Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials
Abstract
:1. Introduction
2. WKB Approximation
3. Attractive Inverse-Square-Type Potential
4. Quartic-Type Oscillator
5. Analogue of Potential
6. Revival Time
6.1. Attractive Inverse-Square-Type Potential
6.2. Quartic-Type Oscillator
6.3. Analogue of Potential
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wentzel, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Physik 1926, 38, 518. [Google Scholar] [CrossRef]
- Kramers, H.A. Wellenmechanik und halbzahlige Quantisierung. Z. Physik 1926, 39, 828. [Google Scholar] [CrossRef]
- Brillouin, L. La mécanique ondulatoire de Schrödinger: Une méthode générale de resolution par approximations successives. C. R. Hebd. Acad. Sci. 1926, 183, 24. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, the Nonrelativistic Theory, 3rd ed.; Pergamon: Oxford, UK, 1977. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Gaudreau, P.; Slevinsky, R.M.; Safouhi, H. An asymptotic expansion for energy eigenvalues of anharmonic oscillators. Ann. Phys. 2013, 337, 261. [Google Scholar] [CrossRef]
- Cornwall, J.M.; Tiktopoulos, G. Semiclassical matrix elements for the quartic oscillator. Ann. Phys. 1993, 228, 365. [Google Scholar] [CrossRef]
- Adhikari, R.; Dutt, R.; Varshni, Y.P. On the averaging of energy eigenvalues in the supersymmetric wkb method. Phys. Lett. A 1998, 131, 217. [Google Scholar] [CrossRef]
- Das, A.; Frenkel, J.; Pereira, S.H.; Taylor, J.C. Quantum behavior of a charged particle in an axial magnetic field. Phys. Rev. A 2004, 70, 053408. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.S.; Lee, H.R.; Sohn, K.S. Semiclassical quantum theory and its applications in two dimensions by conformal mapping. Phys. Rev. A 1994, 49, 3277. [Google Scholar] [CrossRef]
- Bender, C.M.; Berry, M.; Meisinger, P.N.; Savage, V.M.; Simsek, M. Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians. J. Phys. A Math. Gen. 2001, 34, L31. [Google Scholar] [CrossRef]
- Dorey, P.; Millican-Slater1, A.; Tateo, R. Beyond the WKB approximation in PT-symmetric quantum mechanics. J. Phys. A Math. Gen. 2005, 38, 1305. [Google Scholar] [CrossRef]
- Bender, C.M.; Jones, H.F. Semiclassical calculation of the C operator in PT-symmetric quantum mechanics. Phys. Lett. A 2004, 328, 102. [Google Scholar] [CrossRef] [Green Version]
- Langer, R.E. On the Connection Formulas and the Solutions of the Wave Equation. Phys. Rev. 1937, 51, 669. [Google Scholar] [CrossRef]
- Berry, M.V.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 1972, 35, 315. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; de Almeida, A.M.O. Semiclassical approximation of the radial equation with two-dimensional potentials. J. Phys. A Math. Nucl. Gen. 1973, 6, 1451. [Google Scholar] [CrossRef]
- Brack, M.; Bhaduri, R.K. Semiclassical Physics; Addison-Wesley Publishing Company: Boston, MA, USA, 1997. [Google Scholar]
- Morehead, J.J. Asymptotics of radial wave equations. J. Math. Phys. 1995, 36, 5431. [Google Scholar] [CrossRef]
- Ou, Y.; Cao, Z.; Shen, Q. Exact energy eigenvalues for spherically symmetrical three-dimensional potential. Phys. Lett. A 2013, 318, 36. [Google Scholar] [CrossRef]
- Hainz, J.; Grabert, H. Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen. Phys. Rev. A 1999, 60, 1698. [Google Scholar] [CrossRef] [Green Version]
- Bakke, K. A semiclassical treatment of the interaction of non-uniform electric fields with the electric quadrupole moment of a neutral particle. Eur. Phys. J. Plus 2019, 134, 76. [Google Scholar] [CrossRef] [Green Version]
- Bakke, K.; Furtado, C. Semiclassical treatment of an attractive inverse-square potential in an elastic medium with a disclination. Int. J. Geom. Method. Mod. Phys. 2020, 17, 2050178. [Google Scholar] [CrossRef]
- Vieira, S.L.R.; Bakke, K. Semiclassical Analysis of the Interaction of the Magnetic Quadrupole Moment of a Neutral Particle with Axial Electric Fields in a Uniformly Rotating Frame. Found. Phys. 2020, 50, 735. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C. Analysis of the interaction of an electron with radial electric fields in the presence of a disclination. Int. J. Geom. Method. Mod. Phys. 2019, 16, 1950172. [Google Scholar] [CrossRef]
- Case, K.M. Singular Potentials. Phys. Rev. 1950, 80, 797. [Google Scholar] [CrossRef]
- Camblong, H.E.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. Renormalization of the Inverse Square Potential. Phys. Rev. Lett. 2000, 85, 1590. [Google Scholar] [CrossRef] [Green Version]
- Coon, S.A.; Holstein, B.R. Anomalies in quantum mechanics: The 1/r2 potential. Am. J. Phys. 2002, 70, 513. [Google Scholar] [CrossRef] [Green Version]
- Essin, A.M.; Griffths, D.J. Quantum mechanics of the 1/x2 potential. Am. J. Phys. 2006, 74, 109. [Google Scholar] [CrossRef]
- Gupta, K.S.; Rajeev, S.G. Renormalization in quantum mechanics. Phys. Rev. D 1993, 48, 5940. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.P. The occurrence and properties of molecular vibrations with V(x) = ax4. Proc. R. Soc. Lond. A 1945, 183, 328. [Google Scholar]
- Barakat, R.; Rosner, R. The bounded quartic oscillator. Phys. Lett. A 1981, 83, 149. [Google Scholar] [CrossRef]
- Liverts, E.Z.; Mandelzweig, V.B.; Tabakin, F. Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators. J. Math. Phys. 2006, 47, 062109. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Tudose, B. Wave-packet revivals for quantum systems with nondegenerate energies. Phys. Lett. A 1996, 222, 220. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W. Quantum wave packet revivals. Phys. Rep. 2004, 392, 1–119. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Porter, J.A. The evolution and revival structure of localized quantum wave packets. Am. J. Phys. 1996, 64, 944. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W. Visualizing the collapse and revival of wave packets in the infinite square well using expectation values. Am. J. Phys. 2000, 68, 410. [Google Scholar] [CrossRef] [Green Version]
- Bawin, M.; Coon, S.A. Neutral atom and a charged wire: From elastic scattering to absorption. Phys. Rev. A 2001, 63, 034701. [Google Scholar] [CrossRef] [Green Version]
- Denschlag, J.; Umshaus, G.; Schmiedmayer, J. Probing a Singular Potential with Cold Atoms: A Neutral Atom and a Charged Wire. Phys. Rev. Lett. 1998, 81, 737. [Google Scholar] [CrossRef]
- Audretsch, J.; Skarzhinsky, V.D.; Voronov, B.L. Elastic scattering and bound states in the Aharonov–Bohm potential superimposed by an attractive ρ−2 potential. J. Phys. A Math. Gen. 2001, 34, 235. [Google Scholar] [CrossRef] [Green Version]
- Tkachuk, V.M. Binding of neutral atoms to ferromagnetic wire. Phys. Rev. A 1999, 60, 4715. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Phisicists, 6th ed.; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Chan, S.I.; Stelman, D.; Thompson, L.E. Quartic Oscillator as a Basis for Energy Level Calculations of Some Anharmonic Oscillators. J. Chem. Phys. 1964, 41, 2828. [Google Scholar] [CrossRef]
- Chan, S.I.; Stelman, D. Some Energy Levels and Matrix Elements of the Quartic Oscillator. J. Mol. Spectrosc. 1963, 10, 278. [Google Scholar] [CrossRef]
- Laane, J. Experimental Determination of Vibrational Potential Energy Surfaces and Molecular Structures in Electronic Excited States. J. Phys. Chem. A 2000, 104, 7715. [Google Scholar] [CrossRef]
- Bender, C.; Wu, T.T. Anharmonic Oscillator. Phys. Rev. 1969, 184, 1231. [Google Scholar] [CrossRef]
- Sinha, D.; Berche, B. Quantum oscillations and wave packet revival in conical graphene structure. Eur. Phys. J. B 2016, 89, 57. [Google Scholar] [CrossRef] [Green Version]
- García, T.; Rodríguez-Bolívar, S.; Cordero, N.A.; Romera, E. Wavepacket revivals in monolayer and bilayer graphene rings. J. Phys. Condens. Matter 2013, 25, 235301. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A. Quantum defects and the long-term behavior of radial Rydberg wave packets. Phys. Rev. A 1994, 50, R4445. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets for hydrogen and alkali-metal atoms. Phys. Rev. A 1995, 51, 4767. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets. Phys. Lett. A 1995, 200, 308. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.-C.; Hong, Q.Q.; Guo, Y.; Henriksen, N.E. Orientational quantum revivals induced by a single-cycle terahertz pulse. Phys. Rev. A 2020, 102, 063124. [Google Scholar] [CrossRef]
- Krizanac, M.; Altwein, D.; Vedmedenko, E.Y.; Wiesendanger, R. Quantum revivals and magnetization tunneling in effective spin systems. New J. Phys. 2016, 18, 033029. [Google Scholar] [CrossRef]
- Lando, G.M.; Vallejos, R.O.; Ingold, G.L.; de Almeida, A.M.O. Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A 2019, 99, 042125. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.V.D.M.; Bakke, K. Topological effects of a spiral dislocation on quantum revivals. Universe 2022, 8, 168. [Google Scholar] [CrossRef]
- Bakke, K. Topological effects of a disclination on quantum revivals. Int. J. Mod. Phys. A 2022, 37, 2250046. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485. [Google Scholar] [CrossRef] [Green Version]
- Peshkin, M.; Tonomura, A. The Aharonov-Bohm Effect; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 340. [Google Scholar]
- Bezerra, V.B.; Santos, I.B. Topological effects due to a cosmic string. Eur. J. Phys. 1992, 13, 122. [Google Scholar] [CrossRef]
- Marques, G.d.A.; Bezerra, V.B.; Furtado, C.; Moraes, F. Quantum effects due to a magnetic flux associated to a topological defect. Int. J. Mod. Phys. A 2005, 20, 6051. [Google Scholar] [CrossRef]
- Furtado, C.; Bezerra, V.B.; Moraes, F. Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A 2001, 289, 160. [Google Scholar] [CrossRef]
- Doncheski, M.A.; Heppelmann, S.; Robinett, R.W.; Tussey, D.C. Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys. 2003, 71, 541. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Tudose, B. Revival structure of Stark wave packets. Phys. Rev. A 1997, 55, 819. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W.; Heppelmann, S. Quantum wave-packet revivals in circular billiards. Phys. Rev. A 2002, 65, 062103. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veloso, J.d.C.; Bakke, K. Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials. Universe 2023, 9, 151. https://doi.org/10.3390/universe9030151
Veloso JdC, Bakke K. Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials. Universe. 2023; 9(3):151. https://doi.org/10.3390/universe9030151
Chicago/Turabian StyleVeloso, Jardel de Carvalho, and Knut Bakke. 2023. "Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials" Universe 9, no. 3: 151. https://doi.org/10.3390/universe9030151