [47] | ||
Octans | 7 | [48] | ||
Columba | 19 | [47] | ||
Carina | 5 | [47] | ||
Tucana-Horologium | 55 | [47] | ||
IC 2602 | 38 | [49] | ||
IC 2391 | 14 | [50] | ||
NGC 2451A | ∼193 | ∼60 | 25 | [51] |
Platais 8 | ∼60 | 5 | [52] | |
Persei | ∼176 | 89 | [53] | |
Volans-Carina | 75–100 | 10 | [34] | |
Blanco 1 | 236.4 | ∼100 | 156 | [51] |
Pleiades | 113 | [54] | ||
Pisces-Eridanus | 80–226 | 120 | 146 | [35] |
AB Doradus | 48 | [47] | ||
Carina-Near | ∼200 | 80 | [55] | |
UMa | 61 | [56] | ||
XFOR | ∼500 | 6 | [57] | |
Coma Ber | 85 | [53] |
3. Methods and Results
3.1. Candidate Search and Vetting
3.2. Confirmed Planetary System
3.3. False Positive Transiting Signals
3.4. Previously Known EBs
4. Discussion
4.1. Search Completeness for Hot Jupiter
4.2. Occurrence Rate of Hot Jupiter in Young Stellar Associations
4.3. Distribution of Young Planets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, W.; Dong, S. Exoplanet Statistics and Theoretical Implications. Annu. Rev. Astron. Astrophys. 2021, 59, 291–336. [Google Scholar] [CrossRef]
- Bouma, L.G.; Hartman, J.D.; Brahm, R.; Evans, P.; Collins, K.A.; Zhou, G.; Sarkis, P.; Quinn, S.N.; de Leon, J.; Livingston, J.; et al. Cluster Difference Imaging Photometric Survey. II. TOI 837: A Young Validated Planet in IC 2602. Astron. J. 2020, 160, 239. [Google Scholar] [CrossRef]
- Huerta, M.; Johns-Krull, C.M.; Prato, L.; Hartigan, P.; Jaffe, D.T. Starspot-Induced Radial Velocity Variability in LkCa 19. Astrophys. J. 2008, 678, 472–482. [Google Scholar] [CrossRef]
- Mahmud, N.I.; Crockett, C.J.; Johns-Krull, C.M.; Prato, L.; Hartigan, P.M.; Jaffe, D.T.; Beichman, C.A. Starspot-induced Optical and Infrared Radial Velocity Variability in T Tauri Star Hubble I 4. Astrophys. J. 2011, 736, 123. [Google Scholar] [CrossRef]
- Ma, B.; Ge, J. A New Multi-band Radial Velocity Technique for Detecting Exoplanets around Active Stars. Astrophys. J. 2012, 750, 172. [Google Scholar] [CrossRef]
- Ma, B.; Ge, J.; Muterspaugh, M.; Singer, M.A.; Henry, G.W.; González Hernández, J.I.; Sithajan, S.; Jeram, S.; Williamson, M.; Stassun, K.; et al. The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey. Mon. Not. R. Astron. Soc. 2018, 480, 2411–2422. [Google Scholar] [CrossRef]
- Zhao, L.L.; Fischer, D.A.; Ford, E.B.; Wise, A.; Cretignier, M.; Aigrain, S.; Barragan, O.; Bedell, M.; Buchhave, L.A.; Camacho, J.D.; et al. The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric Velocities. Astron. J. 2022, 163, 171. [Google Scholar] [CrossRef]
- Mann, A.W.; Newton, E.R.; Rizzuto, A.C.; Irwin, J.; Feiden, G.A.; Gaidos, E.; Mace, G.N.; Kraus, A.L.; James, D.J.; Ansdell, M.; et al. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association. Astron. J. 2016, 152, 61. [Google Scholar] [CrossRef]
- Mann, A.W.; Gaidos, E.; Mace, G.N.; Johnson, M.C.; Bowler, B.P.; LaCourse, D.; Jacobs, T.L.; Vanderburg, A.; Kraus, A.L.; Kaplan, K.F.; et al. Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized Planet Orbiting an M4.5 Dwarf in the Hyades Star Cluster. Astrophys. J. 2016, 818, 46. [Google Scholar] [CrossRef]
- Mann, A.W.; Gaidos, E.; Vanderburg, A.; Rizzuto, A.C.; Ansdell, M.; Medina, J.V.; Mace, G.N.; Kraus, A.L.; Sokal, K.R. Zodiacal Exoplanets in Time (ZEIT). IV. Seven Transiting Planets in the Praesepe Cluster. Astron. J. 2017, 153, 64. [Google Scholar] [CrossRef]
- Mann, A.W.; Vanderburg, A.; Rizzuto, A.C.; Kraus, A.L.; Berlind, P.; Bieryla, A.; Calkins, M.L.; Esquerdo, G.A.; Latham, D.W.; Mace, G.N.; et al. Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet. Astron. J. 2018, 155, 4. [Google Scholar] [CrossRef]
- Mann, A.W.; Johnson, M.C.; Vanderburg, A.; Kraus, A.L.; Rizzuto, A.C.; Wood, M.L.; Bush, J.L.; Rockcliffe, K.; Newton, E.R.; Latham, D.W.; et al. TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group. Astron. J. 2020, 160, 179. [Google Scholar] [CrossRef]
- Mann, A.W.; Wood, M.L.; Schmidt, S.P.; Barber, M.G.; Owen, J.E.; Tofflemire, B.M.; Newton, E.R.; Mamajek, E.E.; Bush, J.L.; Mace, G.N.; et al. TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting a Very-low-mass Star in Lower Centaurus Crux. Astron. J. 2022, 163, 156. [Google Scholar] [CrossRef]
- Zhou, G.; Quinn, S.N.; Irwin, J.; Huang, C.X.; Collins, K.A.; Bouma, L.G.; Khan, L.; Landrigan, A.; Vanderburg, A.M.; Rodriguez, J.E.; et al. Two Young Planetary Systems around Field Stars with Ages between 20 and 320 Myr from TESS. Astron. J. 2021, 161, 2. [Google Scholar] [CrossRef]
- Sun, Q.; Xuesong Wang, S.; Gan, T.; Mann, A.W. A Search for Exoplanets in Open Clusters and Young Associations based on TESS Objects of Interest. Res. Astron. Astrophys. 2022, 22, 075008. [Google Scholar] [CrossRef]
- Desidera, S.; Damasso, M.; Gratton, R.; Benatti, S.; Nardiello, D.; D’Orazi, V.; Lanza, A.F.; Locci, D.; Marzari, F.; Mesa, D.; et al. TOI-179: A young system with a transiting compact Neptune-mass planet and a low-mass companion in outer orbit. arXiv 2022, arXiv:2210.07933. [Google Scholar] [CrossRef]
- Dai, F.; Masuda, K.; Beard, C.; Robertson, P.; Goldberg, M.; Batygin, K.; Bouma, L.; Lissauer, J.J.; Knudstrup, E.; Albrecht, S.; et al. TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain. arXiv 2022, arXiv:2210.09283. [Google Scholar] [CrossRef]
- Dawson, R.I.; Johnson, J.A. Origins of Hot Jupiters. Annu. Rev. Astron. Astrophys. 2018, 56, 175–221. [Google Scholar] [CrossRef]
- Johnson, J.A.; Aller, K.M.; Howard, A.W.; Crepp, J.R. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane. PASP 2010, 122, 905. [Google Scholar] [CrossRef]
- Howard, A.W.; Marcy, G.W.; Bryson, S.T.; Jenkins, J.M.; Rowe, J.F.; Batalha, N.M.; Borucki, W.J.; Koch, D.G.; Dunham, E.W.; Gautier, T.N.I.; et al. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler. Astrophys. J. Suppl. Ser. 2012, 201, 15. [Google Scholar] [CrossRef]
- Deleuil, M.; Aigrain, S.; Moutou, C.; Cabrera, J.; Bouchy, F.; Deeg, H.J.; Almenara, J.M.; Hébrard, G.; Santerne, A.; Alonso, R.; et al. Planets, candidates, and binaries from the CoRoT/Exoplanet programme. The CoRoT transit catalogue. Astron. Astrophys. 2018, 619, A97. [Google Scholar] [CrossRef]
- Fortney, J.J.; Dawson, R.I.; Komacek, T.D. Hot Jupiters: Origins, Structure, Atmospheres. J. Geophys. Res. (Planets) 2021, 126, e06629. [Google Scholar] [CrossRef]
- Grether, D.; Lineweaver, C.H. How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars. Astrophys. J. 2006, 640, 1051–1062. [Google Scholar] [CrossRef]
- Ma, B.; Ge, J. Statistical properties of brown dwarf companions: Implications for different formation mechanisms. Mon. Not. R. Astron. Soc. 2014, 439, 2781–2789. [Google Scholar] [CrossRef]
- Feng, F.; Butler, R.P.; Vogt, S.S.; Clement, M.S.; Tinney, C.G.; Cui, K.; Aizawa, M.; Jones, H.R.A.; Bailey, J.; Burt, J.; et al. 3D Selection of 167 Substellar Companions to Nearby Stars. Astrophys. J. Suppl. Ser. 2022, 262, 21. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ford, E.B.; Matsumura, S.; Rasio, F.A. Dynamical Outcomes of Planet-Planet Scattering. Astrophys. J. 2008, 686, 580–602. [Google Scholar] [CrossRef]
- Hartman, J.D.; Gaudi, B.S.; Holman, M.J.; McLeod, B.A.; Stanek, K.Z.; Barranco, J.A.; Pinsonneault, M.H.; Meibom, S.; Kalirai, J.S. Deep MMT Transit Survey of the Open Cluster M37 IV: Limit on the Fraction of Stars with Planets as Small as 0.3RJ. Astrophys. J. 2009, 695, 336–356. [Google Scholar] [CrossRef]
- Burke, C.J.; Gaudi, B.S.; DePoy, D.L.; Pogge, R.W. Survey for Transiting Extrasolar Planets in Stellar Systems. III. A Limit on the Fraction of Stars with Planets in the Open Cluster NGC 1245. Astron. J. 2006, 132, 210–230. [Google Scholar] [CrossRef]
- Nardiello, D.; Piotto, G.; Deleuil, M.; Malavolta, L.; Montalto, M.; Bedin, L.R.; Borsato, L.; Granata, V.; Libralato, M.; Manthopoulou, E.E. A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS)—II. Search for exoplanets in open clusters of the Southern ecliptic hemisphere and their frequency. Mon. Not. R. Astron. Soc. 2020, 495, 4924–4942. [Google Scholar] [CrossRef]
- Fressin, F.; Torres, G.; Charbonneau, D.; Bryson, S.T.; Christiansen, J.; Dressing, C.D.; Jenkins, J.M.; Walkowicz, L.M.; Batalha, N.M. The False Positive Rate of Kepler and the Occurrence of Planets. Astrophys. J. 2013, 766, 81. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Gagné, J.; Mamajek, E.E.; Malo, L.; Riedel, A.; Rodriguez, D.; Lafrenière, D.; Faherty, J.K.; Roy-Loubier, O.; Pueyo, L.; Robin, A.C.; et al. BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc. Astrophys. J. 2018, 856, 23. [Google Scholar] [CrossRef]
- Babusiaux, C. et al. [Gaia Collaboration] Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron. Astrophys. 2018, 616, A10. [Google Scholar] [CrossRef]
- Gagné, J.; Faherty, J.K.; Mamajek, E.E. Volans-Carina: A New 90 Myr Old Stellar Association at 85 pc. Astrophys. J. 2018, 865, 136. [Google Scholar] [CrossRef]
- Hawkins, K.; Lucey, M.; Curtis, J. The chemical nature of the young 120-Myr-old nearby Pisces-Eridanus stellar stream flowing through the Galactic disc. Mon. Not. R. Astron. Soc. 2020, 496, 2422–2435. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Jordi, C.; Vallenari, A.; Bragaglia, A.; Balaguer-Núñez, L.; Soubiran, C.; Bossini, D.; Moitinho, A.; Castro-Ginard, A.; Krone-Martins, A.; et al. A Gaia DR2 view of the open cluster population in the Milky Way. Astron. Astrophys. 2018, 618, A93. [Google Scholar] [CrossRef]
- Gagné, J.; Faherty, J.K. BANYAN. XIII. A First Look at Nearby Young Associations with Gaia Data Release 2. Astrophys. J. 2018, 862, 138. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Anders, F.; Castro-Ginard, A.; Jordi, C.; Romero-Gómez, M.; Soubiran, C.; Casamiquela, L.; Tarricq, Y.; Moitinho, A.; Vallenari, A.; et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 2020, 640, A1. [Google Scholar] [CrossRef]
- Röser, S.; Schilbach, E. A census of the nearby Pisces-Eridanus stellar stream. Commonalities with and disparities from the Pleiades. Astron. Astrophys. 2020, 638, A9. [Google Scholar] [CrossRef]
- Ujjwal, K.; Kartha, S.S.; Mathew, B.; Manoj, P.; Narang, M. Analysis of Membership Probability in Nearby Young Moving Groups with Gaia DR2. Astron. J. 2020, 159, 166. [Google Scholar] [CrossRef]
- Stassun, K.G.; Oelkers, R.J.; Paegert, M.; Torres, G.; Pepper, J.; De Lee, N.; Collins, K.; Latham, D.W.; Muirhead, P.S.; Chittidi, J.; et al. The Revised TESS Input Catalog and Candidate Target List. Astron. J. 2019, 158, 138. [Google Scholar] [CrossRef]
- Paegert, M.; Stassun, K.G.; Collins, K.A.; Pepper, J.; Torres, G.; Jenkins, J.; Twicken, J.D.; Latham, D.W. TESS Input Catalog versions 8.1 and 8.2: Phantoms in the 8.0 Catalog and How to Handle Them. arXiv 2021, arXiv:2108.04778. [Google Scholar] [CrossRef]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 2011, 192, 3. [Google Scholar] [CrossRef]
- Choi, J.; Dotter, A.; Conroy, C.; Cantiello, M.; Paxton, B.; Johnson, B.D. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models. Astrophys. J. 2016, 823, 102. [Google Scholar] [CrossRef]
- Fouesneau, M.; Frémat, Y.; Andrae, R.; Korn, A.J.; Soubiran, C.; Kordopatis, G.; Vallenari, A.; Heiter, U.; Creevey, O.L.; Sarro, L.M.; et al. Gaia Data Release 3: Apsis II—Stellar Parameters. arXiv 2022, arXiv:2206.05992. [Google Scholar] [CrossRef]
- Pecaut, M.J.; Mamajek, E.E. The star formation history and accretion-disc fraction among the K-type members of the Scorpius-Centaurus OB association. Mon. Not. R. Astron. Soc. 2016, 461, 794–815. [Google Scholar] [CrossRef]
- Bell, C.P.M.; Mamajek, E.E.; Naylor, T. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood. Mon. Not. R. Astron. Soc. 2015, 454, 593–614. [Google Scholar] [CrossRef]
- Murphy, S.J.; Lawson, W.A.; Bessell, M.S. Re-examining the membership and origin of the epsilon Cha association. Mon. Not. R. Astron. Soc. 2013, 435, 1325–1349. [Google Scholar] [CrossRef]
- Dobbie, P.D.; Lodieu, N.; Sharp, R.G. IC 2602: A lithium depletion boundary age and new candidate low-mass stellar members. Mon. Not. R. Astron. Soc. 2010, 409, 1002–1012. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Stauffer, J.R.; Jayawardhana, R. Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission. Astrophys. J. 2004, 614, 386–397. [Google Scholar] [CrossRef]
- Pang, X.; Tang, S.Y.; Li, Y.; Yu, Z.; Wang, L.; Li, J.; Li, Y.; Wang, Y.; Wang, Y.; Zhang, T.; et al. 3D Morphology of Open Clusters in the Solar Neighborhood with Gaia EDR 3. II. Hierarchical Star Formation Revealed by Spatial and Kinematic Substructures. Astrophys. J. 2022, 931, 156. [Google Scholar] [CrossRef]
- Platais, I.; Kozhurina-Platais, V.; van Leeuwen, F. A Search for Star Clusters from the HIPPARCOS Data. Astron. J. 1998, 116, 2423–2430. [Google Scholar] [CrossRef]
- Silaj, J.; Landstreet, J.D. Accurate age determinations of several nearby open clusters containing magnetic Ap stars. Astron. Astrophys. 2014, 566, A132. [Google Scholar] [CrossRef]
- Dahm, S.E. Reexamining the Lithium Depletion Boundary in the Pleiades and the Inferred Age of the Cluster. Astrophys. J. 2015, 813, 108. [Google Scholar] [CrossRef]
- Zuckerman, B.; Bessell, M.S.; Song, I.; Kim, S. The Carina-Near Moving Group. Astrophys. J. Lett. 2006, 649, L115–L118. [Google Scholar] [CrossRef]
- Jones, J.; White, R.J.; Boyajian, T.S.; Schaefer, G.; Baines, E.K.; Ireland, M.; Patience, J.; McAlister, H.A.; Ten Brummelaar, T. The Age of the Ursa Major Moving Group from Interferometric Measurements of Its A-type Members. Abstracts #225. In Proceedings of the American Astronomical Society Meeting, Washington, DC, USA, 4–8 January 2015; Volume 225, p. 112.03. [Google Scholar]
- Pöhnl, H.; Paunzen, E. A statistical method to determine open cluster metallicities. Astron. Astrophys. 2010, 514, A81. [Google Scholar] [CrossRef]
- Jenkins, J.M.; Twicken, J.D.; McCauliff, S.; Campbell, J.; Sanderfer, D.; Lung, D.; Mansouri-Samani, M.; Girouard, F.; Tenenbaum, P.; Klaus, T.; et al. The TESS science processing operations center. In Proceedings of the Software and Cyberinfrastructure for Astronomy IV; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Chiozzi, G., Guzman, J.C., Eds.; SPIE: Edinburgh, UK, 2016; Volume 9913, p. 99133E. [Google Scholar] [CrossRef]
- Ginsburg, A.; Sipocz, B.M.; Brasseur, C.E.; Cowperthwaite, P.S.; Craig, M.W.; Deil, C.; Guillochon, J.; Guzman, G.; Liedtke, S.; Lian Lim, P.; et al. Astroquery: An Astronomical Web-querying Package in Python. Astron. J. 2019, 157, 98. [Google Scholar] [CrossRef]
- Cardoso, J.V.d.M. et al. [Lightkurve Collaboration] Lightkurve: Kepler and TESS Time Series Analysis in Python; Record Ascl:1812.013; Astrophysics Source Code Library, 2018. [Google Scholar]
- Hippke, M.; David, T.J.; Mulders, G.D.; Heller, R. Wōtan: Comprehensive Time-series Detrending in Python. Astron. J. 2019, 158, 143. [Google Scholar] [CrossRef]
- Kovács, G.; Zucker, S.; Mazeh, T. A box-fitting algorithm in the search for periodic transits. Astron. Astrophys. 2002, 391, 369–377. [Google Scholar] [CrossRef]
- Hippke, M.; Heller, R. Optimized transit detection algorithm to search for periodic transits of small planets. Astron. Astrophys. 2019, 623, A39. [Google Scholar] [CrossRef]
- Thompson, S.E.; Coughlin, J.L.; Hoffman, K.; Mullally, F.; Christiansen, J.L.; Burke, C.J.; Bryson, S.; Batalha, N.; Haas, M.R.; Catanzarite, J.; et al. Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25. Astrophys. J. Suppl. Ser. 2018, 235, 38. [Google Scholar] [CrossRef] [PubMed]
- Feliz, D.L.; Plavchan, P.; Bianco, S.N.; Jimenez, M.; Collins, K.I.; Villarreal Alvarado, B.; Stassun, K.G. NEMESIS: Exoplanet Transit Survey of Nearby M-dwarfs in TESS FFIs. I. Astron. J. 2021, 161, 247. [Google Scholar] [CrossRef]
- Hedges, C. Vetting: A Stand-alone Tool for Finding Centroid Offsets in NASA Kepler, K2, and TESS, Alerting the Presence of Exoplanet False Positives. Res. Notes Am. Astron. Soc. 2021, 5, 262. [Google Scholar] [CrossRef]
- Martioli, E.; Hébrard, G.; Correia, A.C.M.; Laskar, J.; Lecavelier des Etangs, A. New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance. Astron. Astrophys. 2021, 649, A177. [Google Scholar] [CrossRef]
- Newton, E.R.; Mann, A.W.; Tofflemire, B.M.; Pearce, L.; Rizzuto, A.C.; Vanderburg, A.; Martinez, R.A.; Wang, J.J.; Ruffio, J.B.; Kraus, A.L.; et al. TESS Hunt for Young and Maturing Exoplanets (THYME): A Planet in the 45 Myr Tucana-Horologium Association. Astrophys. J. Lett. 2019, 880, L17. [Google Scholar] [CrossRef]
- Smith, G.D.; Gillen, E.; Queloz, D.; Hillenbrand, L.A.; Acton, J.S.; Alves, D.R.; Anderson, D.R.; Bayliss, D.; Briegal, J.T.; Burleigh, M.R.; et al. NGTS clusters survey—III. A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary. Mon. Not. R. Astron. Soc. 2021, 507, 5991–6011. [Google Scholar] [CrossRef]
- Barros, S.C.C.; Demangeon, O.; Deleuil, M. New planetary and eclipsing binary candidates from campaigns 1–6 of the K2 mission. Astron. Astrophys. 2016, 594, A100. [Google Scholar] [CrossRef]
- Cousins, A.W.J. New Bright Variable Stars. Mon. Notes Astron. Soc. S. Afr. 1960, 19, 56. [Google Scholar]
- Steindl, T.; Zwintz, K.; Bowman, D.M. Tidally perturbed pulsations in the pre-main sequence δ Scuti binary RS Cha. Astron. Astrophys. 2021, 645, A119. [Google Scholar] [CrossRef]
- Kiraga, M. ASAS Photometry of ROSAT Sources. I. Periodic Variable Stars Coincident with Bright Sources from the ROSAT All Sky Survey. AcA 2012, 62, 67–95. [Google Scholar]
- Clausen, J.V.; Garcia, J.M.; Gimenez, A.; Helt, B.E.; Vaz, L.P.R. Four-colour photometry of eclipsing binaries. XXXV. Lightcurves of GG Lupi: Young metal-deficient B stars. Astron. Astrophys. Suppl. Ser. 1993, 101, 563. [Google Scholar]
- Szczygieł, D.M.; Socrates, A.; Paczyński, B.; Pojmański, G.; Pilecki, B. Coronal Activity from the ASAS Eclipsing Binaries. AcA 2008, 58, 405. [Google Scholar]
- Benatti, S.; Damasso, M.; Borsa, F.; Locci, D.; Pillitteri, I.; Desidera, S.; Maggio, A.; Micela, G.; Wolk, S.; Claudi, R.; et al. Constraints on the mass and on the atmospheric composition and evolution of the low-density young planet DS Tucanae A b. Astron. Astrophys. 2021, 650, A66. [Google Scholar] [CrossRef]
- Plavchan, P.; Barclay, T.; Gagné, J.; Gao, P.; Cale, B.; Matzko, W.; Dragomir, D.; Quinn, S.; Feliz, D.; Stassun, K.; et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature 2020, 582, 497–500. [Google Scholar] [CrossRef]
- Benatti, S.; Nardiello, D.; Malavolta, L.; Desidera, S.; Borsato, L.; Nascimbeni, V.; Damasso, M.; D’Orazi, V.; Mesa, D.; Messina, S.; et al. A possibly inflated planet around the bright young star DS Tucanae A. Astron. Astrophys. 2019, 630, A81. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Bochanski, J.J.; Faherty, J.K.; Gagné, J.; Nelson, O.; Coker, K.; Smithka, I.; Desir, D.; Vasquez, C. Fundamental Properties of Co-moving Stars Observed by Gaia. Astron. J. 2018, 155, 149. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Chowdhury, S.; Johnston, C.; Bowman, D.M.; Aerts, C.; Handler, G.; De Cat, P.; Neiner, C.; David-Uraz, A.; Buzasi, D.; et al. Diverse Variability of O and B Stars Revealed from 2-minute Cadence Light Curves in Sectors 1 and 2 of the TESS Mission: Selection of an Asteroseismic Sample. Astrophys. J. Lett. 2019, 872, L9. [Google Scholar] [CrossRef]
- Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. PASP 2015, 127, 1161. [Google Scholar] [CrossRef]
- Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M.T.; Bonifacio, P.; Bedin, L.R.; Libralato, M.; Biazzo, K.; Melo, C.; et al. Search for giant planets in M 67. IV. Survey results. Astron. Astrophys. 2017, 603, A85. [Google Scholar] [CrossRef]
- Hamer, J.H.; Schlaufman, K.C. Hot Jupiters Are Destroyed by Tides While Their Host Stars Are on the Main Sequence. Astron. J. 2019, 158, 190. [Google Scholar] [CrossRef]
- Nardiello, D.; Deleuil, M.; Mantovan, G.; Malavolta, L.; Lacedelli, G.; Libralato, M.; Bedin, L.R.; Borsato, L.; Granata, V.; Piotto, G. A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS)—IV. Candidate exoplanets around stars in open clusters: Frequency and age-planetary radius distribution. Mon. Not. R. Astron. Soc. 2021, 505, 3767–3784. [Google Scholar] [CrossRef]
- Lopez, E.D.; Fortney, J.J.; Miller, N. How Thermal Evolution and Mass-loss Sculpt Populations of Super-Earths and Sub-Neptunes: Application to the Kepler-11 System and Beyond. Astrophys. J. 2012, 761, 59. [Google Scholar] [CrossRef]
- Owen, J.E.; Wu, Y. Kepler Planets: A Tale of Evaporation. Astrophys. J. 2013, 775, 105. [Google Scholar] [CrossRef]
- Gupta, A.; Schlichting, H.E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: The core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 2019, 487, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Nicholson, L.; Schlichting, H.E. Properties of the radius valley around low mass stars: Predictions from the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 2022, 516, 4585–4593. [Google Scholar] [CrossRef]
- Yee, S.W.; Winn, J.N.; Hartman, J.D.; Rodriguez, J.E.; Zhou, G.; Quinn, S.N.; Latham, D.W.; Bieryla, A.; Collins, K.A.; Addison, B.C.; et al. The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets. Astron. J. 2022, 164, 70. [Google Scholar] [CrossRef]
Source | Association/Cluster | Description |
---|---|---|
AU Mic | BPMG | Confirmed planet 1 |
DS Tuc A | THA | Confirmed planet 2 |
TOI-837 | IC2602 | Confirmed planet 3 |
HD 63433 | UMa | Confirmed planet 4 |
Gaia DR2 5536809162106730112 | NGC2451 | likely EB |
HD 20701 | Alpha Per | background variable star |
HD 224112 | Blanco 1 | background EB |
2MASS J00024841-2953539 | Blanco 1 | eclipsing binary 5 |
V* V1283 Tau | Pleiades | eclipsing binary 6 |
RS Cha | ETAC | eclipsing binary 7,8 |
CD-46 9495 | UCL | eclipsing binary 9 |
GG Lup | UCL | eclipsing binary 10 |
BS Ind | THA | eclipsing binary 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Ma, B.; Chen, C.; Wen, Y. Constraining Young Hot Jupiter Occurrence Rate in Stellar Associations Using 2-min Cadence TESS Data. Universe 2023, 9, 192. https://doi.org/10.3390/universe9040192
Fang Y, Ma B, Chen C, Wen Y. Constraining Young Hot Jupiter Occurrence Rate in Stellar Associations Using 2-min Cadence TESS Data. Universe. 2023; 9(4):192. https://doi.org/10.3390/universe9040192
Chicago/Turabian StyleFang, Yuanqing, Bo Ma, Chen Chen, and Yongxin Wen. 2023. "Constraining Young Hot Jupiter Occurrence Rate in Stellar Associations Using 2-min Cadence TESS Data" Universe 9, no. 4: 192. https://doi.org/10.3390/universe9040192
APA StyleFang, Y., Ma, B., Chen, C., & Wen, Y. (2023). Constraining Young Hot Jupiter Occurrence Rate in Stellar Associations Using 2-min Cadence TESS Data. Universe, 9(4), 192. https://doi.org/10.3390/universe9040192