Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame
Abstract
:1. Introduction
2. Field Equations
3. Noether Symmetries and Conservation Laws
4. Analytic Solutions
4.1. Model A
4.2. Model B
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sotiriou, T.P. Gravity and Scalar Fields. In Modifications of Einstein’s Theory of Gravity at Large Distances; Lecture Notes in Physics; Papantonopoulos, E., Ed.; Springer: Cham, Switzerland, 2015; Volume 892. [Google Scholar]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Ball, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. J. 2008, 686, 749. [Google Scholar] [CrossRef] [Green Version]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, S. Quintessence: A Review. Class. Quantum Grav. 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R.; Scherrer, R.J. A Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 1999, 59, 023509. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Paliathanasis, A. Observational constraints on new exact inflationary scalar-field solutions. Phys. Rev. D 2016, 94, 083518. [Google Scholar] [CrossRef] [Green Version]
- Basilakos, S.; Barrow, J.D. Hyperbolic Inflation in the Light of Planck 2015 data. Phys. Rev. D 2015, 91, 103517. [Google Scholar] [CrossRef] [Green Version]
- De Putter, R.; Linder, E.V. Kinetic k-essence and Quintessence. Astropart. Phys. 2007, 28, 263. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Yu, H.; Wu, P. Dynamics of interacting phantom scalar field dark energy in loop quantum cosmology. Phys. Rev. D 2008, 78, 063001. [Google Scholar] [CrossRef] [Green Version]
- Haliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Barrow, J.D.; Saich, P. Scalar-Field cosmologies. Class. Quantum Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen. Rel. Gravit. 2006, 38, 1285. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, A.; Leon, G.; Paliathanasis, A.; Pan, S. Cosmological evolution of two-scalar fields cosmology in the Jordan frame. EPJC 2020, 80, 184. [Google Scholar] [CrossRef] [Green Version]
- Horndeski, G.W. Second-Order scalar-tensor field equations in a four-dimensional space. Int. J. Ther. Phys. 1974, 10, 363. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 195. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity, Fundamental Theories of Physics; Kluwer Academic Press: Dordrecht, The Netherlands, 2004; Volume 139. [Google Scholar]
- Hohmann, M. Scalar-Torsion theories of gravity I: General formalism and conformal transformations. Phys. Rev. D 2018, 98, 064002. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P. Schwerkraft UndWeltfall, 2nd ed.; Vieweg Und Sohn: Braunschweig, Germany, 1955. [Google Scholar]
- Sen, S.; Sen, A.A. Late time acceleration in Brans Dicke Cosmology. Phys. Rev. D 2001, 63, 124006. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebzadeh, B.; Rezazadeh, K.; Karami, K. Brans-Dicke inflation in light of the Planck 2015 data. J. Cosmol. Astropart. Phys. 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Artymowski, M.; Lalak, Z.; Lewicki, M. Inflation and dark energy from the Brans-Dicke theory. J. Cosmol. Astropart. Phys. 2015, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Cid, A. Intermediate inflation in the Jordan-Brans-Dicke theory. AIP Conf. Proc. 2012, 1471, 114. [Google Scholar]
- Chernov, S.V. Chiral Cosmological Models: Dark Sector Fields Description. Quantum Matters 2013, 2, 71. [Google Scholar]
- Perelomov, A.M. Chiral models: Geometrical aspects. Phys. Rept. 1987, 146, 135. [Google Scholar] [CrossRef]
- Chernov, S.V. Chiral non-linear sigma models and cosmological inflation. Gravit. Cosmol. 1995, 1, 91. [Google Scholar]
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rept. 2010, 493, 1. [Google Scholar] [CrossRef] [Green Version]
- Christodoulidis, P.; Roest, D.; Sfakianakis, E.I. Angular inflation in multi-field α-attractors. J. Cosmol. Astropart. Phys. 2019, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Christodoulidis, P.; Roest, D.; Sfakianakis, E.I. Many-Field Inflation: Universality or Prior Dependence? J. Cosmol. Astropart. Phys. 2019, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Tuan, Q.D.; Kao, W.F. Anisotropic hyperbolic inflation for a model of two scalar and two vector fields. EPJC 2022, 82, 123. [Google Scholar]
- Chen, C.-B.; Soda, J. Anisotropic Hyperbolic Inflation. J. Cosmol. Astropart. Phys. 2021, 9, 26. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Dynamics of a two scalar field cosmological model with phantom terms. Class. Quantum Grav. 2021, 38, 075013. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Global dynamics of the hyperbolic Chiral-Phantom model. Eur. Phys. J. Plus 2022, 137, 165. [Google Scholar] [CrossRef]
- Brown, A.R. Hyperbolic Inflation. Phys. Rev. Lett. 2018, 121, 251601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, S.; Mukohyama, S. Primordial perturbations from inflation with a hyperbolic field-space. Phys. Rev. D 2017, 96, 103533. [Google Scholar] [CrossRef] [Green Version]
- Lyth, D.H. A numerical study of non-gaussianity in the curvaton scenario. J. Cosmol. Astropart. Phys. 2005, 511, 6. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D.; Renaux-Peterl, S. Perturbations in generalized multi-field inflation. J. Cosmol. Astropart. Phys. 2008, 804, 17. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. Hyperbolic inflation in the Jordan frame. Universe 2022, 8, 199. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. Königlich Ges. Der Wiss. Göttingen Nachrichten Math. Phys. Klasse 1918, 2, 235. [Google Scholar]
- Rubano, C.; Scudellaro, P. On Some Exponential Potentials for a Cosmological Scalar Field as Quintessence. Gen. Relativ. Gravit. 2002, 34, 307. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, Y.G.; Zhu, Z.H. Noether symmetry approach in multiple scalar fields scenario. Phys. Lett. B 2010, 688, 13. [Google Scholar] [CrossRef] [Green Version]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A. Lie point and variational symmetries in minisuperspace Einstein gravity. J. Phys. A Math. Theor. 2014, 47, 95202. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M. Two scalar field cosmology: Conservation laws and exact solutions. Phys. Rev. D 2014, 90, 43529. [Google Scholar] [CrossRef] [Green Version]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Arnold, V.I. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics; Springer: New York, NY, USA, 1978. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe 2022, 8, 325. https://doi.org/10.3390/universe8060325
Paliathanasis A. Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe. 2022; 8(6):325. https://doi.org/10.3390/universe8060325
Chicago/Turabian StylePaliathanasis, Andronikos. 2022. "Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame" Universe 8, no. 6: 325. https://doi.org/10.3390/universe8060325
APA StylePaliathanasis, A. (2022). Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe, 8(6), 325. https://doi.org/10.3390/universe8060325