Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame
Abstract
1. Introduction
2. Field Equations
3. Noether Symmetries and Conservation Laws
4. Analytic Solutions
4.1. Model A
4.2. Model B
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sotiriou, T.P. Gravity and Scalar Fields. In Modifications of Einstein’s Theory of Gravity at Large Distances; Lecture Notes in Physics; Papantonopoulos, E., Ed.; Springer: Cham, Switzerland, 2015; Volume 892. [Google Scholar]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef]
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Ball, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. J. 2008, 686, 749. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, S. Quintessence: A Review. Class. Quantum Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Liddle, A.R.; Scherrer, R.J. A Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 1999, 59, 023509. [Google Scholar] [CrossRef]
- Barrow, J.D.; Paliathanasis, A. Observational constraints on new exact inflationary scalar-field solutions. Phys. Rev. D 2016, 94, 083518. [Google Scholar] [CrossRef]
- Basilakos, S.; Barrow, J.D. Hyperbolic Inflation in the Light of Planck 2015 data. Phys. Rev. D 2015, 91, 103517. [Google Scholar] [CrossRef]
- De Putter, R.; Linder, E.V. Kinetic k-essence and Quintessence. Astropart. Phys. 2007, 28, 263. [Google Scholar] [CrossRef]
- Fu, X.; Yu, H.; Wu, P. Dynamics of interacting phantom scalar field dark energy in loop quantum cosmology. Phys. Rev. D 2008, 78, 063001. [Google Scholar] [CrossRef]
- Haliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Barrow, J.D.; Saich, P. Scalar-Field cosmologies. Class. Quantum Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen. Rel. Gravit. 2006, 38, 1285. [Google Scholar] [CrossRef]
- Giacomini, A.; Leon, G.; Paliathanasis, A.; Pan, S. Cosmological evolution of two-scalar fields cosmology in the Jordan frame. EPJC 2020, 80, 184. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-Order scalar-tensor field equations in a four-dimensional space. Int. J. Ther. Phys. 1974, 10, 363. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 195. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity, Fundamental Theories of Physics; Kluwer Academic Press: Dordrecht, The Netherlands, 2004; Volume 139. [Google Scholar]
- Hohmann, M. Scalar-Torsion theories of gravity I: General formalism and conformal transformations. Phys. Rev. D 2018, 98, 064002. [Google Scholar] [CrossRef]
- Jordan, P. Schwerkraft UndWeltfall, 2nd ed.; Vieweg Und Sohn: Braunschweig, Germany, 1955. [Google Scholar]
- Sen, S.; Sen, A.A. Late time acceleration in Brans Dicke Cosmology. Phys. Rev. D 2001, 63, 124006. [Google Scholar] [CrossRef]
- Tahmasebzadeh, B.; Rezazadeh, K.; Karami, K. Brans-Dicke inflation in light of the Planck 2015 data. J. Cosmol. Astropart. Phys. 2016, 7, 6. [Google Scholar] [CrossRef]
- Artymowski, M.; Lalak, Z.; Lewicki, M. Inflation and dark energy from the Brans-Dicke theory. J. Cosmol. Astropart. Phys. 2015, 6, 31. [Google Scholar] [CrossRef]
- Cid, A. Intermediate inflation in the Jordan-Brans-Dicke theory. AIP Conf. Proc. 2012, 1471, 114. [Google Scholar]
- Chernov, S.V. Chiral Cosmological Models: Dark Sector Fields Description. Quantum Matters 2013, 2, 71. [Google Scholar]
- Perelomov, A.M. Chiral models: Geometrical aspects. Phys. Rept. 1987, 146, 135. [Google Scholar] [CrossRef]
- Chernov, S.V. Chiral non-linear sigma models and cosmological inflation. Gravit. Cosmol. 1995, 1, 91. [Google Scholar]
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rept. 2010, 493, 1. [Google Scholar] [CrossRef]
- Christodoulidis, P.; Roest, D.; Sfakianakis, E.I. Angular inflation in multi-field α-attractors. J. Cosmol. Astropart. Phys. 2019, 11, 2. [Google Scholar] [CrossRef]
- Christodoulidis, P.; Roest, D.; Sfakianakis, E.I. Many-Field Inflation: Universality or Prior Dependence? J. Cosmol. Astropart. Phys. 2019, 12, 59. [Google Scholar] [CrossRef]
- Tuan, Q.D.; Kao, W.F. Anisotropic hyperbolic inflation for a model of two scalar and two vector fields. EPJC 2022, 82, 123. [Google Scholar]
- Chen, C.-B.; Soda, J. Anisotropic Hyperbolic Inflation. J. Cosmol. Astropart. Phys. 2021, 9, 26. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Dynamics of a two scalar field cosmological model with phantom terms. Class. Quantum Grav. 2021, 38, 075013. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Global dynamics of the hyperbolic Chiral-Phantom model. Eur. Phys. J. Plus 2022, 137, 165. [Google Scholar] [CrossRef]
- Brown, A.R. Hyperbolic Inflation. Phys. Rev. Lett. 2018, 121, 251601. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Mukohyama, S. Primordial perturbations from inflation with a hyperbolic field-space. Phys. Rev. D 2017, 96, 103533. [Google Scholar] [CrossRef]
- Lyth, D.H. A numerical study of non-gaussianity in the curvaton scenario. J. Cosmol. Astropart. Phys. 2005, 511, 6. [Google Scholar] [CrossRef][Green Version]
- Langlois, D.; Renaux-Peterl, S. Perturbations in generalized multi-field inflation. J. Cosmol. Astropart. Phys. 2008, 804, 17. [Google Scholar] [CrossRef]
- Paliathanasis, A. Hyperbolic inflation in the Jordan frame. Universe 2022, 8, 199. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. Königlich Ges. Der Wiss. Göttingen Nachrichten Math. Phys. Klasse 1918, 2, 235. [Google Scholar]
- Rubano, C.; Scudellaro, P. On Some Exponential Potentials for a Cosmological Scalar Field as Quintessence. Gen. Relativ. Gravit. 2002, 34, 307. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, Y.G.; Zhu, Z.H. Noether symmetry approach in multiple scalar fields scenario. Phys. Lett. B 2010, 688, 13. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A. Lie point and variational symmetries in minisuperspace Einstein gravity. J. Phys. A Math. Theor. 2014, 47, 95202. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Tsamparlis, M. Two scalar field cosmology: Conservation laws and exact solutions. Phys. Rev. D 2014, 90, 43529. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics; Springer: New York, NY, USA, 1978. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe 2022, 8, 325. https://doi.org/10.3390/universe8060325
Paliathanasis A. Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe. 2022; 8(6):325. https://doi.org/10.3390/universe8060325
Chicago/Turabian StylePaliathanasis, Andronikos. 2022. "Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame" Universe 8, no. 6: 325. https://doi.org/10.3390/universe8060325
APA StylePaliathanasis, A. (2022). Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe, 8(6), 325. https://doi.org/10.3390/universe8060325