Periodic Variations of Solar Corona Index during 1939–2020
Abstract
:1. Introduction
2. Data and Methods
2.1. The Modified Coronal Index
2.2. Lomb–Scargle Periodogram
2.3. Wavelet Transform
2.4. Synchrosqueezed Wavelet Transform
2.5. CWT-Based ConceFT
3. Results and Discussion
3.1. Lomb–Scargle Periodogram of MCI
3.2. Variation Patterns of Significant Periods
3.2.1. The Schwabe Cycle
3.2.2. The Other Significant Periods
3.3. Variation Pattern of Rieger Type Periods
3.4. The Rotation Periods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, L.; Zhang, X.; An, J.; Cai, Y. Statistical properties of solar Hα flare activity. J. Space Weather. Space Clim. 2017, 7, A34. [Google Scholar] [CrossRef]
- Schwabe, H. Sonnen—Beobachtungen im Jahre 1843. Astron. Nachrichten 1844, 21, 234–235. [Google Scholar] [CrossRef]
- Gilman, P.A. Solar Rotation. Annu. Rev. Astron. Astrophys. 1974, 12, 47–70. [Google Scholar] [CrossRef]
- Hale, G.E.; Ellerman, F.; Nicholson, S.B.; Joy, A.H. The Magnetic Polarity of Sun-Spots. Astrophys. J. 1919, 49, 153–178. Available online: https://adsabs.harvard.edu/pdf/1919ApJ....49..153H (accessed on 15 June 2022). [CrossRef]
- Rieger, E.; Share, G.H.; Forrest, D.J.; Kanbach, G.; Reppin, C.; Chupp, E.L. A 154-day periodicity in the occurrence of hard solar flares? Nature 1984, 312, 623–625. [Google Scholar] [CrossRef]
- Deng, L.H.; Li, B.; Xiang, Y.Y.; Dun, G.T. Multi-scale analysis of coronal Fe XIV emission: The role of mid-range periodicities in the Sun-heliosphere connection. J. Atmos. Sol. Terr. Phys. 2015, 122, 18–25. [Google Scholar] [CrossRef]
- Bai, T. Periodicities in solar flare occurrence: Analysis of cycles 19–23. Astrophys. J. 2003, 591, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Pap, J. Activity of sunspots and solar constant variations during 1980. Sol. Phys. 1985, 97, 21–33. [Google Scholar] [CrossRef]
- Pap, J.; Tobiska, W.K.; Bouwer, S.D. Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 1990, 129, 165–189. [Google Scholar] [CrossRef]
- Bai, T. Distribution of flares on the sun-Superactive regions and active zones of 1980–1985. Astrophys. J. 1987, 314, 795–807. [Google Scholar] [CrossRef]
- Deng, L.H.; Li, B.; Xiang, Y.Y.; Dun, G.T. On mid-term periodicities of high-latitude solar activity. Adv. Space Res. 2014, 54, 125–131. [Google Scholar] [CrossRef]
- Kilcik, A.; Chowdhury, P.; Sarp, V.; Yurchyshyn, V.; Donmez, B.; Rozelot, J.; Ozguc, A. Temporal and Periodic Variation of the MCMESI for the Last Two Solar Cycles; Comparison with the Number of Different Class X-ray Solar Flares. Sol. Phys. 2020, 295, 159. [Google Scholar] [CrossRef]
- Badalyan, O.G.; Obridko, V.N. Solar magnetic fields and the intensity of the green coronal line. Astron. Rep. 2004, 48, 678–687. [Google Scholar] [CrossRef]
- Bazilevskaya, G.; Broomhall, A.M.; Elsworth, Y.; Nakariakov, V.M. A Combined Analysis of the Observational Aspects of the Quasi-biennial Oscillation in Solar Magnetic Activity. Space Sci. Rev. 2014, 186, 359–386. [Google Scholar] [CrossRef]
- Deng, L.H.; Zhang, X.J.; Li, G.Y.; Deng, H.; Wang, F. Phase and amplitude asymmetry in the quasi-biennial oscillation of solar Hα flare activity. Mon. Not. R. Astron. Soc. 2019, 488, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Zeng, S.G.; Zheng, S.; Lin, G.H. Chinese sunspot drawings and their digitization-(III) quasi-biennial oscillation of the hand-drawn sunspot records. Res. Astron. Astrophys. 2020, 20, 190. [Google Scholar] [CrossRef]
- Deng, L.; Qi, Z.; Dun, G.; Xu, C. Phase relationship between polar faculae and sunspot numbers revisited: Wavelet transform analyses. Publ. Astron. Soc. Jpn. 2013, 65, 11. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.H.; Li, B.; Xiang, Y.Y.; Dun, G.T. Comparison of chaotic and fractal properties of polar faculae with sunspot activity. Astrophys. J. 2016, 151, 2. [Google Scholar] [CrossRef]
- Leroy, J.L.; Noens, J.C. Does the Solar activity Cycle Extend over More than an 11-year Period? Astron. Astrophys. 1983, 120, L1–L2. Available online: https://ui.adsabs.harvard.edu/abs/1983A%26A...120L...1L/abstract (accessed on 15 June 2022).
- Rybák, J. Rotational Characteristics of the Green Solar Corona: 1964–1989. Sol. Phys. 1994, 152, 161–166. [Google Scholar] [CrossRef]
- Badalyan, O.G.; Obridko, V.N.; Sýkora, J. Quasi-Biennial Oscillations in the North–South Asymmetry of Solar Activity. Sol. Phys. 2008, 247, 379–397. [Google Scholar] [CrossRef]
- Robbrecht, E.; Wang, Y.M.; Sheeley, N.R.; Rich, N.B. On the “Extended” Solar Cycle in Coronal Emission. Astrophys. J. 2010, 716, 693–700. [Google Scholar] [CrossRef]
- Chowdhury, P.; Dwivedi, B.N. Periodicities of Sunspot Number and Coronal Index Time Series During Solar Cycle 23. Sol. Phys. 2011, 270, 365–383. [Google Scholar] [CrossRef]
- Deng, L.H.; Qu, Z.Q.; Wang, K.R.; Li, X.B. Phase asynchrony between coronal index and sunspot numbers. Adv. Space Res. 2012, 50, 1425–1433. [Google Scholar] [CrossRef]
- Xie, J.L.; Shi, X.J.; Zhang, J. Temporal Variation of Solar Coronal Rotation. Astrophys. J. 2017, 841, 42. [Google Scholar] [CrossRef]
- Mancuso, S.; Lee, T.S.; Taricco, C.; Rubinetti, S. Spatio-Temporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission. Sol. Phys. 2018, 293, 124. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.H.; Zhang, X.J.; Deng, H.; Mei, Y.; Wang, F. Systematic regularity of solar coronal rotation during the time interval 1939–2019. Mon. Not. R. Astron. Soc. 2020, 491, 848–857. [Google Scholar] [CrossRef]
- Daubechies, I.; Wang, Y.; Wu, H.T. ConceFT: Concentration of Frequency and Time via a multitapered synchrosqueezed transform. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 2065. [Google Scholar] [CrossRef]
- Luká, B.; Rybanský, M. Modified Coronal Index of the Solar Activity. Sol. Phys. 2010, 263, 43–49. [Google Scholar] [CrossRef]
- Rybanský, M. Coronal index of solar activity. I. Line 5303 A, Year 1971. Bull. Astron. Institutes Czechoslov. 1975, 28, 367. [Google Scholar]
- Rybanský, M.; Rušin, V.; Minarovjech, M.; Kiocok, L. Reexamination of the coronal index of solar activity. J. Geophys. Res. Space Phys. 2005, 110, A08106. [Google Scholar] [CrossRef] [Green Version]
- Ermolli, I.; Shibasaki, K.; Tlatov, A.; van Driel-Gesztelyi, L. Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics. Space Sci. Rev. 2014, 186, 105–135. [Google Scholar] [CrossRef] [Green Version]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Horne, J.H.; Baliunas, S.L. A prescription for period analysis of unevenly sampled time series. Astrophys. J. 1986, 302, 757–763. [Google Scholar] [CrossRef]
- Deng, L.H.; Xiang, Y.Y.; Qu, Z.N.; An, J.M. Systematic regularity of hemispheric sunspot areas over the past 140 years. Astrophys. J. 2016, 151, 70. [Google Scholar] [CrossRef]
- Xiang, N.B. Systematic investigation of mid-term periodicity of the solar full-disk magnetic fields. Res. Astron. Astrophys. 2019, 19, 131. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Thakur, G.; Brevdo, E.; Fukar, N.; Wu, H.T. The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Process 2013, 93, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Herrera, R.H.; Baan, M.; Han, J. Applications of the synchrosqueezing transform in seismic time–frequency analysis. Geophysics 2014, 79, V55–V64. [Google Scholar] [CrossRef]
- Lean, J.L.; Brueckner, G.E. Intermediate-term solar periodicities: 100–500 days. Astrophys. J. 1989, 337, 568–578. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, M.; Ballester, J.L. A short-term periodicity near 155 day in sunspot areas. Astron. Astrophys. 1990, 238, 377–381. Available online: https://adsabs.harvard.edu/pdf/1990A%26A...238..377C (accessed on 15 June 2022).
Scale Type | Period | Variation Pattern | Significant Operating Duration |
---|---|---|---|
Schwabe cycle | yr | smooth | cycle 19–23 |
mid-range | yr | smooth | cycle 21–22 |
mid-range | yr | smooth | cycle 18–23 |
mid-range | yr | local smooth | cycle 18, 19, 21 and 22 |
mid-range | yr | local smooth | cycle 18–22 |
QBOs | yr | local smooth | cycle 18–21 |
Rieger type | day | local smooth | cycle 18–23 |
Rotation | day | intermittent | cycle 18–24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Fei, Y.; Li, C.; Liu, W.; Tian, X.; Wan, Z. Periodic Variations of Solar Corona Index during 1939–2020. Universe 2022, 8, 375. https://doi.org/10.3390/universe8070375
Tang R, Fei Y, Li C, Liu W, Tian X, Wan Z. Periodic Variations of Solar Corona Index during 1939–2020. Universe. 2022; 8(7):375. https://doi.org/10.3390/universe8070375
Chicago/Turabian StyleTang, Rui, Yu Fei, Chun Li, Wen Liu, Xinan Tian, and Zhongjie Wan. 2022. "Periodic Variations of Solar Corona Index during 1939–2020" Universe 8, no. 7: 375. https://doi.org/10.3390/universe8070375
APA StyleTang, R., Fei, Y., Li, C., Liu, W., Tian, X., & Wan, Z. (2022). Periodic Variations of Solar Corona Index during 1939–2020. Universe, 8(7), 375. https://doi.org/10.3390/universe8070375