Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production
Abstract
:1. Introduction
2. Effective Lagrangian for Axionlike Particles
ALP Decays
3. ALP Production Associated with a Pair of Top Quarks
- Only one isolated charged lepton () with GeV and . Events containing additional charged leptons with GeV that fulfill loose isolation criteria are discarded. Isolated leptons are chosen with the help of the isolation variable according to the definition given in Ref. [35]. Similar to Ref. [32], is required to be less than for muons and for electrons. For loose electrons (muons), is required to be less than .
- At least three jets with GeV and from which one must be tagged as a b-jet. B-jet identification is based on a parametric approach that relies on Monte Carlo generator information. The probability for b-jet identification is according to the parameterization of the b-tagging efficiency available in the FCC-hh detector card. For a jet with GeV and , the b-tagging efficiency is taken to be and misidentification rates are and for c-quark jets and light flavor jets, respectively.
- The magnitude of missing transverse momentum to be greater than 160 GeV.
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooft, G. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 1976, 37, 8–11. [Google Scholar] [CrossRef]
- Dolan, M.J.; Kahlhoefer, F.; McCabe, C.; Schmidt-Hoberg, K. A taste of dark matter: Flavour constraints on pseudoscalar mediators. J. High Energy Phys. 2015, 3, 171, Erratum in J. High Energy Phys. 2015, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.S.; Jung, T.H.; Shin, C.S. Adiabatic electroweak baryogenesis driven by an axionlike particle. Phys. Rev. D 2020, 101, 035009. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.S.; Tsai, L.H. Peccei-Quinn symmetry as the origin of Dirac Neutrino Masses. Phys. Rev. D 2013, 88, 055015. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.; Chang, W.F.; Chou, C.H.; Keung, W.Y. Large two loop contributions to g-2 from a generic pseudoscalar boson. Phys. Rev. D 2001, 63, 091301. [Google Scholar] [CrossRef] [Green Version]
- Kitahara, T.; Okui, T.; Perez, G.; Soreq, Y.; Tobioka, K. New physics implications of recent search for KL→π0νν¯ at KOTO. Phys. Rev. Lett. 2020, 124, 071801. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, H.; Harigaya, K.; Ibe, M.; Yanagida, T.T. Model of visible QCD axion. Phys. Rev. D 2015, 92, 015021. [Google Scholar] [CrossRef] [Green Version]
- Izaguirre, E.; Lin, T.; Shuve, B. Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes. Phys. Rev. Lett. 2017, 118, 111802. [Google Scholar] [CrossRef] [Green Version]
- Döbrich, B.; Jaeckel, J.; Kahlhoefer, F.; Ringwald, A.; Schmidt-Hoberg, K. ALPtraum: ALP production in proton beam dump experiments. J. High Energy Phys. 2016, 2, 018. [Google Scholar] [CrossRef] [Green Version]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E. Search for a Non-Standard-Model Higgs Boson Decaying to a Pair of New Light Bosons in Four-Muon Final States. Phys. Lett. B 2013, 726, 564–586. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E. Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at TeV. J. High Energy Phys. 2017, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dona, K.; Hoshino, G.; Knirck, S.; Kurinsky, N.; Malaker, M. Broadband Solenoidal Haloscope for Terahertz Axion Detection. Phys. Rev. Lett. 2022, 128, 131801. [Google Scholar] [CrossRef] [PubMed]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abed, A.; Abeling, K.; Abhayasinghe, D.K. Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb-1 of Pb+Pb data with the ATLAS detector. J. High Energy Phys. 2021, 11, 50. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Erbacher, R.; Carrillo Montoya, C.A.; Carvalho, W.; Górski, M.; Kotlinski, D. Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at TeV. Phys. Lett. B 2019, 797, 134826. [Google Scholar] [CrossRef]
- Brivio, I.; Gavela, M.B.; Merlo, L.; Mimasu, K.; No, J.M.; del Rey, R.; Sanz, V. ALPs Effective Field Theory and Collider Signatures. Eur. Phys. J. C 2017, 77, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimasu, K.; Sanz, V. ALPs at Colliders. J. High Energy Phys. 2015, 6, 173. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Neubert, M.; Thamm, A. Collider Probes of Axion-Like Particles. J. High Energy Phys. 2017, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, J.; Brivio, I.; Machado-Rodríguez, J.; de Trocóniz, J.F. Nonresonant Searches for Axion-Like Particles in Vector Boson Scattering Processes at the LHC. arXiv 2022, arXiv:2202.03450. [Google Scholar]
- Bauer, M.; Neubert, M.; Renner, S.; Schnubel, M.; Thamm, A. Flavor probes of axion-like particles. arXiv 2021, arXiv:2110.10698. [Google Scholar]
- Ebadi, J.; Khatibi, S.; Mohammadi Najafabadi, M. New probes for axionlike particles at hadron colliders. Phys. Rev. D 2019, 100, 015016. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, G.; Haji Raissi, D.; Mohammadi Najafabadi, M. New collider searches for axionlike particles coupling to gluons. Phys. Rev. D 2020, 102, 115010. [Google Scholar] [CrossRef]
- Bauer, M.; Heiles, M.; Neubert, M.; Thamm, A. Axion-Like Particles at Future Colliders. Eur. Phys. J. C 2019, 79, 74. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Neubert, M.; Thamm, A. LHC as an Axion Factory: Probing an Axion Explanation for (g-2)μ with Exotic Higgs Decays. Phys. Rev. Lett. 2017, 119, 031802. [Google Scholar] [CrossRef] [Green Version]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K. Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at TeV with the ATLAS detector. Phys. Rev. D 2021, 103, 112006. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.; Abed, A.; Abeling, K.; Abhayasinghe, D. Search for Higgs boson decays into a pair of pseudoscalar particles in the bbμμ final state with the ATLAS detector in pp collisions at TeV. Phys. Rev. D 2022, 105, 012006. [Google Scholar] [CrossRef]
- FCC Collaboration. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [Google Scholar] [CrossRef]
- Alloul, A.; Christensen, N.D.; Degrande, C.; Duhr, C.; Fuks, B. FeynRules 2.0—A complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 2014, 185, 2250–2300. [Google Scholar] [CrossRef] [Green Version]
- Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T. UFO—The Universal FeynRules Output. Comput. Phys. Commun. 2012, 183, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T. MadGraph 5: Going Beyond. J. High Energy Phys. 2011, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Aloni, D.; Soreq, Y.; Williams, M. Coupling QCD-Scale Axionlike Particles to Gluons. Phys. Rev. Lett. 2019, 123, 031803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, R.D.; Bertone, V.; Carrazza, S.; Deans, C.S.; Del Debbio, L.; Forte, S. Parton distributions with LHC data. Nucl. Phys. B 2013, 867, 244–289. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brstetter, J. Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at TeV. Eur. Phys. J. C 2017, 77, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaboud, M.; Aad, G.; Abbott, B.; Abeloos, B.; Abidi, S.H.; AbouZeid, O.S. Search for dark matter produced in association with bottom or top quarks in TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 2018, 78, 18. [Google Scholar] [CrossRef] [Green Version]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. PYTHIA 6.4 Physics and Manual. J. High Energy Phys. 2006, 5, 26. [Google Scholar] [CrossRef]
- De Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. J. High Energy Phys. 2014, 2, 57. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Salam, G.P.; Soyez, G. FastJet User Manual. Eur. Phys. J. C 2012, 72, 1896. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Salam, G.P.; Soyez, G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Cheng, H.C.; Gallicchio, J.; Gu, J. Stop the Top Background of the Stop Search. J. High Energy Phys. 2012, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Bertram, I.; Landsberg, G.L.; Linnemann, J.; Partridge, R.; Paterno, M.; Prosper, H.B. A Recipe for the Construction of Confidence Limits; Fermi National Accelerator Lab.: Batavia, IL, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
Cut | TeV | TeV | Single Top | W+jets | Z+jets | Diboson | |
---|---|---|---|---|---|---|---|
Lepton and jet selection, , MET, , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, Y.; Mohammadi Najafabadi, M. Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production. Universe 2022, 8, 301. https://doi.org/10.3390/universe8060301
Hosseini Y, Mohammadi Najafabadi M. Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production. Universe. 2022; 8(6):301. https://doi.org/10.3390/universe8060301
Chicago/Turabian StyleHosseini, Yasaman, and Mojtaba Mohammadi Najafabadi. 2022. "Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production" Universe 8, no. 6: 301. https://doi.org/10.3390/universe8060301
APA StyleHosseini, Y., & Mohammadi Najafabadi, M. (2022). Prospects for Probing Axionlike Particles at a Future Hadron Collider through Top Quark Production. Universe, 8(6), 301. https://doi.org/10.3390/universe8060301