# Massive Neutron Stars and White Dwarfs as Noncommutative Fuzzy Spheres

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Squashed Fuzzy Sphere Formalism and Modified Energy Dispersion Relation

## 3. Noncommutative Equation of State for Degenerate Particles

## 4. Mass–Radius Relation of Noncommutativity Inspired White Dwarfs and Neutron Stars

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Linares, M.; Shahbaz, T.; Casares, J. Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215 + 5135. Astrophys. J.
**2018**, 859, 54. [Google Scholar] [CrossRef] - van Kerkwijk, M.H.; Breton, R.P.; Kulkarni, S.R. Evidence for a Massive Neutron Star from a Radial-velocity Study of the Companion to the Black-widow Pulsar PSR B1957+20. Astrophys. J.
**2011**, 728, 95. [Google Scholar] [CrossRef] - Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett.
**2020**, 896, L44. [Google Scholar] [CrossRef] - Most, E.R.; Papenfort, L.J.; Weih, L.R.; Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. R. Astron. Soc. Lett.
**2020**, 499, L82–L86. [Google Scholar] [CrossRef] - Huang, K.; Hu, J.; Zhang, Y.; Shen, H. The Possibility of the Secondary Object in GW190814 as a Neutron Star. Astrophys. J.
**2020**, 904, 39. [Google Scholar] [CrossRef] - Tsokaros, A.; Ruiz, M.; Shapiro, S.L. GW190814: Spin and Equation of State of a Neutron Star Companion. Astrophys. J.
**2020**, 905, 48. [Google Scholar] [CrossRef] - Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Astrophys. J.
**2021**, 103, 025808. [Google Scholar] [CrossRef] - Yang, Y.; Gayathri, V.; Bartos, I.; Haiman, Z.; Safarzadeh, M.; Tagawa, H. Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks. Astrophys. J.
**2020**, 901, L34. [Google Scholar] [CrossRef] - Vattis, K.; Goldstein, I.S.; Koushiappas, S.M. Could the 2.6 M
_{⊙}object in GW190814 be a primordial black hole? Phys. Rev.**2020**, 102, 061301. [Google Scholar] [CrossRef] - Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidaña, I. Was GW190814 a Black Hole-Strange Quark Star System? Phys. Rev. Lett.
**2021**, 126, 162702. [Google Scholar] [CrossRef] - Rezzolla, L.; Most, E.R.; Weih, L.R. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. Astrophys. J.
**2018**, 852, L25. [Google Scholar] [CrossRef] - Malik, T.; Agrawal, B.K.; De, J.N.; Samaddar, S.K.; Providência, C.; Mondal, C.; Jha, T.K. Tides in merging neutron stars: Consistency of the GW170817 event with experimental data on finite nuclei. Phys. Rev. C
**2019**, 99, 052801. [Google Scholar] [CrossRef] - Pandharipande, V.R.; Ravenhall, D.G. Hot Nuclear Matter. In Proceedings of the Nuclear Matter and Heavy Ion Collisions, Les Houches, France, 7–16 February 1989; NATO Advanced Study Institute (ASI) Series B. Volume 205, p. 103. [Google Scholar]
- Alford, M.; Braby, M.; Paris, M.; Reddy, S. Hybrid Stars that Masquerade as Neutron Stars. Astrophys. J.
**2005**, 629, 969–978. [Google Scholar] [CrossRef] - Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity. Phys. Rev. D
**2014**, 89, 103509. [Google Scholar] [CrossRef] - Astashenok, A.V.; Odintsov, S.D.; de la Cruz-Dombriz, Á. The realistic models of relativistic stars in f(R)=R+αR
^{2}gravity. Class. Quantum Gravity**2017**, 34, 205008. [Google Scholar] [CrossRef] - Astashenok, A.V. Neutron and quark stars in f(R) gravity. Int. Mod. Phys. Conf. Ser.
**2016**, 41, 1660130. [Google Scholar] [CrossRef] - Lauffer, G.R.; Romero, A.D.; Kepler, S.O. New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA. Mon. Not. R. Astron. Soc.
**2018**, 480, 1547–1562. [Google Scholar] [CrossRef] - Chandrasekhar, S. The highly collapsed configurations of a stellar mass (Second paper). Mon. Not. R. Astron. Soc.
**1935**, 95, 207–225. [Google Scholar] [CrossRef] - Howell, D.A.; Sullivan, M.; Nugent, P.E.; Ellis, R.S.; Conley, A.J.; Le Borgne, D.; Carlberg, R.G.; Guy, J.; Balam, D.; Basa, S.; et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature
**2006**, 443, 308–311. [Google Scholar] [CrossRef] - Hicken, M.; Garnavich, P.M.; Prieto, J.L.; Blondin, S.; DePoy, D.L.; Kirshner, R.P.; Parrent, J. The Luminous and Carbon-rich Supernova 2006gz: A Double Degenerate Merger? Astrophys. J.
**2007**, 669, L17–L20. [Google Scholar] [CrossRef] - Yamanaka, M.; Kawabata, K.S.; Kinugasa, K.; Tanaka, M.; Imada, A.; Maeda, K.; Nomoto, K.; Arai, A.; Chiyonobu, S.; Fukazawa, Y.; et al. Early Phase Observations of Extremely Luminous Type Ia Supernova 2009dc. Astrophys. J.
**2009**, 707, L118–L122. [Google Scholar] [CrossRef] - Tanaka, M.; Kawabata, K.S.; Yamanaka, M.; Maeda, K.; Hattori, T.; Aoki, K.; Nomoto, K.; Iye, M.; Sasaki, T.; Mazzali, P.A.; et al. Spectropolarimetry of Extremely Luminous Type Ia Supernova 2009dc: Nearly Spherical Explosion of Super-Chandrasekhar Mass White Dwarf. Astrophys. J.
**2010**, 714, 1209–1216. [Google Scholar] [CrossRef] - Silverman, J.M.; Ganeshalingam, M.; Li, W.; Filippenko, A.V.; Miller, A.A.; Poznanski, D. Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc. Mon. Not. R. Astron. Soc.
**2011**, 410, 585–611. [Google Scholar] [CrossRef] - Taubenberger, S.; Benetti, S.; Childress, M.; Pakmor, R.; Hachinger, S.; Mazzali, P.A.; Stanishev, V.; Elias-Rosa, N.; Agnoletto, I.; Bufano, F.; et al. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon. Not. R. Astron. Soc.
**2011**, 412, 2735–2762. [Google Scholar] [CrossRef] - Yuan, F.; Quimby, R.M.; Wheeler, J.C.; Vinkó, J.; Chatzopoulos, E.; Akerlof, C.W.; Kulkarni, S.; Miller, J.M.; McKay, T.A.; Aharonian, F. The Exceptionally Luminous Type Ia Supernova 2007if. Astrophys. J.
**2010**, 715, 1338–1343. [Google Scholar] [CrossRef] - Scalzo, R.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; et al. A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set. Astrophys. J.
**2012**, 757, 12. [Google Scholar] [CrossRef] - Cao, Y.; Johansson, J.; Nugent, P.E.; Goobar, A.; Nordin, J.; Kulkarni, S.R.; Cenko, S.B.; Fox, O.D.; Kasliwal, M.M.; Fremling, C.; et al. Absence of Fast-moving Iron in an Intermediate Type Ia Supernova between Normal and Super-Chandrasekhar. Astrophys. J.
**2016**, 823, 147. [Google Scholar] [CrossRef] - Scalzo, R.A.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Childress, M.; Chotard, N.; et al. Nearby Supernova Factory Observations of SN 2007if: First Total Mass Measurement of a Super-Chandrasekhar-Mass Progenitor. Astrophys. J.
**2010**, 713, 1073–1094. [Google Scholar] [CrossRef] - Kamiya, Y.; Tanaka, M.; Nomoto, K.; Blinnikov, S.I.; Sorokina, E.I.; Suzuki, T. Super-Chandrasekhar-mass Light Curve Models for the Highly Luminous Type Ia Supernova 2009dc. Astrophys. J.
**2012**, 756, 191. [Google Scholar] [CrossRef] - Das, U.; Mukhopadhyay, B. New Mass Limit for White Dwarfs: Super-Chandrasekhar Type Ia Supernova as a New Standard Candle. Phys. Rev. Lett.
**2013**, 110, 071102. [Google Scholar] [CrossRef] - Kalita, S.; Mukhopadhyay, B. Continuous gravitational wave from magnetized white dwarfs and neutron stars: Possible missions for LISA, DECIGO, BBO, ET detectors. Mon. Not. R. Astron. Soc.
**2019**, 490, 2692–2705. [Google Scholar] [CrossRef] - Kalita, S.; Mukhopadhyay, B. Modified Einstein’s gravity to probe the sub- and super-Chandrasekhar limiting mass white dwarfs: A new perspective to unify under- and over-luminous type Ia supernovae. J. Cosmol. Astropart. Phys.
**2018**, 9, 007. [Google Scholar] [CrossRef] - Sarmah, L.; Kalita, S.; Wojnar, A. Stability criterion for white dwarfs in Palatini f(R) gravity. Phys. Rev. D
**2022**, 105, 024028. [Google Scholar] [CrossRef] - Kalita, S.; Sarmah, L. Weak-field limit of f(R) gravity to unify peculiar white dwarfs. Phys. Lett. B
**2022**, 827, 136942. [Google Scholar] [CrossRef] - Nair, V.P. Noncommutative Mechanics, Landau Levels, Twistors, and Yang-Mills Amplitudes. Lect. Notes Phys.
**2006**, 1, 97. [Google Scholar] - Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B
**2006**, 632, 547–551. [Google Scholar] [CrossRef] - Nicolini, P. Noncommutative Black Holes, the Final Appeal to Quantum Gravity: A Review. Int. J. Mod. Phys. A
**2009**, 24, 1229–1308. [Google Scholar] [CrossRef] - Kumar, R.; Ghosh, S.G. Accretion onto a noncommutative geometry inspired black hole. Eur. Phys. J. C
**2017**, 77, 577. [Google Scholar] [CrossRef] - Batic, D.; Nicolini, P. Fuzziness at the horizon. Phys. Lett. B
**2010**, 692, 32–35. [Google Scholar] [CrossRef] - Arraut, I.; Batic, D.; Nowakowski, M. A noncommutative model for a mini black hole. Class. Quantum Gravity
**2009**, 26, 245006. [Google Scholar] [CrossRef] - Franchino-Viñas, S.A.; Pisani, P. Thermodynamics in the NC disc. Eur. Phys. J. Plus
**2018**, 133, 421. [Google Scholar] [CrossRef] - Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys.
**1999**, 1999, 032. [Google Scholar] [CrossRef] - Amelino-Camelia, G.; Majid, S. Waves on Noncommutative Space-Time and Gamma-Ray Bursts. Int. J. Mod. Phys. A
**2000**, 15, 4301–4323. [Google Scholar] [CrossRef] - Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B
**2001**, 510, 255–263. [Google Scholar] [CrossRef] - Magueijo, J.; Smolin, L. Lorentz Invariance with an Invariant Energy Scale. Phys. Rev. Lett.
**2002**, 88, 190403. [Google Scholar] [CrossRef] - Amelino-Camelia, G. Relativity: Special treatment. Nature
**2002**, 418, 34–35. [Google Scholar] [CrossRef] - Son, D.T.; Yamamoto, N. Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids. Phys. Rev. Lett.
**2012**, 109, 181602. [Google Scholar] [CrossRef] - Madore, J. The fuzzy sphere. Class. Quantum Gravity
**1992**, 9, 69–87. [Google Scholar] [CrossRef] - Chandra, N.; Groenewald, H.W.; Kriel, J.N.; Scholtz, F.G.; Vaidya, S. Spectrum of the three-dimensional fuzzy well. J. Phys. Math. Gen.
**2014**, 47, 445203. [Google Scholar] [CrossRef] - Scholtz, F.G.; Kriel, J.N.; Groenewald, H.W. Thermodynamics of Fermi gases in three dimensional fuzzy space. Phys. Rev. D
**2015**, 92, 125013. [Google Scholar] [CrossRef] - Andronache, S.; Steinacker, H.C. The squashed fuzzy sphere, fuzzy strings and the Landau problem. J. Phys. Math. Gen.
**2015**, 48, 295401. [Google Scholar] [CrossRef] - Lai, D.; Shapiro, S.L. Cold Equation of State in a Strong Magnetic Field: Effects of Inverse beta -Decay. Astrophys. J.
**1991**, 383, 745. [Google Scholar] [CrossRef] - Kalita, S.; Mukhopadhyay, B.; Govindarajan, T.R. Significantly super-Chandrasekhar mass-limit of white dwarfs in noncommutative geometry. Int. J. Mod. Phys. D
**2021**, 30, 2150034. [Google Scholar] [CrossRef] - Kalita, S.; Govindarajan, T.R.; Mukhopadhyay, B. Super-Chandrasekhar limiting mass white dwarfs as emergent phenomena of noncommutative squashed fuzzy spheres. Int. J. Mod. Phys. D
**2021**, 30, 2150101. [Google Scholar] [CrossRef] - Vishal, M.V.; Mukhopadhyay, B. Revised density of magnetized nuclear matter at the neutron drip line. Phys. Rev. C
**2014**, 89, 065804. [Google Scholar] [CrossRef] - Ryder, L. Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett.
**2018**, 120, 172703. [Google Scholar] [CrossRef] - Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron.
**2020**, 4, 625–632. [Google Scholar] [CrossRef] - Annala, E.; Gorda, T.; Katerini, E.; Kurkela, A.; Nättilä, J.; Paschalidis, V.; Vuorinen, A. Multimessenger Constraints for Ultradense Matter. Phys. Rev. X
**2022**, 12, 011058. [Google Scholar] [CrossRef] - Kalita, S.; Mukhopadhyay, B.; Mondal, T.; Bulik, T. Timescales for Detection of Super-Chandrasekhar White Dwarfs by Gravitational-wave Astronomy. Astrophys. J.
**2020**, 896, 69. [Google Scholar] [CrossRef] - Kalita, S.; Mondal, T.; Tout, C.A.; Bulik, T.; Mukhopadhyay, B. Resolving dichotomy in compact objects through continuous gravitational waves observation. Mon. Not. R. Astron. Soc.
**2021**, 508, 842–851. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of a squashed fuzzy sphere where all the points of the fuzzy sphere are projected on ${x}_{1}$−${x}_{2}$ plane.

**Figure 3.**

**Upper**figure: Mass–radius relation;

**Lower**figure: variation of central density with the mass of WDs. Here $\mathcal{M}$ and $\mathcal{R}$ are the mass and radius of the star, respectively.

**Figure 4.**

**Upper**figure: Mass–radius relation;

**Lower**figure: variation of central density with the mass of NSs.

**Figure 5.**Mass–radius relations of NC induced NSs for various ${\theta}_{\mathrm{D}}-{x}_{\mathrm{F}}$ relations. ${\theta}_{\mathrm{D},\mathrm{pn}}$ means ${\theta}_{\mathrm{D}}$ for proton and neutron.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kalita, S.; Mukhopadhyay, B.
Massive Neutron Stars and White Dwarfs as Noncommutative Fuzzy Spheres. *Universe* **2022**, *8*, 388.
https://doi.org/10.3390/universe8080388

**AMA Style**

Kalita S, Mukhopadhyay B.
Massive Neutron Stars and White Dwarfs as Noncommutative Fuzzy Spheres. *Universe*. 2022; 8(8):388.
https://doi.org/10.3390/universe8080388

**Chicago/Turabian Style**

Kalita, Surajit, and Banibrata Mukhopadhyay.
2022. "Massive Neutron Stars and White Dwarfs as Noncommutative Fuzzy Spheres" *Universe* 8, no. 8: 388.
https://doi.org/10.3390/universe8080388