Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments
Abstract
:1. Introduction
2. Requirements for a Precise Cross-Section Measurement
2.1. Determination of the Number of Projectiles
2.2. Determination of the Number of Target Atoms
2.3. Determination of the Number of Reactions
Direct Determination of the Number of Reaction Products
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
1 | For the exact formulae relating the cross section to reaction rate and to the energy generation and nucleosynthesis yields, see e.g., [3]. |
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A. Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 1957, 69, 201–222. [Google Scholar] [CrossRef]
- Iliadis, C. Nuclear Physics of Stars; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cayrel, R.; Hill, V.; Beers, T.C.; Barbuy, B.; Spite, M.; Spite, F.; Plez, B.; Andersen, J.; Bonifacio, P.; François, P.; et al. Measurement of stellar age from uranium decay. Nature 2001, 409, 691–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiescher, M.; Görres, J.; Uberseder, E.; Imbriani, G.; Pignatari, M. The Cold and Hot CNO Cycles. Annu. Rev. Nucl. Part. Sci. 2010, 60, 381–404. [Google Scholar] [CrossRef]
- Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Biondi, R.; Bravo, D.; et al. Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature 2020, 587, 577–582. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2018 results—I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.J.; Woosley, S.E.; Whalen, D.J. Three-dimensional Simulations of Magnetar-powered Superluminous Supernovae. Astrophys. J. 2020, 893, 99. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; et al. Precision Measurement of the 7Be Solar Neutrino Interaction Rate in Borexino. Phys. Rev. Lett. 2011, 107, 141302. [Google Scholar] [CrossRef] [Green Version]
- Adelberger, E.G.; García, A.; Robertson, R.G.H.; Snover, K.A.; Balantekin, A.B.; Heeger, K.; Ramsey-Musolf, M.J.; Bemmerer, D.; Junghans, A.; Bertulani, C.A.; et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 2011, 83, 195–245. [Google Scholar] [CrossRef] [Green Version]
- Siegert, T.; Diehl, R.; Krause, M.G.H.; Greiner, J. Revisiting INTEGRAL/SPI observations of 44Ti from Cassiopeia A. Astron. Astrophys. 2015, 579, A124. [Google Scholar] [CrossRef]
- Chen, J.; Singh, B.; Cameron, J.A. Nuclear Data Sheets for A = 44. Nuclear Data Sheets 2011, 112, 2357–2495. [Google Scholar] [CrossRef]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–193. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Bordeanu, C.; Gyürky, G.; Elekes, Z.; Farkas, J.; Fülöp, Z.; Halász, Z.; Kiss, G.; Somorjai, E.; Szücs, T. Thin-window gas cell target for activation cross-section measurements relevant for nuclear astrophysics. Nucl. Instr. Meth. A 2012, 693, 220–225. [Google Scholar] [CrossRef]
- Casella, C.; Costantini, H.; Lemut, A.; Limata, B.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Campajola, L.; Cocconi, P.; Corvisiero, P.; et al. A new setup for the underground study of capture reactions. Nucl. Instr. Meth. A 2002, 489, 160–169. [Google Scholar] [CrossRef]
- Buompane, R.; De Cesare, N.; Di Leva, A.; D’Onofrio, A.; Gialanella, L.; Romano, M.; De Cesare, M.; Duarte, J.G.; Fülöp, Z.; Morales-Gallegos, L.; et al. Test measurement of 7Be(p,γ)8B with the recoil mass separator ERNA. Eur. Phys. J. A 2018, 54, 92. [Google Scholar] [CrossRef]
- Rajta, I.; Vajda, I.; Gyürky, G.; Csedreki, L.; Kiss, A.Z.; Biri, S.; van Oosterhout, H.; Podaru, N.; Mous, D. Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary. Nucl. Instr. Meth. A 2018, 880, 125–130. [Google Scholar] [CrossRef]
- Csedreki, L.; Ciani, G.; Gyürky, G.; Vajda, I.; Rajta, I.; Kiss, A.Z. Precise resonance energies measured for energy calibration of particle accelerator using thin silicon—Nitride foils. Nucl. Instr. Meth. B 2020, 478, 194–200. [Google Scholar] [CrossRef]
- SRIM-2013 Software Code. Available online: http://srim.org/ (accessed on 10 January 2019).
- Gyürky, G.; Halász, Z.; Kiss, G.G.; Szücs, T.; Csík, A.; Török, Z.; Huszánk, R.; Kohan, M.G.; Wagner, L.; Fülöp, Z. Resonance strengths in the 14N(p,γ)15O astrophysical key reaction measured with activation. Phys. Rev. C 2019, 100, 015805. [Google Scholar] [CrossRef] [Green Version]
- Gyürky, G.; Halász, Z.; Farkas, J.; Fülöp, Z.; Somorjai, E.; Szücs, T. Target characterization for the 130Ba(a,g)134Ce gamma-process experiment. In Proceedings of the 11th International Symposium on Nuclei in the Cosmos (NIC2010), Heidelberg, Germany, 19–23 July 2010; p. 238. [Google Scholar]
- Caciolli, A.; Scott, D.A.; Di Leva, A.; Formicola, A.; Aliotta, M.; Anders, M.; Bellini, A.; Bemmerer, D.; Broggini, C.; Campeggio, M.; et al. Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies. Eur. Phys. J. A 2012, 48, 144. [Google Scholar] [CrossRef] [Green Version]
- Ciani, G.F.; Csedreki, L.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. A new approach to monitor 13C-targets degradation in situ for 13C(α,n)16O cross-section measurements at LUNA. Eur. Phys. J. A 2020, 56, 75. [Google Scholar] [CrossRef] [Green Version]
- Rapagnani, D.; Buompane, R.; Leva, A.D.; Gialanella, L.; Busso, M.; Cesare, M.D.; Stefano, G.D.; Duarte, J.; Gasques, L.; Gallegos, L.M.; et al. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator {ERNA}. Nucl. Instr. Meth. B 2017, 407, 217–221. [Google Scholar] [CrossRef]
- Marta, M.; Confortola, F.; Bemmerer, D.; Boiano, C.; Bonetti, R.; Broggini, C.; Casanova, M.; Corvisiero, P.; Costantini, H.; Elekes, Z.; et al. Study of beam heating effect in a gas target through Rutherford scattering. Nucl. Instr. Meth. A 2006, 569, 727–731. [Google Scholar] [CrossRef]
- Cavanna, F.; Depalo, R.; Menzel, M.L.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; Caciolli, A.; Corvisiero, P.; et al. A new study of the 22Ne(p, γ)23Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance. Eur. Phys. J. A 2014, 50, 179. [Google Scholar] [CrossRef]
- Balibrea-Correa, J.; Ciani, G.; Buompane, R.; Cavanna, F.; Csedreki, L.; Depalo, R.; Ferraro, F.; Best, A. Improved pulse shape discrimination for high pressure 3He counters. Nucl. Instr. Meth. A 2018, 906, 103–109. [Google Scholar] [CrossRef]
- Broggini, C.; Bemmerer, D.; Caciolli, A.; Trezzi, D. LUNA: Status and prospects. Prog. Part. Nucl. Phys. 2018, 98, 55–84. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; D’Alessandro, A.; Dessalvi, M.; D’Onofrio, A.; Fubini, A.; Gervino, G.; Gialanella, L.; et al. First Measurement of the 3He(3He, 2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak. Phys. Rev. Lett. 1999, 82, 5205–5208. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.G.; Scott, D.A.; Formicola, A.; Aliotta, M.; Davinson, T.; Anders, M.; Best, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; et al. Resonance strengths in the 17,18O(p, α)14,15N reactions and background suppression underground. Commissioning of a new setup for charged-particle detection at LUNA. Eur. Phys. J. A 2015, 51, 94. [Google Scholar] [CrossRef]
- Strieder, F.; Gialanella, L.; Gyürky, G.; Schümann, F.; Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; Costantini, H.; D’Onofrio, A.; et al. Absolute cross section of 7Be(p,γ)8B. Nucl. Phys. A 2001, 696, 219–230. [Google Scholar] [CrossRef]
- Elekes, Z.; Belgya, T.; Molnár, G.; Kiss, A.Z.; Csatlós, M.; Gulyás, J.; Krasznahorkay, A.; Máté, Z. Absolute full-energy peak efficiency calibration of a Clover–BGO detector system. Nucl. Instr. Meth. A 2003, 503, 580–588. [Google Scholar] [CrossRef]
- Marta, M.; Trompler, E.; Bemmerer, D.; Beyer, R.; Broggini, C.; Caciolli, A.; Erhard, M.; Fülöp, Z.; Grosse, E.; Gyürky, G.; et al. Resonance strengths in the 14N(p,γ)15O and 15N(p,αγ)12C reactions. Phys. Rev. C 2010, 81, 055807. [Google Scholar] [CrossRef] [Green Version]
- True Coincidence Summing. In Practical Gamma-Ray Spectrometry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; Chapter 8; pp. 165–181. [CrossRef]
- Spectrometer Calibration. In Practical Gamma-Ray Spectrometry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; Chapter 7; pp. 143–163. [CrossRef]
- Csedreki, L.; Ciani, G.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.; et al. Characterization of the LUNA neutron detector array for the measurement of the 13C(α, n)16O reaction. Nucl. Instr. Meth. A 2021, 994, 165081. [Google Scholar] [CrossRef]
- Vasileiou, P.; Mertzimekis, T.; Chalil, A.; Fakiola, C.; Karakasis, I.; Kotsovolou, A.; Pelonis, S.; Zyriliou, A.; Axiotis, M.; Lagoyannis, A. An investigation of radiative proton–capture reactions in the Cd—In mass region. Nucl. Phys. A 2021, 1015, 122298. [Google Scholar] [CrossRef]
- Gyürky, G.; Fülöp, Z.; Käppeler, F.; Kiss, G.G.; Wallner, A. The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A 2019, 55, 41. [Google Scholar] [CrossRef]
- Gyürky, G.; Halász, Z.; Kiss, G.; Szücs, T.; Fülöp, Z. Half-life measurement of 65Ga with γ-spectroscopy. Appl. Radiat. Isot. 2019, 148, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Szegedi, T.N.; Tóth, Á.; Kiss, G.G.; Gyürky, G. High precision half-life measurement of 95Ru, 95Tc and 95mTc with γ-spectroscopy. Eur. Phys. J. A 2020, 56, 182. [Google Scholar] [CrossRef]
- Gyürky, G.; Fülöp, Z.; Halász, Z.; Kiss, G.G.; Szücs, T. Direct study of the α-nucleus optical potential at astrophysical energies using the 64Zn(p, α)61Cu reaction. Phys. Rev. C 2014, 90, 052801. [Google Scholar] [CrossRef] [Green Version]
- Kutschera, W. Accelerator mass spectrometry: State of the art and perspectives. Adv. Phys. X 2016, 1, 570–595. [Google Scholar] [CrossRef] [Green Version]
- Buompane, R.; Di Leva, A.; Gialanella, L.; D’Onofrio, A.; De Cesare, M.; Duarte, J.; Fülöp, Z.; Gasques, L.; Gyürky, G.; Morales-Gallegos, L.; et al. Determination of the 7Be(p,γ)8B cross section at astrophysical energies using a radioactive 7Be ion beam. Phys. Lett. B 2022, 824, 136819. [Google Scholar] [CrossRef]
- Glorius, J.; Langer, C.; Slavkovská, Z.; Bott, L.; Brandau, C.; Brückner, B.; Blaum, K.; Chen, X.; Dababneh, S.; Davinson, T.; et al. Approaching the Gamow Window with Stored Ions: Direct Measurement of 124Xe(p, γ) in the ESR Storage Ring. Phys. Rev. Lett. 2019, 122, 092701. [Google Scholar] [CrossRef] [Green Version]
- Costantini, H.; Bemmerer, D.; Confortola, F.; Formicola, A.; Gyürky, G.; Bezzon, P.; Bonetti, R.; Broggini, C.; Corvisiero, P.; Elekes, Z.; et al. The 3He(α,γ)7Be S-factor at solar energies: The prompt γ experiment at LUNA. Nucl. Phys. A 2008, 814, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Bordeanu, C.; Gyürky, G.; Halász, Z.; Szücs, T.; Kiss, G.; Elekes, Z.; Farkas, J.; Fülöp, Z.; Somorjai, E. Activation measurement of the 3He(α,γ)7Be reaction cross section at high energies. Nucl. Phys. A 2013, 908, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Di Leva, A.; Gialanella, L.; Kunz, R.; Rogalla, D.; Schürmann, D.; Strieder, F.; De Cesare, M.; De Cesare, N.; D’Onofrio, A.; Fülöp, Z.; et al. Stellar and Primordial Nucleosynthesis of 7Be: Measurement of 3He(α,γ)7Be. Phys. Rev. Lett. 2009, 102, 232502. [Google Scholar] [CrossRef]
- Rauscher, T.; Dauphas, N.; Dillmann, I.; Fröhlich, C.; Fülöp, Z.; Gyürky, G. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 2013, 76, 066201. [Google Scholar] [CrossRef] [Green Version]
- Avrigeanu, V.; Avrigeanu, M. Analysis of uncertainties in α-particle optical-potential assessment below the Coulomb barrier. Phys. Rev. C 2016, 94, 024621. [Google Scholar] [CrossRef]
- Mohr, P.; Fülöp, Z.; Gyürky, G.; Kiss, G.; Szücs, T.; Arcones, A.; Jacobi, M.; Psaltis, A. Astrophysical reaction rates of α-induced reactions for nuclei with 26 ≤ Z ≤ 83 from the new Atomki-V2 α-nucleus potential. At. Data Nucl. Data Tables 2021, 142, 101453. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyürky, G. Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments. Universe 2022, 8, 216. https://doi.org/10.3390/universe8040216
Gyürky G. Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments. Universe. 2022; 8(4):216. https://doi.org/10.3390/universe8040216
Chicago/Turabian StyleGyürky, György. 2022. "Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments" Universe 8, no. 4: 216. https://doi.org/10.3390/universe8040216
APA StyleGyürky, G. (2022). Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments. Universe, 8(4), 216. https://doi.org/10.3390/universe8040216