Defect Wormholes Are Defective
Abstract
:1. Introduction
- We shall, first, using Klinkhamer’s pathological coordinates, verify the existence of a discontinuity in the extrinsic curvature of the spherically symmetric (2 + 1) “constant radius” hypersurfaces at the wormhole throat. We note that this discontinuity in the extrinsic curvature occurs at exactly the same place that the underlying coordinate system becomes pathological, which is why symbolic manipulation software, or indeed naïve computations “by hand”, often lead to misleading results—this is a situation where careful analytic insight is called for. We shall furthermore relate this discontinuity in the extrinsic curvature to the defocusing properties of the wormhole throat and thence to violations of the null curvature condition.
- We shall then set up a more reasonable “proper distance” coordinate chart, effectively amounting to the use of Gaussian normal coordinates, and invoke the Israel–Lanczos–Sen thin-shell formalism [13,14,15,16], early versions of which are now 99 years old, to get a better grasp on the physics at the wormhole throat.
- In this improved coordinate chart, the metric and inverse metric are both at least , and are almost everywhere (that is, , meaning differentiable but not continuously so, with a discontinuity in the Christoffel symbols at the wormhole throat).
- We then explicitly calculate the thin-shell delta-function contributions to the curvature tensors (and thence, invoking the Einstein equations, to the stress–energy).
- To help make the analysis robust, we shall focus on the behavior of suitable coordinate invariants—the Ricci scalar, the eigenvalues of the mixed Ricci tensor, and the eigenvalues of the mixed Riemann tensor. (The more usual polynomial curvature invariants are not useful in that they correspond to ill-defined squares and higher powers of delta functions.)
2. Vacuum Defect Wormhole
2.1. Pathological Coordinates
2.2. Nonpathological Coordinates: Gaussian Normal Coordinates
2.3. Christoffel Symbols
2.4. Curvature Tensors
2.5. Other Coordinate Invariants
2.6. Orthonormal Tetrad Basis
2.7. Stress–Energy Tensor
3. More General Defect Wormhole
3.1. Curvature Tensors
3.2. Orthonormal Tetrad Basis
3.3. Stress–Energy Tensor
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NEC | null energy condition |
WEC | weak energy condition |
SEC | strong energy condition |
DEC | dominant energy condition |
References
- Klinkhamer, F.R. Defect Wormhole: A Traversable Wormhole Without Exotic Matter. Acta Phys. Pol. B 2023, 54, 5-A3. [Google Scholar] [CrossRef]
- Klinkhamer, F.R. Vacuum defect wormholes and a mirror world. Acta Phys. Pol. B 2023, 54, 7-A3. [Google Scholar] [CrossRef]
- Klinkhamer, F.R. New Type of Traversable Wormhole. arXiv 2023, arXiv:2307.04678. [Google Scholar]
- Klinkhamer, F.R. Higher-dimensional extension of a vacuum-defect wormhole. arXiv 2023, arXiv:2307.12876. [Google Scholar]
- Wang, Z.L. On a Schwarzschild-type defect wormhole. arXiv 2023, arXiv:2307.01678. [Google Scholar]
- Ahmed, F. A topologically charged four-dimensional wormhole and the energy conditions. arXiv 2023, arXiv:2308.00012. [Google Scholar]
- Ahmed, F. Topologically Charged Rotating Wormhole. arXiv 2023, arXiv:2308.03815. [Google Scholar]
- Ahmed, F. Three-dimensional wormhole with cosmic string effects on eigenvalue solution of non-relativistic quantum particles. Sci. Rep. 2023, 13, 12953. [Google Scholar] [CrossRef]
- Ahmed, F. Construction of a new five-dimensional vacuum-defect wormhole. arXiv 2023, arXiv:2308.11938. [Google Scholar]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.C. Smooth metrics can hide thin shells. Class. Quantum Gravity 2023, 40, 197002. [Google Scholar] [CrossRef]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1966, 44S10, 1, Erratum in Nuovo Cim. B 1967, 48, 463. [Google Scholar] [CrossRef]
- Lanczos, K. Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie. Ann. Der Phys. 1924, 379, 518–540. [Google Scholar] [CrossRef]
- Lanczos, K. (Albert-Ludwigs-Universität, Freiburg). Untersuchung über flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie. Unpublished. 1922. [Google Scholar]
- Sen, N.R. Über die Grenzbedingungen des Schwerefeldes an Unstetigkeitsflächen. Ann. Der Phys. 1924, 378, 365–396. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press (Now Springer): New York, NY, USA, 1995. [Google Scholar]
- Poisson, E.; Visser, M. Thin shell wormholes: Linearization stability. Phys. Rev. D 1995, 52, 7318–7321. [Google Scholar] [CrossRef]
- Musgrave, P.; Lake, K. Junctions and thin shells in general relativity using computer algebra. 1: The Darmois–Israel formalism. Class. Quantum Gravity 1996, 13, 1885–1900. [Google Scholar] [CrossRef]
- Eiroa, E.F.; Romero, G.E. Linearized Stability of Charged Thin Shell Wormholes. Gen. Relativ. Gravit. 2004, 36, 651–659. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Crawford, P. Linearized stability analysis of thin shell wormholes with a cosmological constant. Class. Quantum Gravity 2004, 21, 391–404. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Energy conditions, traversable wormholes and dust shells. Gen. Relativ. Gravit. 2005, 37, 2023–2038. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Surface stresses on a thin shell surrounding a traversable wormhole. Class. Quantum Gravity 2004, 21, 4811–4832. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Crawford, P. Stability analysis of dynamic thin shells. Class. Quantum Gravity 2005, 22, 4869–4886. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef]
- Sharif, M.; Javed, F. On the stability of Bardeen thin-shell wormholes. Gen. Relativ. Gravit. 2016, 48, 158. [Google Scholar] [CrossRef]
- Raychaudhuri, A.K. Relativistic cosmology I. Phys. Rev. 1955, 98, 1123–1126. [Google Scholar] [CrossRef]
- Dadhich, N. Derivation of the Raychaudhuri equation. arXiv 2005, arXiv:gr-qc/0511123. [Google Scholar]
- Kar, S.; SenGupta, S. The Raychaudhuri equations: A Brief review. Pramana 2007, 69, 49. [Google Scholar] [CrossRef]
- Abreu, G.; Visser, M. Some generalizations of the Raychaudhuri equation. Phys. Rev. D 2011, 83, 104016. [Google Scholar] [CrossRef]
- Segre, C. Sulla teoria e sulla classificazione delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. Mem. R. Acc. Naz. Lincei 1883, 19, 127–148. [Google Scholar]
- Plebanski, J. The Algebraic structure of the tensor of matter. Acta Phys. Pol. 1964, 26, 963. [Google Scholar]
- Santos, J.; Alcaniz, J.S. Energy conditions and Segre classification of phantom fields. Phys. Lett. B 2005, 619, 11–16. [Google Scholar] [CrossRef]
- Petrov, A.Z. Classification of spaces defined by gravitational fields. Gen. Relativ. Gravit. 2000, 32, 1665–1685. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-46702-5/978-0-511-05917-9. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schleich, K.; Witt, D.M. Topological censorship. Phys. Rev. Lett. 1993, 71, 1486–1489, Erratum in Phys. Rev. Lett. 1995, 75, 1872. [Google Scholar] [CrossRef]
- Hochberg, D.; Kephart, T.W. Lorentzian wormholes from the gravitationally squeezed vacuum. Phys. Lett. B 1991, 268, 377–383. [Google Scholar] [CrossRef]
- TRoman, A. Inflating Lorentzian wormholes. Phys. Rev. D 1993, 47, 1370–1379. [Google Scholar]
- Kar, S.; Sahdev, D. Evolving Lorentzian wormholes. Phys. Rev. D 1996, 53, 722–730. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 1997, 56, 4745–4755. [Google Scholar] [CrossRef]
- Teo, E. Rotating traversable wormholes. Phys. Rev. D 1998, 58, 024014. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. The Null energy condition in dynamic wormholes. Phys. Rev. Lett. 1998, 81, 746–749. [Google Scholar] [CrossRef]
- Ford, L.H.; Roman, T.A. Quantum field theory constrains traversable wormhole geometries. Phys. Rev. D 1996, 53, 5496–5507. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, D.; Visser, M. Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 1998, 58, 044021. [Google Scholar] [CrossRef]
- Dadhich, N.; Kar, S.; Mukherji, S.; Visser, M. R = 0 space-times and selfdual Lorentzian wormholes. Phys. Rev. D 2002, 65, 064004. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kim, S.W. Possible wormholes in a brane world. Phys. Rev. D 2003, 67, 064027. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Lobo, F.S.N.; Martín-Moruno, P. Wormholes minimally violating the null energy condition. JCAP 2014, 11, 7. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Visser, M. Wheeler wormholes and topology change. Mod. Phys. Lett. A 1991, 6, 2663–2668. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Martin-Moruno, P.; Montelongo-Garcia, N.; Visser, M. Linearised stability analysis of generic thin shells. arXiv 2012, arXiv:1211.0605. [Google Scholar]
- Lobo, F.S.N.; Bouhmadi-López, M.; Martín-Moruno, P.; Montelongo-García, N.; Visser, M. A novel approach to thin-shell wormholes and applications. arXiv 2015, arXiv:1512.08474. [Google Scholar]
- Frolov, V.P.; Novikov, I.D. Physical Effects in Wormholes and Time Machine. Phys. Rev. D 1990, 42, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Hayward, S.A. Dynamic wormholes. Int. J. Mod. Phys. D 1999, 8, 373–382. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; de Oliveira, S.Q. Morris-Thorne wormholes with a cosmological constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef]
- Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D 2005, 71, 043520. [Google Scholar] [CrossRef]
- Curiel, E. A Primer on Energy Conditions. Einstein Stud. 2017, 13, 43–104. [Google Scholar]
- James, O.; von Tunzelmann, E.; Franklin, P.; Thorne, K.S. Visualizing Interstellar’s Wormhole. Am. J. Phys. 2015, 83, 486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baines, J.; Gaur, R.; Visser, M. Defect Wormholes Are Defective. Universe 2023, 9, 452. https://doi.org/10.3390/universe9100452
Baines J, Gaur R, Visser M. Defect Wormholes Are Defective. Universe. 2023; 9(10):452. https://doi.org/10.3390/universe9100452
Chicago/Turabian StyleBaines, Joshua, Rudeep Gaur, and Matt Visser. 2023. "Defect Wormholes Are Defective" Universe 9, no. 10: 452. https://doi.org/10.3390/universe9100452
APA StyleBaines, J., Gaur, R., & Visser, M. (2023). Defect Wormholes Are Defective. Universe, 9(10), 452. https://doi.org/10.3390/universe9100452