# Multiverse Predictions for Habitability: Origin of Life Scenarios

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Why Are We in This Universe?

#### 1.2. What Is the Probability of the Emergence of Life?

## 2. Prebiotic Soup

#### 2.1. Lightning Rate

#### 2.2. Solar Energetic Protons (SEPs)

#### 2.3. Ultraviolet Light (XUV)

## 3. Hydrothermal Vents

## 4. Exogneous Delivery

#### 4.1. Interplanetary Dust Particles (IDPs)

#### 4.2. Impact Synthesis

#### 4.3. Single Large Impact (Moneta)

## 5. Panspermia

## 6. Synthesis

**photo**and**yellow**: complex life requires photosynthetically active starlight, with optimistic and pessimistically defined ranges, respectively [4].**TL**: complex life requires the planet to be tidally unlocked [4].**bio**: complex life requires the star to last for a biological timescale [4].**plates**: complex life requires radiogenic plate tectonics [6].**time**: the emergence of complex life is proportional to the stellar lifetime [6].**area**: the emergence of complex life is proportional to the planet area [6].**S**: the emergence of complex life is proportional to the incident radiation flux [6].**N**: complex life requires sufficient nitrogen [8].**obliquity**: complex life requires stable obliquity [9].

**terr**and

**temp**conditions. The effect these have is to weight universes according to the fraction of planets within the terrestrial and temperate ranges, respectively. For the terrestrial condition, this is the fraction of planets within 0.3 to 4 Earth masses (defined using the stability of light and heavy atmospheric constituents). For the temperate condition, this weights universes by the ratio of the habitable zone to the interplanetary spacing [5]. Here, we include these habitability conditions as optional throughout this section, but a fully consistent analysis would need to determine formulas for the probability of the emergence of life on a broader range of planets, which is left for future work.

**TL + bio + area + C/O**, with a value of $5.91\times {10}^{-5}$. Though this may seem a small number, bear in mind that it is the product of 8 separate probabilities, which have an average value of $0.36$. In the following, the Bayes factors for all scenario combinations are reported relative to this baseline. Again, we stress that these are computed explicitly, assuming the principle of mediocrity as a starting point, where the probability of an observation is proportional to the number of observers that make such an observation. It is important to note that alternatives to this assumption do exist [95,96].

**TL S Mg/Si area**, is disfavored by a factor of 0.0023 relative to the baseline case. This is because the two factors both favor small $\gamma $. When combined, the pressure toward lower values of $\gamma $ is too strong to account for our presence in this universe. Additionally, for this very reason, origin of life scenarios that depend on disequilibrium as ${p}_{\mathrm{life}}\propto \Delta {S}^{n}$, with $n>1$, are disfavored in the multiverse framework.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Sensitivity Analysis

**SEP**origin of life scenario, resulting in 444 total combinations. In our analysis of the sensitivity to the prior, for expediency, we restrict ourselves to a smaller subset of the more impactful habitability conditions to vary: the

**photo**,

**yellow**,

**TL**,

**time**,

**area**,

**S**,

**C/O**,

**Mg/Si**, and

**N**conditions. When simultaneously varied over the ten origin of life scenarios, this amounts to 1339 different combinations. We compare the total Bayes factor originally calculated to the Bayes factor of the altered variable.

**Figure A1.**Comparison of Bayes factor using standard prior with Bayes factors using altered priors. Each dot is a combination of habitability criteria. The left plot compares the two Bayes factors directly and indicates a strong correlation with some scatter. The right plot divides the new Bayes factor by the original to better indicate the residual scatter.

**Figure A2.**Comparison of Bayes factor using ${k}_{\mathrm{SEP}}=1$ with Bayes factors using altered ${k}_{\mathrm{SEP}}$. Each dot is a combination of habitability criteria. The left plot compares the two Bayes factors directly and indicates a strong correlation with some scatter. The right plot divides the new Bayes factor by the original to better indicate the residual scatter.

## Notes

1 | It is important to point out that here we are only considering a multiverse consisting of the ensemble of universes with the same particles and forces, albeit with different masses/strengths. This is in almost any multiverse scenario only a subset of all universes, which may also contain universes with different matter content, dimensions, and potentially different mathematical laws [13]. Our justification for this is twofold: first, the principle of mediocrity demands not only that we are typical in the full ensemble of universe but also in a more restrictive subset. As such, assessing typicality among “nearby” universes is a necessary but not necessarily sufficient consistency condition for the multiverse theory. Secondly, it is much more difficult to envisage the processes that occur in radically different universes and how these differences bear on the emergence of life. Even if we could make strong predictions about the relative rates of life emerging in these radically different universes, these would not lend themselves to any predictions, at least of the form we are considering. |

2 | Throughout, we restrict our attention to temperate (liquid surface water can exist), terrestrial (can retain heavy but not light gases) planets, as many of the estimates for various processes concerning the origin of life to be found are specific to such planets. Extending the estimates we find to other locales would be a challenge, but it would be worthwhile to relax these assumptions. |

3 | The reactions will also possess an Arrhenius $exp(-\Delta E/T)$ dependence. This will not have any dependence on the physical constants for temperate planets, which by definition have T∼${E}_{\mathrm{mol}}$. However, these factors are essential for understanding why the slowest reaction rate, as the minimum of a moderately small number of reactions with more or less randomly distributed reaction energies, is so small compared to the natural timescale of the system. |

4 | For instance, for $n=2$, $\langle {n}_{\mathrm{life}}\rangle =2[(1+{p}_{x}){p}_{\mathrm{life}}-{p}_{x}{p}_{\mathrm{life}}^{2}]$, and for $n=3$, $\langle {n}_{\mathrm{life}}\rangle =3[(1+2{p}_{x}+2{p}_{x}^{2}-2{p}_{x}^{3}){p}_{\mathrm{life}}+(-2{p}_{x}-5{p}_{x}^{2}+4{p}_{x}^{3}){p}_{\mathrm{life}}^{2}+(3{p}_{x}^{2}-2{p}_{x}^{3}){p}_{\mathrm{life}}^{3}]$. |

## References

- Carr, B.; Ellis, G. Universe or multiverse? Astron. Geophys.
**2008**, 49, 2–29. [Google Scholar] [CrossRef] [Green Version] - Linde, A. A brief history of the multiverse. Rep. Prog. Phys.
**2017**, 80, 022001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kragh, H. Contemporary History of Cosmology and the Controversy over the Multiverse. Ann. Sci.
**2009**, 66, 529–551. [Google Scholar] [CrossRef] - Sandora, M. Multiverse Predictions for Habitability: The Number of Stars and Their Properties. Universe
**2019**, 5, 149. [Google Scholar] [CrossRef] [Green Version] - Sandora, M. Multiverse Predictions for Habitability: Number of Potentially Habitable Planets. Universe
**2019**, 5, 157. [Google Scholar] [CrossRef] [Green Version] - Sandora, M. Multiverse Predictions for Habitability: Fraction of Planets That Develop Life. Universe
**2019**, 5, 171. [Google Scholar] [CrossRef] [Green Version] - Sandora, M. Multiverse Predictions for Habitability: Fraction of Life that Develops Intelligence. Universe
**2019**, 5, 175. [Google Scholar] [CrossRef] [Green Version] - Sandora, M.; Airapetian, V.; Barnes, L.; Lewis, G.; Perez-Rodriguez, I. Multiverse Predictions for Habitability: Element Abundances in Other Universes. 2022; submitted. [Google Scholar]
- Sandora, M.; Airapetian, V.; Barnes, L.; Lewis, G. Multiverse Predictions for Habitability: Planetary Characteristics. 2022; submitted. [Google Scholar]
- Sandora, M.; Airapetian, V.; Barnes, L.; Lewis, G. Multiverse Predictions for Habitability: Stellar and Atmospheric Habitability. 2022; submitted. [Google Scholar]
- Vilenkin, A. Predictions from Quantum Cosmology. Phys. Rev. Lett.
**1995**, 74, 846–849. [Google Scholar] [CrossRef] [Green Version] - Hall, L.J.; Nomura, Y. Evidence for the Multiverse in the Standard Model and Beyond. Phys. Rev. D
**2008**, 78, 035001. [Google Scholar] [CrossRef] [Green Version] - Tegmark, M. The mathematical universe. Found. Phys.
**2008**, 38, 101–150. [Google Scholar] [CrossRef] - Carter, B. The anthropic principle and its implications for biological evolution. Phil. Trans. R. Soc. Lond. A
**1983**, 310, 347–363. [Google Scholar] - Miller, S.L.; Urey, H.C. Organic compound synthesis on the primitive Earth: Several questions about the origin of life have been answered, but much remains to be studied. Science
**1959**, 130, 245–251. [Google Scholar] [CrossRef] - Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph.
**2008**, 38, 105–115. [Google Scholar] [CrossRef] [PubMed] - Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J.
**2020**, 1, 11. [Google Scholar] [CrossRef] - Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science
**2014**, 346, 851–854. [Google Scholar] [CrossRef] - Jansen, T.; Scharf, C.; Way, M.; Del Genio, A. Climates of warm Earth-like planets. II. Rotational “Goldilocks” zones for fractional habitability and silicate weathering. Astrophys. J.
**2019**, 875, 79. [Google Scholar] [CrossRef] [Green Version] - Williams, E.; Stanfill, S. The physical origin of the land–ocean contrast in lightning activity. C. R. Phys.
**2002**, 3, 1277–1292. [Google Scholar] [CrossRef] - Navarro-González, R.; Molina, M.J.; Molina, L.T. Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett.
**1998**, 25, 3123–3126. [Google Scholar] [CrossRef] - Yung, Y.; McElroy, M. Fixation of nitrogen in the prebiotic atmosphere. Science
**1979**, 203, 1002–1004. [Google Scholar] [CrossRef] - Gebauer, S.; Grenfell, J.L.; Lammer, H.; de Vera, J.P.P.; Sproß, L.; Airapetian, V.S.; Sinnhuber, M.; Rauer, H. Atmospheric nitrogen when life evolved on Earth. Astrobiology
**2020**, 20, 1413–1426. [Google Scholar] [CrossRef] - Wong, M.L.; Charnay, B.D.; Gao, P.; Yung, Y.L.; Russell, M.J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology
**2017**, 17, 975–983. [Google Scholar] [CrossRef] [PubMed] - Kobayashi, K.; Aoki, R.; Kebukawa, Y.; Shibata, H.; Fukuda, H.; Oguri, Y.; Airapetian, V. Roles of solar energetic particles in production of bioorganic compounds in primitive earth atmosphere. In Proceedings of the XVIIIth International Conference on the Origin of Life, La Jolla, CA, USA, 16–21 July 2017; Volume 1967, p. 4133. [Google Scholar]
- Airapetian, V.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci.
**2016**, 9, 452–455. [Google Scholar] [CrossRef] - Vourlidas, A.; Howard, R.A.; Esfandiari, E.; Patsourakos, S.; Yashiro, S.; Michalek, G. Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J.
**2010**, 722, 1522. [Google Scholar] [CrossRef] [Green Version] - Gronoff, G.; Arras, P.; Baraka, S.; Bell, J.M.; Cessateur, G.; Cohen, O.; Curry, S.M.; Drake, J.J.; Elrod, M.; Erwin, J.; et al. Atmospheric escape processes and planetary atmospheric evolution. J. Geophys. Res. Space Phys.
**2020**, 125, e2019JA027639. [Google Scholar] [CrossRef] - Gupta, P.; Jhanwar, B.; Khare, S. Stopping power of atmospheric gases for electrons. Phys. B+C
**1975**, 79, 311–321. [Google Scholar] [CrossRef] - Hu, J.; Airapetian, V.S.; Li, G.; Zank, G.; Jin, M. Extreme energetic particle events by superflare-associated CMEs from solar-like stars. Sci. Adv.
**2022**, 8, eabi9743. [Google Scholar] [CrossRef] - Gunell, H.; Maggiolo, R.; Nilsson, H.; Wieser, G.S.; Slapak, R.; Lindkvist, J.; Hamrin, M.; De Keyser, J. Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys.
**2018**, 614, L3. [Google Scholar] [CrossRef] [Green Version] - Pavlov, A.A.; Brown, L.L.; Kasting, J.F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. Planets
**2001**, 106, 23267–23287. [Google Scholar] [CrossRef] - Farquhar, J.; Savarino, J.; Airieau, S.; Thiemens, M.H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO
_{2}photolysis: Implications for the early atmosphere. J. Geophys. Res. Planets**2001**, 106, 32829–32839. [Google Scholar] [CrossRef] - Baross, J.A.; Hoffman, S.E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph.
**1985**, 15, 327–345. [Google Scholar] [CrossRef] - Sousa, F.L.; Thiergart, T.; Landan, G.; Nelson-Sathi, S.; Pereira, I.A.; Allen, J.F.; Lane, N.; Martin, W.F. Early bioenergetic evolution. Philos. Trans. R. Soc. B Biol. Sci.
**2013**, 368, 20130088. [Google Scholar] [CrossRef] [PubMed] - Wächtershäuser, G. Pyrite formation, the first energy source for life: A hypothesis. Syst. Appl. Microbiol.
**1988**, 10, 207–210. [Google Scholar] [CrossRef] - Kritsky, M.; Vladimirov, M.; Otroshchenko, V.; Bogdanovskaya, V. Mineral metal sulphur clusters as a testbed for studies of evolutionary continuity. In Chemical Evolution: Physics of the Origin and Evolution of Life; Springer: Dordrecht, The Netherlands, 1996; pp. 151–156. [Google Scholar]
- Michod, R.E. Population biology of the first replicators: On the origin of the genotype, phenotype and organism. Am. Zool.
**1983**, 23, 5–14. [Google Scholar] [CrossRef] - Cleaves, H.; Aubrey, A.; Bada, J. An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig. Life Evol. Biosph.
**2009**, 39, 109–126. [Google Scholar] [CrossRef] - Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol.
**2008**, 6, 805–814. [Google Scholar] [CrossRef] - Jordan, S.F.; Rammu, H.; Zheludev, I.N.; Hartley, A.M.; Maréchal, A.; Lane, N. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol.
**2019**, 3, 1705–1714. [Google Scholar] [CrossRef] - Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct
**2012**, 7, 1–10. [Google Scholar] [CrossRef] [Green Version] - Waite, J.H.; Glein, C.R.; Perryman, R.S.; Teolis, B.D.; Magee, B.A.; Miller, G.; Grimes, J.; Perry, M.E.; Miller, K.E.; Bouquet, A.; et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science
**2017**, 356, 155–159. [Google Scholar] [CrossRef] [Green Version] - Lowell, R.P.; DuBose, M. Hydrothermal systems on Europa. Geophys. Res. Lett.
**2005**, 32. [Google Scholar] [CrossRef] - Chyba, C.F.; Phillips, C.B. Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. USA
**2001**, 98, 801–804. [Google Scholar] [CrossRef] [Green Version] - Tajika, E.; Matsui, T. Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the earth. Earth Planet. Sci. Lett.
**1992**, 113, 251–266. [Google Scholar] [CrossRef] - Russell, M.; Hall, A.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology
**2010**, 8, 355–371. [Google Scholar] [CrossRef] [PubMed] - Klein, F.; Tarnas, J.D.; Bach, W. Abiotic sources of molecular hydrogen on Earth. Elem. Int. Mag. Mineral. Geochem. Petrol.
**2020**, 16, 19–24. [Google Scholar] [CrossRef] - O’Reilly, T.C.; Davies, G.F. Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys. Res. Lett.
**1981**, 8, 313–316. [Google Scholar] [CrossRef] - Mckenzie, D.; Bickle, M. The volume and composition of melt generated by extension of the lithosphere. J. Petrol.
**1988**, 29, 625–679. [Google Scholar] [CrossRef] - Byrne, P.K.; Foley, B.J.; Violay, M.E.; Heap, M.J.; Mikhail, S. The Effects of Planetary and Stellar Parameters on Brittle Lithospheric Thickness. J. Geophys. Res. Planets
**2021**, 126, e2021JE006952. [Google Scholar] [CrossRef] - Unterborn, C.T.; Kabbes, J.E.; Pigott, J.S.; Reaman, D.M.; Panero, W.R. The role of carbon in extrasolar planetary geodynamics and habitability. Astrophys. J.
**2014**, 793, 124. [Google Scholar] [CrossRef] - Huang, L.; Adams, F.C.; Grohs, E. Sensitivity of carbon and oxygen yields to the triple-alpha resonance in massive stars. Astropart. Phys.
**2019**, 105, 13–24. [Google Scholar] [CrossRef] [Green Version] - Canil, D.; O’Neill, H.S.C.; Pearson, D.; Rudnick, R.L.; McDonough, W.F.; Carswell, D. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett.
**1994**, 123, 205–220. [Google Scholar] [CrossRef] - Wächtershäuser, G. The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig. Life Evol. Biosph.
**1990**, 20, 173–176. [Google Scholar] [CrossRef] - Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA
**2010**, 107, 2763–2768. [Google Scholar] [CrossRef] [PubMed] - Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature
**1992**, 355, 125–132. [Google Scholar] [CrossRef] [PubMed] - Alexander, C.O.; Fogel, M.; Yabuta, H.; Cody, G. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta
**2007**, 71, 4380–4403. [Google Scholar] [CrossRef] - Fernández, J.; Ip, W.H. Statistical and evolutionary aspects of cometary orbits. In Proceedings of the International Astronomical Union Colloquium; Cambridge University Press: Cambridge, UK, 1989; Volume 116, pp. 487–535. [Google Scholar]
- Munoz Caro, G.; Meierhenrich, U.J.; Schutte, W.A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W.P.; Brack, A.; Greenberg, J.M. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature
**2002**, 416, 403–406. [Google Scholar] [CrossRef] - Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci.
**2009**, 44, 1323–1330. [Google Scholar] [CrossRef] - Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc. Natl. Acad. Sci. USA
**2019**, 116, 24440–24445. [Google Scholar] [CrossRef] [Green Version] - Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dworkin, J.P.; Naraoka, H. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nat. Commun.
**2022**, 13, 2008. [Google Scholar] [CrossRef] - Kauffman, S.A.; Jelenfi, D.P.; Vattay, G. Theory of chemical evolution of molecule compositions in the universe, in the Miller–Urey experiment and the mass distribution of interstellar and intergalactic molecules. J. Theor. Biol.
**2020**, 486, 110097. [Google Scholar] [CrossRef] [Green Version] - Arumainayagam, C.R.; Herbst, E.; Heays, A.; Mullikin, E.; Farrah, M.; Mavros, M.G. Extraterrestrial Photochemistry: Principles and Applications. arXiv
**2021**, arXiv:2102.00094. [Google Scholar] - Takeuchi, Y.; Furukawa, Y.; Kobayashi, T.; Sekine, T.; Terada, N.; Kakegawa, T. Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Sci. Rep.
**2020**, 10, 9220. [Google Scholar] [CrossRef] - Masuda, S.; Furukawa, Y.; Kobayashi, T.; Sekine, T.; Kakegawa, T. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts. Astrobiology
**2021**, 21, 413–420. [Google Scholar] [CrossRef] [PubMed] - Bottke, W.F.; Vokrouhlickỳ, D.; Minton, D.; Nesvornỳ, D.; Morbidelli, A.; Brasser, R.; Simonson, B.; Levison, H.F. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature
**2012**, 485, 78–81. [Google Scholar] [CrossRef] [PubMed] - Chou, C.L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 13–17 March 1978; Volume 9. [Google Scholar]
- Genda, H.; Brasser, R.; Mojzsis, S. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett.
**2017**, 480, 25–32. [Google Scholar] [CrossRef] [Green Version] - Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.J.; Mojzsis, S.J.; Omran, A.; Pasek, M.A.; Trail, D. When did life likely emerge on Earth in an RNA-first process? ChemSystemsChem
**2020**, 2, e1900035. [Google Scholar] [CrossRef] - Citron, R.I.; Stewart, S.T. Large Impacts onto the Early Earth: Planetary Sterilization and Iron Delivery. Planet. Sci. J.
**2022**, 3, 116. [Google Scholar] [CrossRef] - Kasting, J.F.; Brown, L.L. The early atmosphere as a source of biogenic compounds. Mol. Orig. Life
**1998**, 35–56. [Google Scholar] [CrossRef] - Cleaves, H.J., II. The prebiotic geochemistry of formaldehyde. Precambrian Res.
**2008**, 164, 111–118. [Google Scholar] [CrossRef] - Pinto, J.P.; Gladstone, G.R.; Yung, Y.L. Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science
**1980**, 210, 183–185. [Google Scholar] [CrossRef] - Kawaguchi, Y. Panspermia hypothesis: History of a hypothesis and a review of the past, present, and future planned missions to test this hypothesis. Astrobiology
**2019**, 419–428. [Google Scholar] [CrossRef] - Carr, C.E. Resolving the History of Life on Earth by Seeking Life As We Know It on Mars. Astrobiology
**2022**, 22, 880–888. [Google Scholar] [CrossRef] - Melosh, H.J. The rocky road to panspermia. Nature
**1988**, 332, 687–688. [Google Scholar] [CrossRef] [PubMed] - De La Torre, R.; Sancho, L.G.; Horneck, G.; de los Ríos, A.; Wierzchos, J.; Olsson-Francis, K.; Cockell, C.S.; Rettberg, P.; Berger, T.; de Vera, J.P.P.; et al. Survival of lichens and bacteria exposed to outer space conditions–results of the Lithopanspermia experiments. Icarus
**2010**, 208, 735–748. [Google Scholar] [CrossRef] - Houtkooper, J.M. Glaciopanspermia: Seeding the terrestrial planets with life? Planet. Space Sci.
**2011**, 59, 1107–1111. [Google Scholar] [CrossRef] - Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J.
**1974**, 187, 425–438. [Google Scholar] [CrossRef] - Adams, F.C. Constraints on Alternate Universes: Stars and habitable planets with different fundamental constants. J. Cosmol. Astropart. Phys.
**2016**, 2016, 042. [Google Scholar] [CrossRef] [Green Version] - Adams, F.C.; Napier, K.J. Transfer of Rocks between Planetary Systems: Panspermia Revisited. arXiv
**2022**, arXiv:2205.07799. [Google Scholar] [CrossRef] [PubMed] - Elmegreen, B.G.; Efremov, Y.N. A universal formation mechanism for open and globular clusters in turbulent gas. Astrophys. J.
**1997**, 480, 235. [Google Scholar] [CrossRef] - Melosh, H. Exchange of meteorites (and life?) between stellar systems. Astrobiology
**2003**, 3, 207–215. [Google Scholar] [CrossRef] [Green Version] - Suggs, R.; Moser, D.; Cooke, W.; Suggs, R. The flux of kilogram-sized meteoroids from lunar impact monitoring. Icarus
**2014**, 238, 23–36. [Google Scholar] [CrossRef] [Green Version] - Dodd, M.S.; Papineau, D.; Grenne, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O’Neil, J.; Little, C.T. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature
**2017**, 543, 60–64. [Google Scholar] [CrossRef] - Tashiro, T.; Ishida, A.; Hori, M.; Igisu, M.; Koike, M.; Méjean, P.; Takahata, N.; Sano, Y.; Komiya, T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature
**2017**, 549, 516–518. [Google Scholar] [CrossRef] [PubMed] - Lazcano, A.; Miller, S.L. How long did it take for life to begin and evolve to cyanobacteria? J. Mol. Evol.
**1994**, 39, 546–554. [Google Scholar] [CrossRef] - Ida, S.; Lin, D. Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths. Astrophys. J.
**2008**, 685, 584. [Google Scholar] [CrossRef] - Tegmark, M.; Aguirre, A.; Rees, M.J.; Wilczek, F. Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D
**2006**, 73, 023505. [Google Scholar] [CrossRef] [Green Version] - Bostrom, N. Anthropic Bias: Observation Selection Effects in Science and Philosophy; Routledge: London, UK, 2013. [Google Scholar]
- Haqq-Misra, J.; Kopparapu, R.K.; Wolf, E.T. Why do we find ourselves around a yellow star instead of a red star? Int. J. Astrobiol.
**2018**, 17, 77–86. [Google Scholar] [CrossRef] [Green Version] - Hoyle, F. On Nuclear Reactions Occuring in Very Hot STARS. I. the Synthesis of Elements from Carbon to Nickel. Astrophys. J. Suppl. Ser.
**1954**, 1, 121. [Google Scholar] [CrossRef] - Neal, R.M. Puzzles of anthropic reasoning resolved using full non-indexical conditioning. arXiv
**2006**, arXiv:math/0608592. [Google Scholar] - Lacki, B.C. The Noonday Argument: Fine-Graining, Indexicals, and the Nature of Copernican Reasoning. arXiv
**2021**, arXiv:2106.07738. [Google Scholar] - Baldridge, E.; Harris, D.J.; Xiao, X.; White, E.P. An extensive comparison of species-abundance distribution models. PeerJ
**2016**, 4, e2823. [Google Scholar] [CrossRef] [Green Version] - Schellekens, A.N. Life at the Interface of Particle Physics and String Theory. Rev. Mod. Phys.
**2013**, 85, 1491–1540. [Google Scholar] [CrossRef] [Green Version] - Donoghue, J.F.; Dutta, K.; Ross, A. Quark and lepton masses and mixing in the landscape. Phys. Rev. D
**2006**, 73, 113002. [Google Scholar] [CrossRef] [Green Version] - Guth, A.H. Eternal inflation and its implications. J. Phys. A Math. Theor.
**2007**, 40, 6811. [Google Scholar] [CrossRef]

**Figure 1.**Histogram of Bayes factors, representing the probability of our observations within the multiverse framework for different habitability criteria combinations. These are computed by compounding the probabilities of the eight observations described in the text. While some combinations lead to reasonable probabilities (the largest having a total value of $5.91\times {10}^{-5}$, corresponding to an average probability of 0.36 per observation, out of a maximum 0.5), others are extraordinarily low.

**Figure 2.**Bayes factors for different combinations of habitability criteria. Each entry in this matrix represents the best combination of criteria containing the origin of life scenario and habitability condition specified on their respective axes. Here we use the notation ae-x$=a\times {10}^{-x}$.

**Table 1.**Disequilibrium production for the different origin of life scenarios considered. For scenarios where we expect deviations from the ansatz ${p}_{\mathrm{life}}\propto \Delta S$ (the Moneta and panspermia scenarios, see main text), an effective $\Delta S$ is presented as the factor which modifies the usual probability calculations.

Scenario | $\mathit{\Delta}\mathit{S}$ | Source of Disequilibrium Production |
---|---|---|

Lightning | $1.1\times {10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\tilde{\u03f5}}_{\mathrm{lightning}}{\lambda}^{-5/2}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{7}\phantom{\rule{0.166667em}{0ex}}{\beta}^{3/2}{\gamma}^{-4}$ | Lightning flashes |

SEP | $0.053\phantom{\rule{0.166667em}{0ex}}{f}_{\mathrm{open}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{-43/10}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{12}\phantom{\rule{0.166667em}{0ex}}{\beta}^{17/12}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-11/3}$ | Solar energetic particles |

XUV | $3.9\times {10}^{-8}\phantom{\rule{0.166667em}{0ex}}{f}_{\mathrm{open}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{-23/20}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{17/2}\phantom{\rule{0.166667em}{0ex}}{\beta}^{3/2}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-4}$ | High-energy solar photons |

Hydrothermal vents | $66.5\phantom{\rule{0.166667em}{0ex}}{f}_{\mathrm{vol}}{\lambda}^{-5/2}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{9/2}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-3}$ | Hydrothermal material from oceanic vents |

IDP | $1.2\times {10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{6}\phantom{\rule{0.166667em}{0ex}}{\beta}^{1/2}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{-31/20}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-7/2}\phantom{\rule{0.166667em}{0ex}}{\theta}_{\mathrm{chem}}$ | Organic material from IDPs |

Comets | $5.4\times {10}^{-7}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{9}\phantom{\rule{0.166667em}{0ex}}\beta \phantom{\rule{0.166667em}{0ex}}{\lambda}^{-23/10}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-4}$ | Material created during shock synthesis |

Asteroids | $0.94\phantom{\rule{0.166667em}{0ex}}\kappa \phantom{\rule{0.166667em}{0ex}}{\lambda}^{21/10}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{-4}\phantom{\rule{0.166667em}{0ex}}{\beta}^{-4/3}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-8/3}$ | Material created during shock synthesis |

Moneta | $6.1\times {10}^{-18}\phantom{\rule{0.166667em}{0ex}}{\kappa}^{4/3}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{619/60}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{-34}\phantom{\rule{0.166667em}{0ex}}{\beta}^{-55/4}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-3/2}$ | Large impact triggered reducing atmosphere |

Interplanetary panspermia | ${\kappa}^{5/8}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{-499/480}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{257/24}\phantom{\rule{0.166667em}{0ex}}{\beta}^{-15/16}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-35/16}$ | Transfer of life between planets |

Interstellar panspermia | ${\kappa}^{9/8}\phantom{\rule{0.166667em}{0ex}}{\lambda}^{-33/160}\phantom{\rule{0.166667em}{0ex}}{\alpha}^{361/24}\phantom{\rule{0.166667em}{0ex}}{\beta}^{-7/4}\phantom{\rule{0.166667em}{0ex}}{\gamma}^{-51/16}$ | Transfer of life between star systems |

**Table 2.**Best combinations of habitability criteria for each origin of life scenario, along with their associated Bayes factor, relative to the null hypothesis.

Criteria | Best Combination | $\mathcal{B}$ |
---|---|---|

- | TL bio area C/O | 1.0 |

Lightning | photo TL C/O lightning | 0.89 |

SEP | C/O SEP | 0.002 |

XUV | TL C/O obliquity XUV | 0.057 |

Hydrothermal vents | photo TL C/O vents | 0.21 |

IDP | TL C/O IDP | 0.53 |

Comets | photo TL C/O comets | 0.36 |

Asteroids | TL temp C/O asteroids | 1.18 |

Moneta | yellow C/O terr Moneta | 0.004 |

Interplanetary panspermia | yellow plates C/O plan. pans. | 0.014 |

Interstellar panspermia | yellow plates C/O stel. pans. | 0.045 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sandora, M.; Airapetian, V.; Barnes, L.; Lewis, G.F.; Pérez-Rodríguez, I.
Multiverse Predictions for Habitability: Origin of Life Scenarios. *Universe* **2023**, *9*, 42.
https://doi.org/10.3390/universe9010042

**AMA Style**

Sandora M, Airapetian V, Barnes L, Lewis GF, Pérez-Rodríguez I.
Multiverse Predictions for Habitability: Origin of Life Scenarios. *Universe*. 2023; 9(1):42.
https://doi.org/10.3390/universe9010042

**Chicago/Turabian Style**

Sandora, McCullen, Vladimir Airapetian, Luke Barnes, Geraint F. Lewis, and Ileana Pérez-Rodríguez.
2023. "Multiverse Predictions for Habitability: Origin of Life Scenarios" *Universe* 9, no. 1: 42.
https://doi.org/10.3390/universe9010042