Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos
Abstract
:1. Introduction
2. Data Reduction
2.1. Fermi-LAT Data Analysis
2.2. WISE Data Analysis
3. Results
3.1. Single-Source Analysis
3.2. Stacking Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Interestingly, Liao et al. [33] suggest that a gamma-ray blazar GB6 J2113 + 1121 is spatial and temporal coincident with the high-energy neutrino IC-191001A. |
References
- IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data. Astrophys. J. 2016, 833, 3. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; et al. An All-sky Search for Three Flavors of Neutrinos from Gamma-ray Bursts with the IceCube Neutrino Observatory. Astrophys. J. 2016, 824, 115. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophys. J. 2017, 835, 151. [Google Scholar] [CrossRef]
- Peng, F.K.; Wang, X.Y. Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos. Astrophys. J. 2017, 835, 269. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Kamionkowski, M.; Liang, Y.F. Search for high-energy neutrino emission from radio-bright AGN. Phys. Rev. D 2021, 103, 123018. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube realtime alert system. Astropart. Phys. 2017, 92, 30–41. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 12, 807–814. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeb, A.; Waxman, E. The cumulative background of high energy neutrinos from starburst galaxies. J. Cosmol. Astropart. Phys. 2006, 2006, 003. [Google Scholar] [CrossRef]
- He, H.N.; Wang, T.; Fan, Y.Z.; Liu, S.M.; Wei, D.M. Diffuse PeV neutrino emission from ultraluminous infrared galaxies. Phys. Rev. D 2013, 87, 063011. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Ahlers, M.; Lacki, B.C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D 2013, 88, 121301. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Y.; Wang, X.Y.; Inoue, S.; Crocker, R.; Aharonian, F. Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies. Phys. Rev. D 2014, 89, 083004. [Google Scholar] [CrossRef] [Green Version]
- Tamborra, I.; Ando, S.; Murase, K. Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history. J. Cosmol. Astropart. Phys. 2014, 2014, 043. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.C.; Liu, R.Y.; Wang, X.Y. Star-forming Galaxies as the Origin of the IceCube PeV Neutrinos. Astrophys. J. 2015, 805, 95. [Google Scholar] [CrossRef] [Green Version]
- Waxman, E.; Bahcall, J. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Ioka, K. TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars. Phys. Rev. Lett. 2013, 111, 121102. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Y.; Wang, X.Y. Diffuse PeV Neutrinos from Gamma-Ray Bursts. Astrophys. J. 2013, 766, 73. [Google Scholar] [CrossRef] [Green Version]
- Anchordoqui, L.A.; Hooper, D.; Sarkar, S.; Taylor, A.M. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei. Astropart. Phys. 2008, 29, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Murase, K.; Inoue, Y. Photopion production in black-hole jets and flat-spectrum radio quasars as PeV neutrino sources. J. High Energy Phys. 2014, 3, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.; Liu, R.Y.; Wang, Z.R.; Ding, N.; Wang, X.Y. A Two-zone Blazar Radiation Model for “Orphan” Neutrino Flares. Astrophys. J. 2021, 906, 51. [Google Scholar] [CrossRef]
- Inoue, Y.; Khangulyan, D.; Doi, A. Gamma-ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei. Galaxies 2021, 9, 36. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, R.Y.; Dai, Z.G.; Cheng, K.S. Probing the tidal disruption flares of massive black holes with high-energy neutrinos. Phys. Rev. D 2011, 84, 081301. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Liu, R.Y. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos. Phys. Rev. D 2016, 93, 083005. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Fang, K. Can tidal disruption events produce the IceCube neutrinos? Mon. Not. R. Astron. Soc. 2017, 469, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Senno, N.; Murase, K.; Mészáros, P. High-energy Neutrino Flares from X-ray Bright and Dark Tidal Disruption Events. Astrophys. J. 2017, 838, 3. [Google Scholar] [CrossRef] [Green Version]
- Farrar, G.R.; Gruzinov, A. Giant AGN Flares and Cosmic Ray Bursts. Astrophys. J. 2009, 693, 329–332. [Google Scholar] [CrossRef]
- Reusch, S.; Stein, R.; Kowalski, M.; van Velzen, S.; Franckowiak, A.; Lunardini, C.; Murase, K.; Winter, W.; Miller-Jones, J.C.A.; Kasliwal, M.M.; et al. Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Phys. Rev. Lett. 2022, 128, 221101. [Google Scholar] [CrossRef]
- Stein, R.; Velzen, S.V.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Van Velzen, S.; Stein, R.; Gilfanov, M.; Kowalski, M.; Hayasaki, K.; Reusch, S.; Yao, Y.; Garrappa, S.; Franckowiak, A.; Gezari, S.; et al. Establishing accretion flares from massive black holes as a major source of high-energy neutrinos. arXiv 2021, arXiv:2111.09391. [Google Scholar]
- Liao, N.H.; Sheng, Z.F.; Jiang, N.; Chang, Y.L.; Wang, Y.B.; Xu, D.L.; Shu, X.W.; Fan, Y.Z.; Wang, T.G. GB6 J2113+1121: A Multiwavelength Flaring γ-Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A. Astrophys. J. Lett. 2022, 932, L25. [Google Scholar] [CrossRef]
- Liu, R.Y.; Xi, S.Q.; Wang, X.Y. Neutrino emission from an off-axis jet driven by the tidal disruption event AT2019dsg. Phys. Rev. D 2020, 102, 083028. [Google Scholar] [CrossRef]
- Winter, W.; Lunardini, C. A concordance scenario for the observed neutrino from a tidal disruption event. Nat. Astron. 2021, 5, 472–477. [Google Scholar] [CrossRef]
- Wu, H.J.; Mou, G.; Wang, K.; Wang, W.; Li, Z. Could TDE outflows produce the PeV neutrino events? Mon. Not. R. Astron. Soc. 2022, 514, 4406–4412. [Google Scholar] [CrossRef]
- Murase, K.; Kimura, S.S.; Zhang, B.T.; Oikonomou, F.; Petropoulou, M. High-energy Neutrino and Gamma-Ray Emission from Tidal Disruption Events. Astrophys. J. 2020, 902, 108. [Google Scholar] [CrossRef]
- Dai, L.; McKinney, J.C.; Roth, N.; Ramirez-Ruiz, E.; Miller, M.C. A Unified Model for Tidal Disruption Events. Astrophys. J. Lett. 2018, 859, L20. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gómez-Vargas, G.A.; Guillochon, J. The γ-ray afterglows of tidal disruption events. Mon. Not. R. Astron. Soc. 2016, 458, 3314–3323. [Google Scholar] [CrossRef] [Green Version]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Graham, M.J.; Kulkarni, S.R.; Bellm, E.C.; Adams, S.M.; Barbarino, C.; Blagorodnova, N.; Bodewits, D.; Bolin, B.; Brady, P.R.; Cenko, S.B.; et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 2019, 131, 078001. [Google Scholar] [CrossRef]
- Dekany, R.; Smith, R.M.; Riddle, R.; Feeney, M.; Porter, M.; Hale, D.; Zolkower, J.; Belicki, J.; Kaye, S.; Henning, J.; et al. The Zwicky Transient Facility: Observing System. Publ. Astron. Soc. Pac. 2020, 132, 038001. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Peng, F.K.; Tang, Q.W.; Wang, X.Y. Search for High-energy Gamma-ray Emission from Tidal Disruption Events with the Fermi Large Area Telescope. Astrophys. J. 2016, 825, 47. [Google Scholar] [CrossRef] [Green Version]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Ampe, J.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Bagagli, R.; Baldini, L.; Ballet, J.; et al. The on-orbit calibration of the Fermi Large Area Telescope. Astropart. Phys. 2009, 32, 193–219. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2022, 260, 53. [Google Scholar] [CrossRef]
- Meisner, A.M.; Lang, D.; Schlegel, D.J. Time-resolved WISE/NEOWISE Coadds. Astron. J. 2018, 156, 69. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.; Hogg, D.W.; Schlegel, D.J. WISE Photometry for 400 Million SDSS Sources. Astron. J. 2016, 151, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.Y.; Li, S.; Cheng, J.G.; Li, R.L.; Liang, Y.F. Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly. arXiv 2022, arXiv:2204.04688. [Google Scholar]
- Gould, R.J.; Schréder, G.P. Pair Production in Photon-Photon Collisions. Phys. Rev. 1967, 155, 1404–1407. [Google Scholar] [CrossRef]
- Mohan, P.; An, T.; Zhang, Y.; Yang, J.; Yang, X.; Wang, A. High-resolution VLBI Observations of and Modeling the Radio Emission from the Tidal Disruption Event AT2019dsg. Astrophys. J. 2022, 927, 74. [Google Scholar] [CrossRef]
Name | 1 | 2 | z | |||
---|---|---|---|---|---|---|
(phs cm s) | (phs cm s) | (phs cm s) | ||||
AT2019fdr | 58,672.5 | 39.2 | 0.2666 | < | < | < |
AT2019aalc | 58,658.2 | 15.7 | 0.0356 | < | < | < |
AT2018dyk | 58,261.4 | 23.8 | 0.0367 | < | < | < |
AT2019aame | 58,363.2 | 12.3 | – | < | < | < |
AT2018lzs | 58,378.2 | 3.3 | – | < | < | < |
AT2021aetz | 58,390.3 | 47.5 | 0.0879 | < | < | < |
AT2018iql | 58,449.4 | 30.1 | – | < | < | < |
AT2018jut | 58,449.6 | 5 | – | < | < | < |
AT2021aeue | 58,475.1 | 4.9 | – | < | < | < |
AT2019aamf | 58,506.4 | 6.6 | – | < | < | < |
AT2018kox | 58,510.2 | 5.6 | 0.096 | < | < | < |
AT2018lhv | 58,513.5 | 32.3 | – | < | < | < |
AT2019avd | 58,534.3 | 67.5 | 0.0296 | < | < | < |
AT2016eix | 58,539.4 | 6.9 | – | < | < | < |
AT2019aamg | 58,540.5 | 8.3 | – | < | < | < |
AT2021aeuf | 58,556.4 | 15.6 | – | < | < | < |
AT2020aezy | 58,558.4 | 4.8 | – | < | < | < |
AT2019aamh | 58,582.5 | 7.7 | – | < | < | < |
AT2019dll | 58,605.2 | 6.8 | 0.101 | < | < | < |
AT2018lof | 58,608.2 | 4.1 | 0.302 | < | < | < |
AT2019dqv | 58,628.2 | 40.4 | 0.0816 | < | < | < |
AT2019cyq | 58,637.2 | 31.8 | 0.262 | < | < | < |
AT2021aeug | 58,641.2 | 4.6 | – | < | < | < |
AT2019ihv | 58,646.5 | 8.7 | 0.1602 | < | < | < |
AT2019dzh | 58,651.2 | 6.4 | 0.314 | < | < | < |
AT2019kqu | 58,652.2 | 6.1 | 0.174 | < | < | < |
AT2020aezz | 58,677.3 | 5.8 | – | < | < | < |
AT2020afaa | 58,678.2 | 7 | – | < | < | < |
AT2019idm | 58,682.2 | 25.2 | 0.0544 | < | < | < |
AT2019ihu | 58,709.5 | 6.2 | 0.27 | < | < | < |
AT2019nna | 58,717.4 | 27 | – | < | < | < |
AT2019nni | 58,732.2 | 4.9 | 0.137 | < | < | < |
AT2021aeuk | 58,733.1 | 7.3 | 0.235 | < | < | < |
AT2019hdy | 58,749.5 | 4 | 0.442 | < | < | < |
AT2019pev | 58,750.1 | 7.4 | 0.097 | < | < | < |
AT2013kp | 58,753.1 | 44.4 | 0.01499 | < | < | < |
AT2019brs | 58,758.1 | 9.6 | 0.3736 | < | < | < |
AT2020afac | 58,758.3 | 10.8 | – | < | < | < |
AT2019wrd | 58,764.3 | 7.6 | – | < | < | < |
AT2021aeuh | 58,789.5 | 3.9 | 0.0834 | < | < | < |
AT2019msq | 58,791.2 | 6.4 | – | < | < | < |
AT2019qpt | 58,798.3 | 13.8 | 0.242 | < | < | < |
AT2020afad | 58,802.2 | 3.7 | – | < | < | < |
AT2019mss | 58,811.6 | 20.8 | – | < | < | < |
AT2019thh | 58,851.1 | 72.2 | 0.0506 | < | < | < |
AT2021aeui | 58,860.3 | 6.2 | – | < | < | < |
AT2020mw | 58,867.3 | 6.8 | – | < | < | < |
AT2020iq | 58,878.1 | 24.5 | 0.096 | < | < | < |
AT2019xgg | 58,891.2 | 4.4 | – | < | < | < |
AT2020atq | 58,903.2 | 20.8 | – | < | < | < |
AT2021aeuj | 58,974.2 | 18.1 | 0.695 | < | < | < |
AT2020hle | 58,978.3 | 21 | 0.103 | < | < | < |
Interval | TS | ||
---|---|---|---|
(Days) | (phs cm s) | (erg cm s) | |
0.23 | < | < | |
0.00 | < | < | |
0.00 | < | < |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.-K.; Zhu, B.-Y.; Sun, L.-M.; Shu, X.-W.; Wang, X.-Y. Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos. Universe 2022, 8, 433. https://doi.org/10.3390/universe8080433
Peng F-K, Zhu B-Y, Sun L-M, Shu X-W, Wang X-Y. Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos. Universe. 2022; 8(8):433. https://doi.org/10.3390/universe8080433
Chicago/Turabian StylePeng, Fang-Kun, Ben-Yang Zhu, Lu-Ming Sun, Xin-Wen Shu, and Xiang-Yu Wang. 2022. "Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos" Universe 8, no. 8: 433. https://doi.org/10.3390/universe8080433
APA StylePeng, F.-K., Zhu, B.-Y., Sun, L.-M., Shu, X.-W., & Wang, X.-Y. (2022). Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos. Universe, 8(8), 433. https://doi.org/10.3390/universe8080433