An Analytical Approach to Bayesian Evidence Computation
Abstract
:1. Introduction
2. The Bayesian Evidence
3. The Gaussian Approximation
3.1. Centred Priors
3.2. Uncentred Priors
4. Non-Gaussian Corrections
4.1. Skewness
4.2. Kurtosis
5. Model Comparison
5.1. A Baby-Toy Model Comparison
5.2. A Toy Model Comparison
5.3. A Real Model Comparison
5.4. Savage–Dickey Method
6. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
1 | An extension to Gaussian priors should be feasible, but not one to arbitrary priors. |
2 | Note that, for scalar quantities, Einstein notation for the sum over free indices is assumed. |
3 | One could rotate the parameter basis to remove the correlations, but then the priors would not be top-hats. |
4 | Recently, Trotta [20] used a different technique to analyse a restricted class of isocurvature model featuring just one extra parameter, and found it highly disfavoured. The different conclusion is primarily due to the very different prior he chose on the isocurvature amplitude, such that almost all the models under the prior are dominated by isocurvature models and in poor agreement with the data. |
References
- Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Jaffe, A. H0 and odds on cosmology. Astrophys. J. 1996, 471, 24. [Google Scholar]
- Drell, P.S.; Loredo, T.J.; Wasserman, I. Type Ia supernovae, evolution, and the cosmological constant. Astrophys. J. 2000, 530, 593. [Google Scholar] [CrossRef] [Green Version]
- John, M.V.; Narlikar, J.V. Comparison of cosmological models using Bayesian theory. Phys. Rev. D 2002, 65, 043506. [Google Scholar] [CrossRef] [Green Version]
- Hobson, M.P.; Bridle, S.L.; Lahav, O. Combining cosmological data sets: Hyperparameters and Bayesian evidence. Mon. Not. R. Astron. Soc. 2002, 335, 377. [Google Scholar] [CrossRef]
- Slosar, A.; Carreira, P.; Cleary, K.; Davies, R.D..; Davis, R.J.; Dickinson, C.; Genova-Santos, R.; Grainge, K.; Gutierrez, C.M.; Hafez, Y.A.; et al. Cosmological parameter estimation and Bayesian model comparison using Very Small Array data. Mon. Not. R. Astron. Soc. 2003, 341, L29. [Google Scholar] [CrossRef] [Green Version]
- Saini, T.D.; Weller, J.; Bridle, S.L. Revealing the nature of dark energy using Bayesian evidence. Mon. Not. R. Astron. Soc. 2004, 348, 603. [Google Scholar] [CrossRef] [Green Version]
- Niarchou, A.; Jaffe, A.H.; Pogosian, L. Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison. Phys. Rev. D 2004, 69, 063515. [Google Scholar] [CrossRef]
- Marshall, P.; Rajguru, N.; Slosar, A. Bayesian evidence as a tool for comparing datasets. Phys. Rev. D 2006, 73, 067302. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R. How many cosmological parameters? Mon. Not. R. Astron. Soc. 2004, 351, L49–L53. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, M.; García-Bellido, J.; Lesgourgues, J.; Liddle, A.R.; Slosar, A. Bayesian model selection and isocurvature perturbations. Phys. Rev. D 2005, 71, 063532. [Google Scholar] [CrossRef] [Green Version]
- Ó’Ruanaidh, J.J.K.; Fitzgerald, W.J. Numerical Bayesian Methods Applied to Signal Processing; Springer: New York, NY, USA, 1996. [Google Scholar]
- Hobson, M.P.; McLachlan, C. A Bayesian approach to discrete object detection in astronomical data sets. Mon. Not. R. Astron. Soc. 2003, 338, 765. [Google Scholar] [CrossRef] [Green Version]
- Skilling, J. Nested sampling. AIP Conf. Proc. 2004, 735, 395. [Google Scholar]
- Handley, W.J.; Hobson, M.P.; Lasenby, A.N. POLYCHORD: Nested sampling for cosmology. Mon. Not. R. Astron. Soc. 2015, 450, L61. [Google Scholar] [CrossRef]
- Xie, W.; Lewis, P.O.; Fan, Y.; Kuo, L.; Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 2011, 60, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maturana-Russel, P.; Meyer, R.; Veitch, J.; Christensen, N. Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Phys. Rev. D 2019, 99, 084006. [Google Scholar]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773. [Google Scholar] [CrossRef]
- Trotta, R. Applications of Bayesian model selection to cosmological parameters. Mon. Not. R. Astron. Soc. 2007, 378, 72. [Google Scholar] [CrossRef]
- Lewis, A.; Bridle, S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D 2002, 66, 103511. [Google Scholar] [CrossRef] [Green Version]
- Dickey, J.M. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters. Ann. Math. Stat. 1971, 42, 204. [Google Scholar] [CrossRef]
Parameter | Mean | Prior Range | Model |
---|---|---|---|
0.022 | [0.0001, 0.044] | toy5, toy6 | |
0.12 | [0.001, 0.3] | toy5, toy6 | |
1.04 | [0.8, 1.4] | toy5, toy6 | |
0.1 | [0.01, 0.3] | toy5, toy6 | |
3.1 | [2.6, 3.6] | toy5, toy6 | |
0.98 | [0.5, 1.5] | toy6 |
Parameter | Mean | Prior Range | Model |
---|---|---|---|
0.022 | [0.018, 0.032] | AD-HZ,AD-,ISO | |
0.12 | [0.04, 0.16] | AD-HZ,AD-,ISO | |
1.04 | [0.98, 1.10] | AD-HZ,AD-,ISO | |
0.17 | [0, 0.5] | AD-HZ,AD-,ISO | |
3.1 | [2.6, 4.2] | AD-HZ,AD-,ISO | |
1.0 | [0.8, 1.2] | AD-,ISO | |
1.5 | [0, 3] | ISO | |
1.5 | [−0.14, 0.4] | ISO | |
0 | [−1, 1] | ISO | |
0 | [−1, 1] | ISO |
Model | ||||
---|---|---|---|---|
toy5 | 0 | |||
toy5c | 0 | |||
toy6 | 0 | |||
toy6c | 0 | |||
AD | ||||
AD- | ||||
CDI | ||||
NID | ||||
NIV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Bellido, J. An Analytical Approach to Bayesian Evidence Computation. Universe 2023, 9, 118. https://doi.org/10.3390/universe9030118
García-Bellido J. An Analytical Approach to Bayesian Evidence Computation. Universe. 2023; 9(3):118. https://doi.org/10.3390/universe9030118
Chicago/Turabian StyleGarcía-Bellido, Juan. 2023. "An Analytical Approach to Bayesian Evidence Computation" Universe 9, no. 3: 118. https://doi.org/10.3390/universe9030118
APA StyleGarcía-Bellido, J. (2023). An Analytical Approach to Bayesian Evidence Computation. Universe, 9(3), 118. https://doi.org/10.3390/universe9030118