Teleparallel Robertson-Walker Geometries and Applications
Abstract
:1. Introduction
2. Teleparallel Robertson–Walker (TRW) Spacetimes
- , where ;
- , where ;
2.1. Proper TRW Frames
2.1.1. Negative k-Parameter TRW Case
2.1.2. Positive k-Parameter TRW Case
2.2. Field Equations
2.3. The Function
3. Analysis and Equations
- We recall that if const., then the theory reduces to a renormalized GR and we obtain teleparallel analogues of special solutions in GR [1]. Such solutions with a non-vanishing “effective” cosmological constant will be asymptotic to () teleparallel analogues of de Sitter solutions [6]. We are only interested here in non-GR type solutions;
- We shall assume an equation of state of the form: , with , so that is monotonically decreasing for . We are particularly interested in the case ;
- A detailed analysis of the theory or for power-laws solutions is possible.
3.1. Equation for
3.2. Equation for
Comment
4. Quadratic Solutions
5. Power-Law Solutions
5.1. Stability Conditions
5.1.1. General Case
5.1.2. General Case
5.1.3. Special Cases
- For : we only need to satisfy Equation (48b) and we still obtain for stable solutions ();
- For : from Equations (49a) and (49c) for , we obtain:From Equations (50a) and (50b), we obtain that and for stable solutions where .
- For : we only need to satisfy Equation (48a), and we still find that and then ;
- From Equations (51a) and (51b), we have that for stable solutions (with for and for ). These exotic fields with negative pressure are as appear in GR. Thus, we obtain that , and then:
5.1.4. Generalizations and Physical Consequences
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DE | Differential Equation |
FE | Field Equation |
GR | General Relativity |
KV | Killing Vectors |
RW | Robertson–Walker |
TRW | Teleparallel Robertson–Walker |
1 | In the Cartan–Karlhede algorithm adopted for teleparallel geometry [3], the parameters of the Lorentz frame transformations are fixed by the normalization of the components of the torsion tensor and its covariant derivatives in an invariant manner. This algorithm consequently leads to an invariantly defined frame up to linear isotropy (defined as the (sub)group of Lorentz transformations that leave the torsion tensor and its covariant derivatives invariant). In particular, the Cartan–Karlhede algorithm consequently provides a set of Cartan invariants, which can then be used to uniquely characterize a geometry locally and determine the dimension of the affine symmetry group. |
References
- Krššák, M.; Van Den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. J. Math. Phys. 2020, 61, 072503. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 2019, 100, 084002. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of non-linear electrodynamics. Phys. Rev. D 2018, 97, 104042. [Google Scholar] [CrossRef]
- Coley, A.A.; Van Den Hoogen, R.J.; McNutt, D.D. Symmetric Teleparallel Geometries. Class. Quantum Grav. 2022, 39, 22LT01. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Valentino, E.D. Teleparallel Gravity: From Theory to Cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Coley, A.A. Dynamical Systems and Cosmology; Kluwer Academic: Dordrecht, The Nertherland, 2003; ISBN 1-4020-1403-1. [Google Scholar]
- Bahamonde, S.; Bohmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rept. 2018, 775–777, 1–122. [Google Scholar] [CrossRef]
- Kofinas, G.; Leon, G.; Saridakis, E.N. Dynamical behavior in f(T,TG) cosmology. Class. Quant. Grav. 2014, 31, 175011. [Google Scholar] [CrossRef]
- Bohmer, C.G.; Jensko, E. Modified gravity: A unified approach to metric-affine models. arXiv 2023, arXiv:2301.11051. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Cuzinatto, R.R.; Medeiros, L.G. Analytic solutions for the Λ-FRW Model. Found. Phys. 2006, 36, 1736–1752. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of scalar-torsion gravity. Phys. Rev. D 2018, 97, 104011. [Google Scholar] [CrossRef]
- Hohmann, M. Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 2016, 57, 082502. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Non trivial frames for f(T) theories of gravity and beyond. Phys. Lett. B 2011, 702, 75–80. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Cosmological frames for theories with absolute parallelism. Int. J. Mod. Phys. (Conf. Ser.) 2011, 3, 227–237. [Google Scholar]
- Hohmann, M. Complete classification of cosmological teleparallel geometries. Int. J. Geom. Meth. Mod. Phys. 2021, 18 (Suppl. S1), 2140005. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting Cosmologies in Teleparallelism. Class. Quant. Grav. 2022, 39, 025013. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Fell, S.D.B.; Heisenberg, L.; Kuhn, S. Black holes in f(Q) Gravity. Phys. Rev. D 2022, 105, 024042. [Google Scholar] [CrossRef]
- Casalino, A.; Sanna, B.; Sebastiani, L.; Zerbini, S. Bounce Models within Teleparallel modified gravity. Phys. Rev. D 2021, 103, 023514. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. Gen. Rel. Gravit. 2018, 50, 53. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Said, J.L.; Pfeifer, C.; Saridakis, E.N. Perturbations in Non-Flat Cosmology for f(T) gravity. Eur. Phys. J. C 2023, 83, 193. [Google Scholar] [CrossRef]
- Saridakis, E.N. Solving both H0 and σ8 tensions in f(T) gravity. In The Sixteenth Marcel Grossmann Meeting; World Scientific Publishing Company: Hackensack, NJ, USA, 2023; pp. 1783–1791. [Google Scholar]
- Kucukakca, Y.; Akbarieh, A.R.; Ashrafi, S. Exact solutions in teleparallel dark energy model. Chin. J. Phys. 2023, 82, 47–61. [Google Scholar] [CrossRef]
- Tzerefos, C.; Papanikolaou, T.; Saridakis, E.N.; Basilakos, S. Scalar induced gravitational waves in modified teleparallel gravity theories. Phys. Rev. D 2023, 107, 124019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coley, A.A.; Landry, A.; Gholami, F. Teleparallel Robertson-Walker Geometries and Applications. Universe 2023, 9, 454. https://doi.org/10.3390/universe9100454
Coley AA, Landry A, Gholami F. Teleparallel Robertson-Walker Geometries and Applications. Universe. 2023; 9(10):454. https://doi.org/10.3390/universe9100454
Chicago/Turabian StyleColey, Alan Albert, Alexandre Landry, and Fateme Gholami. 2023. "Teleparallel Robertson-Walker Geometries and Applications" Universe 9, no. 10: 454. https://doi.org/10.3390/universe9100454
APA StyleColey, A. A., Landry, A., & Gholami, F. (2023). Teleparallel Robertson-Walker Geometries and Applications. Universe, 9(10), 454. https://doi.org/10.3390/universe9100454