Star and Black Hole Formation at High Redshift
Abstract
:1. Introduction
2. What Galaxies and Their Central SMBHs Tell Us
3. Ultra Faint Dwarf (UFD) Galaxies
4. Supersonic Flow and Shockwaves
5. The Early Mini-Halos
5.1. Virialized Clump Statistics
Density n (in ) | Redshift z | Mass M (in ) |
---|---|---|
20 | ||
20 | ||
30 | ||
30 | ||
30 |
5.2. The First Super-Massive Black Holes (SMBHs)
5.3. The Gravothermal Catastrophe
5.4. The Loss-Cone-Mechanism
5.5. Direct Collapse to a Super-Massive Star SM*
5.5.1. Agglomeration of Stars
5.5.2. Baryonic Accretion
5.6. Direct Growth of a Stellar Mass BH to a SMBH from Quantum Lattice
5.7. Comparison
6. Conclusions for WDM
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. (In German) [Google Scholar]
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217–246. [Google Scholar] [CrossRef]
- Biermann, P.L.; Kronberg, P.P.; Madore, B.F. The detection of hot intergalactic gas in the NGC 3607 group of galaxies with the Einstein satellite. Astrophys. J. Lett. 1982, 256, L37–L40. [Google Scholar] [CrossRef]
- Biermann, P.; Kronberg, P.P. Detection of 1010 solar mass of hot gas in the normal elliptical galaxy NGC 5846 with the Einstein satellite. Astrophys. J. Lett. 1983, 268, L69–L73. [Google Scholar] [CrossRef]
- Biermann, P.; Kronberg, P.P. Hot Gas in Groups of Galaxies. In Clusters and Groups of Galaxies. International Meeting Trieste, Italy, 13–16 September 1983; Mardirossian, F., Giuricin, G., Mezzetti, M., Eds.; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Biermann, P.L.; Kronberg, P.P.; Schmutzler, T. Extended X-ray emission from hot gas around the normal giant elliptical galaxy NGC 5846. Astron. Astroph. 1989, 208, 22–26. [Google Scholar]
- De Propris, R.; West, M.J.; Andrade-Santos, F.; Ragone-Figueroa, C.; Rasia, E.; Forman, W.; Jones, C.; Kipper, R.; Borgani, S.; Lambas, D.G.; et al. Brightest cluster galaxies: The centre can (not?) hold. Mon. Not. R. Astron. Soc. 2021, 500, 310–318. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; McGaugh, S.S.; Bosma, A.; Rubin, V.C. Mass Density Profiles of Low Surface Brightness Galaxies. Astrophys. J. Lett. 2001, 552, L23–L26. [Google Scholar] [CrossRef] [Green Version]
- Noordermeer, E.; Van Der Hulst, T.; Sancisi, R.; Swaters, R. The mass distribution in early type disk galaxies. In Symposium-International Astronomical Union; Ryder, S.D., Pisano, D.J., Walker, M.A., Freeman, K.C., Eds.; ASP: San Francisco, CA, USA, 2004; pp. 287–292. [Google Scholar]
- Roberts, M.S. The Content of Galaxies: Stars and Gas. Annu. Rev. Astron. Astrophys. 1963, 1, 149–178. [Google Scholar] [CrossRef]
- Rubin, V.; Ford, W.K., Jr.; Thonnard, N. Extended rotation curves of high-luminosity spiral galaxies IV. Systematic dynamical properties, Sa to Sc. Astrophys. J. Lett. 1978, 225, L107–L111. [Google Scholar] [CrossRef]
- Rubin, V.C. A brief history of dark matter. In The Dark Universe; Livio, M., Ed.; Cambridge University Press: Cambridge, UK, 2010; p. 1. [Google Scholar]
- Sofue, Y.; Rubin, V. Rotation Curves of Spiral Galaxies. Annu. Rev. Astron. Astrophys. 2001, 39, 137–174. [Google Scholar] [CrossRef] [Green Version]
- Emden, R. Gaskugeln; Nabu Press: Leipzig, Germany, 1907. [Google Scholar]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results VI. Cosmological parameters. Astron. Astrophys. 2020, 641, 67. [Google Scholar]
- Nath, B.N.; Biermann, P.L. Cosmic ray ionization of the interstellar medium. Mon. Not. R. Astron. Soc. 1994, 267, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Donato, F.; Gentile, G.; Salucci, P.; Frigerio Martins, C.; Wilkinson, M.I.; Gilmore, G.; Grebel, E.K.; Koch, A.; Wyse, R. A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 2009, 397, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Gentile, G.; Famaey, B.; Zhao, H.; Salucci, P. Universality of galactic surface densities within one dark halo scale-length. Nature 2009, 461, 627–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paolo, C.; Salucci, P.; Erkurt, A. The universal rotation curve of low surface brightness galaxies—IV. The interrelation between dark and luminous matter. Mon. Not. R. Astron. Soc. 2019, 490, 5451–5477. [Google Scholar] [CrossRef] [Green Version]
- Nadler, E.O.; Drlica-Wagner, A.; Bechtol, K.; Mau, S.; Wechsler, R.H.; Gluscevic, V.; Boddy, K.; Pace, A.B.; Li, T.S.; McNanna, M.; et al. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. Phys. Rev. Lett. 2021, 126, 091101. [Google Scholar] [CrossRef]
- Adhikari, R.; Agostini, M.; Anh Ky, N.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P.S.; et al. A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys. 2017, 2017. [Google Scholar] [CrossRef]
- Gao, L.; Theuns, T. Lighting the Universe with filaments. Science 2007, 317, 1527–1530. [Google Scholar] [CrossRef] [Green Version]
- Paduroiu, S.; Revaz, Y.; Pfenniger, D. Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down. arXiv 2015, arXiv:1506.03789. [Google Scholar]
- Paduroiu, S. Structure Formation in Warm Dark Matter Cosmologies. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2015. [Google Scholar]
- Paduroiu, S. Warm Dark Matter in Simulations. Universe 2022, 8, 76. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Model-independent analysis of dark matter points to a particle mass at the keV scale. Mon. Not. R. Astron. Soc. 2010, 404, 885–894. [Google Scholar] [CrossRef] [Green Version]
- de Vega, H.J.; Sanchez, N.G. Warm Dark Matter Galaxies with Central Supermassive Black-Holes. arXiv 2017, arXiv:1705.05418. [Google Scholar]
- de Vega, H.J.; Salucci, P.; Sanchez, N.G. The mass of the dark matter particle: Theory and galaxy observations. New Astron. 2012, 17, 653–666. [Google Scholar] [CrossRef] [Green Version]
- Tseliakhovich, D.; Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 2010, 82, 083520. [Google Scholar] [CrossRef] [Green Version]
- Tegmark, M.; Silk, J.; Rees, M.J.; Blanchard, A.; Abel, T.; Palla, F. How Small Were the First Cosmological Objects? Astrophys. J. 1997, 474, 1. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems. Astrophys. J. Lett. 1969, 158, L139–L143. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Thuan, T.X. Random Gravitational Encounters and the Evolution of Spherical Systems. IV Isolated Systems of Identical Stars. Astrophys. J. 1972, 175, 31–61. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Shull, J.M. Random gravitational encounters and the evolution of spherical systems. VI. Plummer’s model. Astrophys. J. 1975, 200, 339–342. [Google Scholar] [CrossRef]
- Julian, W.H.; Toomre, A. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J. 1966, 146, 810–830. [Google Scholar] [CrossRef]
- Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by self-similar condensation. Astrophys. J. 1974, 187, 425–438. [Google Scholar] [CrossRef]
- O’Leary, R.M.; McQuinn, M. The formation of the first cosmic structures and the physics of the z ~ 20 universe. Astrophys. J. 2012, 760, 4. [Google Scholar] [CrossRef] [Green Version]
- Kovács, O.E.; Bogdán, Á.; Canning, R.E.A. Ultradiffuse Galaxies in the Coma Cluster: Probing Their Origin and AGN Occupation Fraction. Astrophys. J. 2019, 898, 164. [Google Scholar] [CrossRef]
- Simon, J.D. The Faintest Dwarf Galaxies. Annu. Rev. Astron. Astrophys. 2019, 57, 375–415. [Google Scholar] [CrossRef] [Green Version]
- Bogdán, Á.; Lovisari, L.; Volonteri, M.; Dubois, Y. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies. Astrophys. J. 2018, 852, 131. [Google Scholar] [CrossRef] [Green Version]
- Forman, W.; Jones, C.; Bogdan, A.; Kraft, R.; Churazov, E.; Randall, S.; Sun, M.; O’Sullivan, E.; Vrtilek, J.; Nulsen, P. Supermassive Black Hole feedback in early type galaxies. Internat. Astron. Union Sympos. 2021, 359, 119–125. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R.; Cornell, M.E. Supermassive black holes do not correlate with galaxy disks or pseudobulges. Nature 2011, 469, 374–376. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R. Supermassive black holes do not correlate with dark matter haloes of galaxies. Nature 2011, 469, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Phipps, F.; Bogdán, Á.; Lovisari, L.; Kovacs, O.E.; Volonteri, M.; Dubois, Y. Expanding the Sample: The Relationship between the Black Hole Mass of BCGs and the Total Mass of Galaxy Clusters. Astrophys. J. 2019, 875, 141. [Google Scholar] [CrossRef]
- Wang, Y.; Biermann, P.L. A possible mechanism for the mass ratio limitation in early type galaxies. Astron. Astroph. 1998, 334, 87–95. [Google Scholar]
- Wang, Y.; Biermann, P.L.; Wandel, A. Black hole to bulge mass correlation in Active Galactic Nuclei: A test for the simple unified formation scheme. Astron. Astroph. 2000, 361, 550–554. [Google Scholar]
- Owen, F.N.; Eilek, J.A.; Kassim, N.E. M87 at 90 cm: A different picture. Astrophys. J. 2000, 543, 611–619. [Google Scholar] [CrossRef]
- Feain, I.J.; Cornwell, T.J.; Ekers, R.D.; Calabretta, M.R.; Norris, R.P.; Johnston-Hollitt, M.; Ott, J.; Lindley, E.; Gaensler, B.M.; Murphy, T.; et al. The radio continuum structure of Centaurus A at 1.4 GHz. Astrophys. J. 2011, 740. [Google Scholar] [CrossRef] [Green Version]
- Junkes, N.; Haynes, R.F.; Harnett, J.J.; Jauncey, D.L. Radio polarization surveys of Centaurus A (NGC5128): The complete radio survey at 6.3 cm. Astron. Astrophys. 1993, 269, 29–38. [Google Scholar]
- Gergely, L.A.; Biermann, P.L. The spin-flip phenomenon in supermassive black hole binary mergers. Astrophys. J. 2009, 697, 1621–1633. [Google Scholar] [CrossRef]
- Rottmann, H. Jet-Reorientation in X-Shaped Radio Galaxies. Ph.D. Thesis, University of Bonn, Zentrum, Germany, 2001. [Google Scholar]
- Andrade-Santos, F.; Bogdán, Á.; Romani, R.W.; Forman, W.R.; Jones, C.; Murray, S.S.; Taylor, G.B.; Zavala, R.T. Binary Black Holes, Gas Sloshing, and Cold Fronts in the X-Ray Halo Hosting 4C+37.11. Astrophys. J. 2016, 826, 91. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, Y.B. Gravitational instability: An approximate theory for large density perturbations. Astron. Astroph. 1970, 5, 84–89. [Google Scholar]
- Helmi, A. Streams, Substructures, and the Early History of the Milky Way. Annu. Rev. Astron. Astrophys. 2020, 58, 205–256. [Google Scholar] [CrossRef]
- Elias, L.M.; Sales, L.V.; Helmi, A.; Hernquist, L. Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. Mon. Not. R. Astron. Soc. 2020, 495, 29–39. [Google Scholar] [CrossRef]
- Helmi, A.; Babusiaux, C.; Koppelman, H.H.; Massari, D.; Veljanoski, J.; Brown, A.G.A. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 2018, 563, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Recio-Blanco, A.; Fernandez-Alvar, E.; de Laverny, P.; Antoja, T.; Helmi, A.; Crida, A. Heavy-elements heritage of the falling sky. Astron. Astroph. 2021, 648, A108. [Google Scholar] [CrossRef]
- Munyaneza, F.; Biermann, P.L. Fast growth of supermassive black holes in galaxies. Astron. Astrophys. 2005, 436, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Munyaneza, F.; Biermann, P.L. Degenerate sterile neutrino dark matter in the cores of galaxies. Astron. Astroph. Lett. 2006, 458, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 2018, 237, 13. [Google Scholar] [CrossRef]
- Mirabel, I.F.; Dijkstra, M.; Laurent, P.; Loeb, A.; Pritchard, J.R. Stellar black holes at the dawn of the universe. Astron. Astroph. 2011, 528, A149. [Google Scholar] [CrossRef] [Green Version]
- Biermann, P.L.; Kusenko, A. Relic keV Sterile Neutrinos and Reionization. Phys. Rev. Lett. 2006, 96, 091301. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The structure of cold dark matter halos. Astrophys. J. 1996, 462, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Chiti, A.; Frebel, A.; Simon, J.D.; Erkal, D.; Chang, L.J.; Necib, L.; Ji, A.P.; Jerjen, H.; Kim, D.; Norris, J.E. An extended halo around an ancient dwarf galaxy. Nat. Astron. 2021, 5, 392–400. [Google Scholar] [CrossRef]
- Massari, D.; Helmi, A.; Mucciarelli, A.; Sales, L.V.; Spina, L.; Tolstoy, E. Stellar 3D kinematics in the Draco dwarf spheroidal galaxy. Astron. Astroph. 2020, 633, A36. [Google Scholar] [CrossRef] [Green Version]
- Massari, D.; Breddels, M.A.; Helmi, A.; Posti, L.; Brown, A.G.A.; Tolstoy, E. Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era. Nat. Astron. 2018, 2, 156–161. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2021, arXiv:2108.01045. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Caramete, L.I.; Biermann, P.L. The mass function of nearby black hole candidates, with VizieR Online Data Catalog: The mass function of nearby black holes (Caramete+, 2010). Astron. Astroph. 2010, 521, A55. [Google Scholar] [CrossRef] [Green Version]
- Silk, J.; Takahashi, T. A statistical model for the initial stellar mass function. Astrophys. J. 1979, 229, 242–256. [Google Scholar] [CrossRef]
- King, I. The structure of star clusters. Astron. J. 1966, 71, 64–75. [Google Scholar] [CrossRef]
- Duncan, M.J.; Wheeler, J.C. Anisotropic velocity distributions in M87: Is a black hole necessary? Astrophys. J. Lett. 1980, 237, L27–L31. [Google Scholar] [CrossRef]
- Visbal, E.; Barkana, R.; Fialkov, A.; Tseliakhovich, D.; Hirata, C.M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 2012, 487, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Ali-Haimoud, Y.; Meerburg, P.D.; Yuan, S. New light on 21 cm intensity fluctuations from the dark ages. Phys. Rev. D 2014, 89, 083506. [Google Scholar] [CrossRef] [Green Version]
- Fialkov, A. Supersonic relative velocity between dark matter and baryons: A review. Int. J. Mod. Phys. 2014, D23, 143001. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Ryu, D. Diffusive Shock Acceleration at Cosmological Shock Waves. Astrophys. J. 2013, 764, 95. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Petrosian, V.; Ryu, D.; Jones, T.W. Injection of κ-like Suprathermal Particles into Diffusive Shock Acceleration. Astrophys. J. 2014, 788, 142. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, M.; O’Leary, R.M. The impact of the supersonic baryon-dark matter velocity differences on the z ∼ 21 cm background. Astrophys. J. 2012, 760, 3. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R.; Lucek, S.G. Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 2001, 321, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Ensslin, T.; Simon, P.; Biermann, P.L.; Klein, U.; Kohle, S.; Kronberg, P.P.; Mack, K.-H. Signatures in a Giant Radio Galaxy of a Cosmological Shock Wave at Intersecting Filaments of Galaxies. Astrophys. J. Lett. 2001, 549, L39–L42. [Google Scholar] [CrossRef]
- Massari, D.; Koppelman, H.H.; Helmi, A. Origin of the system of globular clusters in the Milky Way. Astron. Astroph. Lett. 2019, 630, L4. [Google Scholar] [CrossRef]
- Friedmann, A. Über Wirbelbewegung in einer kompressiblen Flüssigkeit—Transl. “On vorticity in a compressible fluid”. Zeitschr. Angew. Math. Mech. 1924, 4, 102–107. [Google Scholar] [CrossRef]
- Chernin, A.D. Shocks and vorticity in cosmic hydrodynamics. Vistas Astron. 1996, 40, 257–301. [Google Scholar] [CrossRef]
- Berger, M.A.; Field, G.B. The topological properties of magnetic helicity. J. Fluid Mech. 1984, 147, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Jana, R.; Nath, B.B.; Biermann, P.L. Radio background and IGM heating due to Pop III supernovae explosions. Mon. Not. R. Astron. Soc. 2019, 483, 5329–5333. [Google Scholar] [CrossRef] [Green Version]
- Skúladóttir, Á.; Salvadori, S.; Amarsi, A.M.; Tolstoy, E.; Irwin, M.J.; Hill, V.; Jablonka, P.; Battaglia, G.; Starkenburg, E.; Massari, D.; et al. Zero-metallicity Hypernova Uncovered by an Ultra-metal-poor Star in the Sculptor Dwarf Spheroidal Galaxy. Astrophys. J. Lett. 2021, 915, L30. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P.T.; Dexter, J.; et al. Improved GRAVITY astrometric accuracy from modeling optical aberrations. Astron. Astroph. 2021, 647, A59. [Google Scholar]
- Biermann, P.L.; Nath, B.B.; Caramete, L.I.; Harms, B.C.; Stanev, T.; Becker Tjus, J. Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Mon. Not. R. Astron. Soc. 2014, 441, 1147–1156. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Dynamical Theory of Spherical Stellar Systems with Large N (invited Paper). In Proceedings of the Dynamics of Stellar Systems: Proceedings from IAU Symposium No. 69, Besancon, France, 9–13 September 1974; Hayli, A., Ed.; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1975; p. 3. [Google Scholar]
- Spitzer, L., Jr. Dynamics of Globular Clusters. Science 1984, 225, 465–472. [Google Scholar] [CrossRef]
- Spitzer, L.J. Precollapse evolution of globular clusters. In Proceedings of the 113th Symposium of the International Astronomical Union, Princeton, NJ, USA, 29 May–1 June 1984; pp. 109–137. [Google Scholar]
- Bahcall, J.N.; Wolf, R.A. Star distribution around a massive black hole in a globular cluster. Astrophys. J. 1976, 209, 214–232. [Google Scholar] [CrossRef]
- Frank, J.; Rees, M.J. Effects of massive central black holes on dense stellar systems. Mon. Not. R. Astron. Soc. 1976, 176, 633–647. [Google Scholar] [CrossRef]
- Hills, J.G. Possible power source of Syfert galaxies and QSOs. Nature 1975, 254, 295–298. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Schwarzschild, M. The possible influence of interstellar clouds on stellar velocities. Astrophys. J. 1951, 114, 385–397. [Google Scholar] [CrossRef]
- Habibi, M.; Gillessen, S.; Pfuhl, O.; Eisenhauer, F.; Plewa, P.M.; von Fellenberg, S.; Widmann, F.; Ott, T.; Gao, F.; Waisberg, I.; et al. Spectroscopic Detection of a Cusp of Late-type Stars around the Central Black Hole in the Milky Way. Astrophys. J. Lett. 2019, 872, L15. [Google Scholar] [CrossRef] [Green Version]
- Appenzeller, I.; Fricke, K. Hydrodynamic Model Calculations for Supermassive Stars. II. The Collapse and Explosion of a Nonrotating 5.2 × 105 M⊙ Star. Astron. Astrophys. 1972, 21, 285. [Google Scholar]
- Sanders, R.H. The Effects of Stellar Collisions in Dense Stellar Systems. Astrophys. J. 1970, 162, 791–809. [Google Scholar] [CrossRef]
- Van Paradijs, J.; Stollman, G.M. Super-Eddington luminosities in X-ray bursts. Astron. Astrophys. 1984, 137, L12–L14. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biermann, P.L. Star and Black Hole Formation at High Redshift. Universe 2022, 8, 146. https://doi.org/10.3390/universe8030146
Biermann PL. Star and Black Hole Formation at High Redshift. Universe. 2022; 8(3):146. https://doi.org/10.3390/universe8030146
Chicago/Turabian StyleBiermann, Peter L. 2022. "Star and Black Hole Formation at High Redshift" Universe 8, no. 3: 146. https://doi.org/10.3390/universe8030146
APA StyleBiermann, P. L. (2022). Star and Black Hole Formation at High Redshift. Universe, 8(3), 146. https://doi.org/10.3390/universe8030146