Perusing Buchbinder–Lyakhovich Canonical Formalism for Higher-Order Theories of Gravity
Abstract
:1. Introduction
2. BL Formalism in Three Different Higher-Order Theories
2.1. Minimal Coupling
2.2. Non-Minimally Coupled Case
2.3. Einstein–Gauss–Bonnet–Dilatonic Action in the Presence of Higher-Order Terms
3. The Role of Divergent Terms
3.1. Scalar–Tensor Theory: Minimal Coupling
3.2. Scalar–Tensor Theory: Non-Minimal Coupling
3.3. Einstein–Gauss–Bonnet–Dilatonic Action
4. Application
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostrogradsky, M. Memoires sur les equations differentielle relatives au probleme des isoperimetres. Mem. Acad. St. Petersbourg Ser. VI 1850, 4, 385–517. [Google Scholar]
- Whittaker, E.T. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies; Cambridge University Press: Cambridge, UK, 1904. [Google Scholar]
- Pais, A.; Uhlenbeck, G.E. On field theories with non-localized action. Phys. Rev. D 1950, 79, 145. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. D 1977, 16, 953. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 1982, 201, 469. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Renormalization and asymptotic freedom in quantum gravity. In Quantum Theory of Gravity; Christensen, S.M., Ed.; Adam Hilger: Bristol, UK, 1984; p. Z5l. [Google Scholar]
- Buchbinder, I.L.; Kalashnikov, O.K.; Shapiro, I.L.; Vologadsky, V.B.; Wolfengaut, Y.Y. The stability of asymptotic freedom in grand unified models coupled to R2 gravity. Phys. Lett. B 1989, 216, 127. [Google Scholar] [CrossRef]
- Antoniadis, I.; Tomboulis, E.T. Gauge invariance and unitarity in higher-derivative quantum gravity. Phys. Rev. D 1986, 33, 2756. [Google Scholar] [CrossRef] [PubMed]
- Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E. Vacuum configurations for superstrings. Nucl. Phys. B 1985, 258, 46. [Google Scholar] [CrossRef]
- Nepomechie, R.I. Low energy limit of strings. Phys. Rev. D 1985, 32, 3201. [Google Scholar] [CrossRef]
- Zwiebach, B. Curvature squared terms and string theories. Phys. Lett. B 1985, 156, 315. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generalized Hamiltonian dynamics. Can. J. Math. 1950, 2, 129, also In Lectures on Quantum Mechanics; Belfer Graduate School of Science, Yeshiva University: New York, NY, USA, 1964. [Google Scholar] [CrossRef]
- Boulware, D.G. Quantization of higher derivative theories of gravity. In Quantum Theory of Gravity; Christensen, S.M., Ed.; Adam Hilger: Bristol, UK, 1984. [Google Scholar]
- Horowitz, G.T. Quantum cosmology with a positive-definite action. Phys. Rev. D 1985, 31, 1169. [Google Scholar] [CrossRef]
- Mandal, R.; Sanyal, A.K. Equivalent and inequivalent canonical structures of higher order theories of gravity. Phys. Rev D 2017, 96, 084025. [Google Scholar] [CrossRef] [Green Version]
- Pollock, M.D. On the semi-Classical approximation to the wave function of the universe and its stochastic interpretation. Nucl. Phys. B 1988, 306, 931. [Google Scholar] [CrossRef]
- Sanyal, A.K.; Modak, B. Quantum cosmology with a curvature squared action. Phys. Rev. D 2001, 63, 064021. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.K. Hamiltonian formulation of curvature squared action. Gen. Relativ. Gravit. 2005, 37, 1957. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.K.; Debnath, S.; Ruz, S. Canonical formulation of the curvature-squared action in the presence of a lapse function. Class. Quantum Grav. 2012, 29, 215007. [Google Scholar] [CrossRef]
- York, J.W. Role of Conformal Three-Geometry in the Dynamics of Gravitation. Phys. Rev. Lett. 1972, 28, 1082. [Google Scholar] [CrossRef]
- Gibbons, G.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D 1977, 15, 2752. [Google Scholar] [CrossRef]
- Sanyal, A.K. Degenerate Hamiltonian operator in higher-order canonical gravity—The problem and a remedy. Ann. Phys. 2019, 411, 167971. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S.; Ruz, S.; Sanyal, A.K. Canonical formulation of scalar curvature squared action in higher dimensions. Phys. Rev. D 2014, 90, 047504. [Google Scholar] [CrossRef] [Green Version]
- Ruz, S.; Mandal, R.; Debnath, S.; Sanyal, A.K. Resolving the issue of branched Hamiltonian in modified Lanczos–Lovelock gravity. Gen Relativ. Gravit. 2016, 48, 86. [Google Scholar] [CrossRef]
- Debnath, S.; Ruz, S.; Mandal, R.; Sanyal, A.K. History of cosmic evolution with modified Gauss–Bonnet-dilatonic coupled term. Eur. Phys. J. C 2017, 77, 318. [Google Scholar] [CrossRef]
- Mandal, R.; Sarkar, C.; Sanyal, A.K. Early universe with modified scalar-tensor theory of gravity. J. High Energy Phys. 2018, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.K.; Sarkar, C. The role of cosmological constant in f(R, G) gravity. Class. Quantum Grav. 2020, 37, 055010. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Saha, D.; Alam, M.; Sanyal, A.K. Probing early universe with a generalized action. Ann. Phys. 2020, 422, 168317. [Google Scholar] [CrossRef]
- Mandal, R.; Saha, D.; Alam, M.; Sanyal, A.K. Early universe in view of a modified theory of gravity. Class. Quantum Grav. 2021, 38, 02500. [Google Scholar] [CrossRef]
- Debnath, S.; Sanyal, A.K. Canonical equivalence, quantization and anisotropic inflation in higher order theory of gravity. Class. Quantum Grav. 2021, 38, 125010. [Google Scholar] [CrossRef]
- Saha, D.; Alam, M.; Mandal, R.; Sanyal, A.K. Conflict between some higher-order curvature invariant terms. Nucl. Phys. B 2021, 973, 115570. [Google Scholar] [CrossRef]
- Chakrabortty, M.; Sarkar, K.; Sanyal, A.K. The issue of Branched Hamiltonian in F(T) Teleparallel Gravity. Int. J. Mod. Phys. D 2022, 31, 2250083. [Google Scholar] [CrossRef]
- Hawking, S.; Luttrell, J.C. Higher derivatives in quantum cosmology: (I). The isotropic case. Nucl. Phys. B 1984, 247, 250. [Google Scholar] [CrossRef]
- Schmidt, H.-J. Stability and Hamiltonian formulation of higher derivative theories. Phys. Rev. D 1994, 49, 6354. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Lyakhovich, S.L. Canonical quantization of theories with higher derivatives. Theor. Math. Phys. 1987, 72, 204. [Google Scholar]
- Buchbinder, I.L.; Lyakhovich, S.L. Canonical quantization of theories with higher derivatives, Quantization of R2 gravitation. Theor. Math. Phys. 1987, 72, 824. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Lyakhovich, S.L. Canonical quantization and local measure of R2 gravity. Class. Quantum Grav. 1987, 4, 1487. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Karataeva, I.Y.; Lyakhovich, S.L. Multidimention R2 gravity: The structure of constraints and canonical quantization. Class. Quantum Grav. 1991, 8, 1113. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; Institute of Physics Publishing: Bristol, UK, 1992; Chapter 8. [Google Scholar]
- Querella, L. Variational Principles and Cosmological Models in Higher-Order Gravity. arXiv 1999, arXiv:gr-qc/9902044. [Google Scholar]
- Fradkin, E.S.; Tseytlin, A.A. Non-linear electrodynamics from quantized strings. Phys. Lett. B 1985, 163, 123. [Google Scholar] [CrossRef] [Green Version]
- Callan, C.G.; Friedan, D.; Martinec, E.J.; Perry, M.J. Strings in background fields. Nucl. Phys. B 1985, 262, 593. [Google Scholar] [CrossRef]
- Gross, D.J.; Sloan, J.H. The quartic effective action for the heterotic string. Nucl. Phys. B 1987, 291, 41. [Google Scholar] [CrossRef]
- Metsaev, R.R.; Tseytlin, A.A. Two-loop β-function for the generalized bosonic sigma model. Phys. Lett. B 1987, 191, 354. [Google Scholar] [CrossRef]
- Bergshoeff, E.; Sezgin, E.; Pope, C.N.; Townsend, P.K. The Born-Infeld action from conformal invariance of the open superstring. Phys. Lett. B 1987, 188, 70. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.C.; Bertolami, O. Maximally symmetric cosmological solutions of higher-curvature string effective theories with dilatons. Phys. Lett. B 1996, 368, 198. [Google Scholar] [CrossRef] [Green Version]
- Mavromatos, N.E.; Rizos, J. String-inspired higher-curvature terms and the Randall-Sundrum Scenario. Phys. Rev. D 2000, 62, 124004. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Rizos, J. Exact solutions and the cosmological constant problem in dilatonic-domain-wall higher curvature string gravity. Int. J. Mod. Phys. A 2003, 18, 57. [Google Scholar] [CrossRef] [Green Version]
- Binetruy, P.; Charmousis, C.; Davis, S.; Dufaux, J.F. Avoidance of naked singularities in dilatonic brane world scenarios with a Gauss–Bonnet term. Phys. Lett. B 2002, 544, 183. [Google Scholar] [CrossRef] [Green Version]
- Jakobek, A.; Meissner, K.A.; Olechowski, M. New brane solutions in higher-order gravity. Nucl. Phys. B 2002, 645, 217. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Sasaki, M. Gauss–Bonnet dark energy. Phys. Rev. D 2005, 71, 123509. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, string-inspired gravity, and its reconstruction. Phys. Rev. D 2006, 74, 046004. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss- Bonnet gravity: Late time acceleration and the hierarchy problem. Phys. Rev. D 2006, 73, 084007. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Tsujikawa, S.; Sami, M. Dark energy and cosmological solutions in second-order string gravity. Class. Quantum Grav. 2005, 22, 3977. [Google Scholar] [CrossRef]
- Sami, M.; Toporensky, A.; Tretjakov, P.V.; Tsujikawa, S. The fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B 2005, 619, 193. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Charmousis, C.; Davis, S.C. Constraints on gauss-bonnet gravity in dark energy cosmologies. J. Cosmol. Astropart. Phys. 2006, 2006, 20. [Google Scholar] [CrossRef]
- Esposito-Farese, G. Scalar-tensor theories and cosmology. arXiv 2003, arXiv:gr-qc/0306018. [Google Scholar]
- Koivisto, T.; Mota, D.F. Cosmology and Astrophysical Constraints of Gauss–Bonnet Dark Energy. Phys. Lett. B. 2007, 644, 104. [Google Scholar] [CrossRef] [Green Version]
- Neupane, I.P.; Carter, B.M.N. Towards inflation and dark energy cosmologies from modified Gauss–Bonnet theory. J. Cosmol. Astropart. 2006, 2006, 4. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.M.N.; Neupane, I.P. Dynamical relaxation of dark energy: A solution to early inflation, late-time acceleration and the cosmological constant problem. Phys. Lett. B 2006, 638, 94–99. [Google Scholar]
- Deruelle, N.; Germani, C. Smooth branes and junction conditions in Einstien Gauss–Bonnet gravity. Nuovo Cim. B 2003, 118, 977. [Google Scholar]
- Neupane, I.P. On compatibility of string effective action with an accelating universe. Class. Quan. Grav. 2006, 23, 7493. [Google Scholar] [CrossRef] [Green Version]
- Neupane, I.P. Towards inflation and accelerating cosmologies in string-generated gravity models. arXiv 2006, arXiv:hepth/0605265. [Google Scholar]
- Sanyal, A.K. If Gauss–Bonnet interaction plays the role of dark energy. Phys. Lett. B 2007, 645, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.K. Transient crossing of phantom divide line ωΛ=-1 under Gauss–Bonnet interaction. Gen. Relativ. Gravit. 2009, 41, 1511. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.K.; Rubano, C.; Piedipalumbo, E. Noether symmetry for Gauss–Bonnet dilatonic gravity. Gen. Relativ. Gravit. 2011, 43, 2807. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Rizos, J.; Tamvakis, K. Singularity free cosmological solutions of the superstring effective action. Nucl. Phys. B 1994, 415, 497. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Rizos, J.; Tamvakis, K. Singularity-free cosmological solutions in quadratic gravity. Phys. Rev. D 1999, 59, 083512. [Google Scholar] [CrossRef] [Green Version]
- Henneaux, M.; Teitelboim, C.; Zanelli, J. Quantum mechanics for multivalued Hamiltonians. Phys. Rev. A 1987, 36, 4417. [Google Scholar] [CrossRef]
- Chi, H.-H.; He, H.-J. Single-valued Hamiltonian via Legendre-Fenchel transformation and time translation symmetry. Nucl. Phys. B 2014, 88, 448. [Google Scholar] [CrossRef]
- Avraham, E.; Brustein, R. Canonical structure of higher derivative theories. Phys. Rev. D 2014, 90, 024003. [Google Scholar] [CrossRef]
- Hartle, J.B. Gravitation in Astrophysics, Gargese 1986; Carter, S., Hartle, J.B., Eds.; Plenum: New York, NY, USA, 1986. [Google Scholar]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Akrami, Y. et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Sanyal, A.K. Perusing Buchbinder–Lyakhovich Canonical Formalism for Higher-Order Theories of Gravity. Universe 2023, 9, 48. https://doi.org/10.3390/universe9010048
Saha D, Sanyal AK. Perusing Buchbinder–Lyakhovich Canonical Formalism for Higher-Order Theories of Gravity. Universe. 2023; 9(1):48. https://doi.org/10.3390/universe9010048
Chicago/Turabian StyleSaha, Dalia, and Abhik Kumar Sanyal. 2023. "Perusing Buchbinder–Lyakhovich Canonical Formalism for Higher-Order Theories of Gravity" Universe 9, no. 1: 48. https://doi.org/10.3390/universe9010048
APA StyleSaha, D., & Sanyal, A. K. (2023). Perusing Buchbinder–Lyakhovich Canonical Formalism for Higher-Order Theories of Gravity. Universe, 9(1), 48. https://doi.org/10.3390/universe9010048