# Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials

^{*}

## Abstract

**:**

## 1. Introduction

## 2. WKB Approximation

## 3. Attractive Inverse-Square-Type Potential

## 4. Quartic-Type Oscillator

## 5. Analogue of ${r}^{\mathbf{6}}$ Potential

## 6. Revival Time

#### 6.1. Attractive Inverse-Square-Type Potential

#### 6.2. Quartic-Type Oscillator

#### 6.3. Analogue of ${r}^{6}$ Potential

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wentzel, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Physik
**1926**, 38, 518. [Google Scholar] [CrossRef] - Kramers, H.A. Wellenmechanik und halbzahlige Quantisierung. Z. Physik
**1926**, 39, 828. [Google Scholar] [CrossRef] - Brillouin, L. La mécanique ondulatoire de Schrödinger: Une méthode générale de resolution par approximations successives. C. R. Hebd. Acad. Sci.
**1926**, 183, 24. [Google Scholar] - Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, the Nonrelativistic Theory, 3rd ed.; Pergamon: Oxford, UK, 1977. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Gaudreau, P.; Slevinsky, R.M.; Safouhi, H. An asymptotic expansion for energy eigenvalues of anharmonic oscillators. Ann. Phys.
**2013**, 337, 261. [Google Scholar] [CrossRef] - Cornwall, J.M.; Tiktopoulos, G. Semiclassical matrix elements for the quartic oscillator. Ann. Phys.
**1993**, 228, 365. [Google Scholar] [CrossRef] - Adhikari, R.; Dutt, R.; Varshni, Y.P. On the averaging of energy eigenvalues in the supersymmetric wkb method. Phys. Lett. A
**1998**, 131, 217. [Google Scholar] [CrossRef] - Das, A.; Frenkel, J.; Pereira, S.H.; Taylor, J.C. Quantum behavior of a charged particle in an axial magnetic field. Phys. Rev. A
**2004**, 70, 053408. [Google Scholar] [CrossRef] [Green Version] - Yi, H.S.; Lee, H.R.; Sohn, K.S. Semiclassical quantum theory and its applications in two dimensions by conformal mapping. Phys. Rev. A
**1994**, 49, 3277. [Google Scholar] [CrossRef] - Bender, C.M.; Berry, M.; Meisinger, P.N.; Savage, V.M.; Simsek, M. Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians. J. Phys. A Math. Gen.
**2001**, 34, L31. [Google Scholar] [CrossRef] - Dorey, P.; Millican-Slater1, A.; Tateo, R. Beyond the WKB approximation in PT-symmetric quantum mechanics. J. Phys. A Math. Gen.
**2005**, 38, 1305. [Google Scholar] [CrossRef] - Bender, C.M.; Jones, H.F. Semiclassical calculation of the C operator in PT-symmetric quantum mechanics. Phys. Lett. A
**2004**, 328, 102. [Google Scholar] [CrossRef] [Green Version] - Langer, R.E. On the Connection Formulas and the Solutions of the Wave Equation. Phys. Rev.
**1937**, 51, 669. [Google Scholar] [CrossRef] - Berry, M.V.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys.
**1972**, 35, 315. [Google Scholar] [CrossRef] [Green Version] - Berry, M.V.; de Almeida, A.M.O. Semiclassical approximation of the radial equation with two-dimensional potentials. J. Phys. A Math. Nucl. Gen.
**1973**, 6, 1451. [Google Scholar] [CrossRef] - Brack, M.; Bhaduri, R.K. Semiclassical Physics; Addison-Wesley Publishing Company: Boston, MA, USA, 1997. [Google Scholar]
- Morehead, J.J. Asymptotics of radial wave equations. J. Math. Phys.
**1995**, 36, 5431. [Google Scholar] [CrossRef] - Ou, Y.; Cao, Z.; Shen, Q. Exact energy eigenvalues for spherically symmetrical three-dimensional potential. Phys. Lett. A
**2013**, 318, 36. [Google Scholar] [CrossRef] - Hainz, J.; Grabert, H. Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen. Phys. Rev. A
**1999**, 60, 1698. [Google Scholar] [CrossRef] [Green Version] - Bakke, K. A semiclassical treatment of the interaction of non-uniform electric fields with the electric quadrupole moment of a neutral particle. Eur. Phys. J. Plus
**2019**, 134, 76. [Google Scholar] [CrossRef] [Green Version] - Bakke, K.; Furtado, C. Semiclassical treatment of an attractive inverse-square potential in an elastic medium with a disclination. Int. J. Geom. Method. Mod. Phys.
**2020**, 17, 2050178. [Google Scholar] [CrossRef] - Vieira, S.L.R.; Bakke, K. Semiclassical Analysis of the Interaction of the Magnetic Quadrupole Moment of a Neutral Particle with Axial Electric Fields in a Uniformly Rotating Frame. Found. Phys.
**2020**, 50, 735. [Google Scholar] [CrossRef] - Bakke, K.; Furtado, C. Analysis of the interaction of an electron with radial electric fields in the presence of a disclination. Int. J. Geom. Method. Mod. Phys.
**2019**, 16, 1950172. [Google Scholar] [CrossRef] - Case, K.M. Singular Potentials. Phys. Rev.
**1950**, 80, 797. [Google Scholar] [CrossRef] - Camblong, H.E.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. Renormalization of the Inverse Square Potential. Phys. Rev. Lett.
**2000**, 85, 1590. [Google Scholar] [CrossRef] [Green Version] - Coon, S.A.; Holstein, B.R. Anomalies in quantum mechanics: The 1/r
^{2}potential. Am. J. Phys.**2002**, 70, 513. [Google Scholar] [CrossRef] [Green Version] - Essin, A.M.; Griffths, D.J. Quantum mechanics of the 1/x
^{2}potential. Am. J. Phys.**2006**, 74, 109. [Google Scholar] [CrossRef] - Gupta, K.S.; Rajeev, S.G. Renormalization in quantum mechanics. Phys. Rev. D
**1993**, 48, 5940. [Google Scholar] [CrossRef] [Green Version] - Bell, R.P. The occurrence and properties of molecular vibrations with V(x) = ax
^{4}. Proc. R. Soc. Lond. A**1945**, 183, 328. [Google Scholar] - Barakat, R.; Rosner, R. The bounded quartic oscillator. Phys. Lett. A
**1981**, 83, 149. [Google Scholar] [CrossRef] - Liverts, E.Z.; Mandelzweig, V.B.; Tabakin, F. Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators. J. Math. Phys.
**2006**, 47, 062109. [Google Scholar] [CrossRef] [Green Version] - Bluhm, R.; Kostelecký, V.A.; Tudose, B. Wave-packet revivals for quantum systems with nondegenerate energies. Phys. Lett. A
**1996**, 222, 220. [Google Scholar] [CrossRef] [Green Version] - Robinett, R.W. Quantum wave packet revivals. Phys. Rep.
**2004**, 392, 1–119. [Google Scholar] [CrossRef] [Green Version] - Bluhm, R.; Kostelecký, V.A.; Porter, J.A. The evolution and revival structure of localized quantum wave packets. Am. J. Phys.
**1996**, 64, 944. [Google Scholar] [CrossRef] [Green Version] - Robinett, R.W. Visualizing the collapse and revival of wave packets in the infinite square well using expectation values. Am. J. Phys.
**2000**, 68, 410. [Google Scholar] [CrossRef] [Green Version] - Bawin, M.; Coon, S.A. Neutral atom and a charged wire: From elastic scattering to absorption. Phys. Rev. A
**2001**, 63, 034701. [Google Scholar] [CrossRef] [Green Version] - Denschlag, J.; Umshaus, G.; Schmiedmayer, J. Probing a Singular Potential with Cold Atoms: A Neutral Atom and a Charged Wire. Phys. Rev. Lett.
**1998**, 81, 737. [Google Scholar] [CrossRef] - Audretsch, J.; Skarzhinsky, V.D.; Voronov, B.L. Elastic scattering and bound states in the Aharonov–Bohm potential superimposed by an attractive ρ
^{−2}potential. J. Phys. A Math. Gen.**2001**, 34, 235. [Google Scholar] [CrossRef] [Green Version] - Tkachuk, V.M. Binding of neutral atoms to ferromagnetic wire. Phys. Rev. A
**1999**, 60, 4715. [Google Scholar] [CrossRef] - Arfken, G.B.; Weber, H.J. Mathematical Methods for Phisicists, 6th ed.; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Chan, S.I.; Stelman, D.; Thompson, L.E. Quartic Oscillator as a Basis for Energy Level Calculations of Some Anharmonic Oscillators. J. Chem. Phys.
**1964**, 41, 2828. [Google Scholar] [CrossRef] - Chan, S.I.; Stelman, D. Some Energy Levels and Matrix Elements of the Quartic Oscillator. J. Mol. Spectrosc.
**1963**, 10, 278. [Google Scholar] [CrossRef] - Laane, J. Experimental Determination of Vibrational Potential Energy Surfaces and Molecular Structures in Electronic Excited States. J. Phys. Chem. A
**2000**, 104, 7715. [Google Scholar] [CrossRef] - Bender, C.; Wu, T.T. Anharmonic Oscillator. Phys. Rev.
**1969**, 184, 1231. [Google Scholar] [CrossRef] - Sinha, D.; Berche, B. Quantum oscillations and wave packet revival in conical graphene structure. Eur. Phys. J. B
**2016**, 89, 57. [Google Scholar] [CrossRef] [Green Version] - García, T.; Rodríguez-Bolívar, S.; Cordero, N.A.; Romera, E. Wavepacket revivals in monolayer and bilayer graphene rings. J. Phys. Condens. Matter
**2013**, 25, 235301. [Google Scholar] [CrossRef] - Bluhm, R.; Kostelecký, V.A. Quantum defects and the long-term behavior of radial Rydberg wave packets. Phys. Rev. A
**1994**, 50, R4445. [Google Scholar] [CrossRef] [Green Version] - Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets for hydrogen and alkali-metal atoms. Phys. Rev. A
**1995**, 51, 4767. [Google Scholar] [CrossRef] [Green Version] - Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets. Phys. Lett. A
**1995**, 200, 308. [Google Scholar] [CrossRef] [Green Version] - Shu, C.-C.; Hong, Q.Q.; Guo, Y.; Henriksen, N.E. Orientational quantum revivals induced by a single-cycle terahertz pulse. Phys. Rev. A
**2020**, 102, 063124. [Google Scholar] [CrossRef] - Krizanac, M.; Altwein, D.; Vedmedenko, E.Y.; Wiesendanger, R. Quantum revivals and magnetization tunneling in effective spin systems. New J. Phys.
**2016**, 18, 033029. [Google Scholar] [CrossRef] - Lando, G.M.; Vallejos, R.O.; Ingold, G.L.; de Almeida, A.M.O. Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A
**2019**, 99, 042125. [Google Scholar] [CrossRef] [Green Version] - Maia, A.V.D.M.; Bakke, K. Topological effects of a spiral dislocation on quantum revivals. Universe
**2022**, 8, 168. [Google Scholar] [CrossRef] - Bakke, K. Topological effects of a disclination on quantum revivals. Int. J. Mod. Phys. A
**2022**, 37, 2250046. [Google Scholar] [CrossRef] - Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev.
**1959**, 115, 485. [Google Scholar] [CrossRef] [Green Version] - Peshkin, M.; Tonomura, A. The Aharonov-Bohm Effect; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 340. [Google Scholar]
- Bezerra, V.B.; Santos, I.B. Topological effects due to a cosmic string. Eur. J. Phys.
**1992**, 13, 122. [Google Scholar] [CrossRef] - Marques, G.d.A.; Bezerra, V.B.; Furtado, C.; Moraes, F. Quantum effects due to a magnetic flux associated to a topological defect. Int. J. Mod. Phys. A
**2005**, 20, 6051. [Google Scholar] [CrossRef] - Furtado, C.; Bezerra, V.B.; Moraes, F. Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A
**2001**, 289, 160. [Google Scholar] [CrossRef] - Doncheski, M.A.; Heppelmann, S.; Robinett, R.W.; Tussey, D.C. Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys.
**2003**, 71, 541. [Google Scholar] [CrossRef] [Green Version] - Bluhm, R.; Kostelecký, V.A.; Tudose, B. Revival structure of Stark wave packets. Phys. Rev. A
**1997**, 55, 819. [Google Scholar] [CrossRef] [Green Version] - Robinett, R.W.; Heppelmann, S. Quantum wave-packet revivals in circular billiards. Phys. Rev. A
**2002**, 65, 062103. [Google Scholar] [CrossRef] [Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Veloso, J.d.C.; Bakke, K.
Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials. *Universe* **2023**, *9*, 151.
https://doi.org/10.3390/universe9030151

**AMA Style**

Veloso JdC, Bakke K.
Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials. *Universe*. 2023; 9(3):151.
https://doi.org/10.3390/universe9030151

**Chicago/Turabian Style**

Veloso, Jardel de Carvalho, and Knut Bakke.
2023. "Point Charge Subject to an Attractive Inverse-Square-Type Potential and Anharmonic-Type Potentials" *Universe* 9, no. 3: 151.
https://doi.org/10.3390/universe9030151