Star and Black Hole Formation at High Redshift
Abstract
1. Introduction
2. What Galaxies and Their Central SMBHs Tell Us
3. Ultra Faint Dwarf (UFD) Galaxies
4. Supersonic Flow and Shockwaves
5. The Early Mini-Halos
5.1. Virialized Clump Statistics
Density n (in ) | Redshift z | Mass M (in ) |
---|---|---|
20 | ||
20 | ||
30 | ||
30 | ||
30 |
5.2. The First Super-Massive Black Holes (SMBHs)
5.3. The Gravothermal Catastrophe
5.4. The Loss-Cone-Mechanism
5.5. Direct Collapse to a Super-Massive Star SM*
5.5.1. Agglomeration of Stars
5.5.2. Baryonic Accretion
5.6. Direct Growth of a Stellar Mass BH to a SMBH from Quantum Lattice
5.7. Comparison
6. Conclusions for WDM
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. (In German) [Google Scholar]
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217–246. [Google Scholar] [CrossRef]
- Biermann, P.L.; Kronberg, P.P.; Madore, B.F. The detection of hot intergalactic gas in the NGC 3607 group of galaxies with the Einstein satellite. Astrophys. J. Lett. 1982, 256, L37–L40. [Google Scholar] [CrossRef]
- Biermann, P.; Kronberg, P.P. Detection of 1010 solar mass of hot gas in the normal elliptical galaxy NGC 5846 with the Einstein satellite. Astrophys. J. Lett. 1983, 268, L69–L73. [Google Scholar] [CrossRef]
- Biermann, P.; Kronberg, P.P. Hot Gas in Groups of Galaxies. In Clusters and Groups of Galaxies. International Meeting Trieste, Italy, 13–16 September 1983; Mardirossian, F., Giuricin, G., Mezzetti, M., Eds.; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Biermann, P.L.; Kronberg, P.P.; Schmutzler, T. Extended X-ray emission from hot gas around the normal giant elliptical galaxy NGC 5846. Astron. Astroph. 1989, 208, 22–26. [Google Scholar]
- De Propris, R.; West, M.J.; Andrade-Santos, F.; Ragone-Figueroa, C.; Rasia, E.; Forman, W.; Jones, C.; Kipper, R.; Borgani, S.; Lambas, D.G.; et al. Brightest cluster galaxies: The centre can (not?) hold. Mon. Not. R. Astron. Soc. 2021, 500, 310–318. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; McGaugh, S.S.; Bosma, A.; Rubin, V.C. Mass Density Profiles of Low Surface Brightness Galaxies. Astrophys. J. Lett. 2001, 552, L23–L26. [Google Scholar] [CrossRef]
- Noordermeer, E.; Van Der Hulst, T.; Sancisi, R.; Swaters, R. The mass distribution in early type disk galaxies. In Symposium-International Astronomical Union; Ryder, S.D., Pisano, D.J., Walker, M.A., Freeman, K.C., Eds.; ASP: San Francisco, CA, USA, 2004; pp. 287–292. [Google Scholar]
- Roberts, M.S. The Content of Galaxies: Stars and Gas. Annu. Rev. Astron. Astrophys. 1963, 1, 149–178. [Google Scholar] [CrossRef]
- Rubin, V.; Ford, W.K., Jr.; Thonnard, N. Extended rotation curves of high-luminosity spiral galaxies IV. Systematic dynamical properties, Sa to Sc. Astrophys. J. Lett. 1978, 225, L107–L111. [Google Scholar] [CrossRef]
- Rubin, V.C. A brief history of dark matter. In The Dark Universe; Livio, M., Ed.; Cambridge University Press: Cambridge, UK, 2010; p. 1. [Google Scholar]
- Sofue, Y.; Rubin, V. Rotation Curves of Spiral Galaxies. Annu. Rev. Astron. Astrophys. 2001, 39, 137–174. [Google Scholar] [CrossRef]
- Emden, R. Gaskugeln; Nabu Press: Leipzig, Germany, 1907. [Google Scholar]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results VI. Cosmological parameters. Astron. Astrophys. 2020, 641, 67. [Google Scholar]
- Nath, B.N.; Biermann, P.L. Cosmic ray ionization of the interstellar medium. Mon. Not. R. Astron. Soc. 1994, 267, 447–451. [Google Scholar] [CrossRef][Green Version]
- Donato, F.; Gentile, G.; Salucci, P.; Frigerio Martins, C.; Wilkinson, M.I.; Gilmore, G.; Grebel, E.K.; Koch, A.; Wyse, R. A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 2009, 397, 1169–1176. [Google Scholar] [CrossRef]
- Gentile, G.; Famaey, B.; Zhao, H.; Salucci, P. Universality of galactic surface densities within one dark halo scale-length. Nature 2009, 461, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, C.; Salucci, P.; Erkurt, A. The universal rotation curve of low surface brightness galaxies—IV. The interrelation between dark and luminous matter. Mon. Not. R. Astron. Soc. 2019, 490, 5451–5477. [Google Scholar] [CrossRef]
- Nadler, E.O.; Drlica-Wagner, A.; Bechtol, K.; Mau, S.; Wechsler, R.H.; Gluscevic, V.; Boddy, K.; Pace, A.B.; Li, T.S.; McNanna, M.; et al. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. Phys. Rev. Lett. 2021, 126, 091101. [Google Scholar] [CrossRef]
- Adhikari, R.; Agostini, M.; Anh Ky, N.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P.S.; et al. A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys. 2017, 2017. [Google Scholar] [CrossRef]
- Gao, L.; Theuns, T. Lighting the Universe with filaments. Science 2007, 317, 1527–1530. [Google Scholar] [CrossRef]
- Paduroiu, S.; Revaz, Y.; Pfenniger, D. Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down. arXiv 2015, arXiv:1506.03789. [Google Scholar]
- Paduroiu, S. Structure Formation in Warm Dark Matter Cosmologies. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2015. [Google Scholar]
- Paduroiu, S. Warm Dark Matter in Simulations. Universe 2022, 8, 76. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Model-independent analysis of dark matter points to a particle mass at the keV scale. Mon. Not. R. Astron. Soc. 2010, 404, 885–894. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Warm Dark Matter Galaxies with Central Supermassive Black-Holes. arXiv 2017, arXiv:1705.05418. [Google Scholar]
- de Vega, H.J.; Salucci, P.; Sanchez, N.G. The mass of the dark matter particle: Theory and galaxy observations. New Astron. 2012, 17, 653–666. [Google Scholar] [CrossRef]
- Tseliakhovich, D.; Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 2010, 82, 083520. [Google Scholar] [CrossRef]
- Tegmark, M.; Silk, J.; Rees, M.J.; Blanchard, A.; Abel, T.; Palla, F. How Small Were the First Cosmological Objects? Astrophys. J. 1997, 474, 1. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems. Astrophys. J. Lett. 1969, 158, L139–L143. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Thuan, T.X. Random Gravitational Encounters and the Evolution of Spherical Systems. IV Isolated Systems of Identical Stars. Astrophys. J. 1972, 175, 31–61. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Shull, J.M. Random gravitational encounters and the evolution of spherical systems. VI. Plummer’s model. Astrophys. J. 1975, 200, 339–342. [Google Scholar] [CrossRef]
- Julian, W.H.; Toomre, A. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J. 1966, 146, 810–830. [Google Scholar] [CrossRef]
- Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by self-similar condensation. Astrophys. J. 1974, 187, 425–438. [Google Scholar] [CrossRef]
- O’Leary, R.M.; McQuinn, M. The formation of the first cosmic structures and the physics of the z ~ 20 universe. Astrophys. J. 2012, 760, 4. [Google Scholar] [CrossRef]
- Kovács, O.E.; Bogdán, Á.; Canning, R.E.A. Ultradiffuse Galaxies in the Coma Cluster: Probing Their Origin and AGN Occupation Fraction. Astrophys. J. 2019, 898, 164. [Google Scholar] [CrossRef]
- Simon, J.D. The Faintest Dwarf Galaxies. Annu. Rev. Astron. Astrophys. 2019, 57, 375–415. [Google Scholar] [CrossRef]
- Bogdán, Á.; Lovisari, L.; Volonteri, M.; Dubois, Y. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies. Astrophys. J. 2018, 852, 131. [Google Scholar] [CrossRef]
- Forman, W.; Jones, C.; Bogdan, A.; Kraft, R.; Churazov, E.; Randall, S.; Sun, M.; O’Sullivan, E.; Vrtilek, J.; Nulsen, P. Supermassive Black Hole feedback in early type galaxies. Internat. Astron. Union Sympos. 2021, 359, 119–125. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R.; Cornell, M.E. Supermassive black holes do not correlate with galaxy disks or pseudobulges. Nature 2011, 469, 374–376. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R. Supermassive black holes do not correlate with dark matter haloes of galaxies. Nature 2011, 469, 377–380. [Google Scholar] [CrossRef]
- Phipps, F.; Bogdán, Á.; Lovisari, L.; Kovacs, O.E.; Volonteri, M.; Dubois, Y. Expanding the Sample: The Relationship between the Black Hole Mass of BCGs and the Total Mass of Galaxy Clusters. Astrophys. J. 2019, 875, 141. [Google Scholar] [CrossRef]
- Wang, Y.; Biermann, P.L. A possible mechanism for the mass ratio limitation in early type galaxies. Astron. Astroph. 1998, 334, 87–95. [Google Scholar]
- Wang, Y.; Biermann, P.L.; Wandel, A. Black hole to bulge mass correlation in Active Galactic Nuclei: A test for the simple unified formation scheme. Astron. Astroph. 2000, 361, 550–554. [Google Scholar]
- Owen, F.N.; Eilek, J.A.; Kassim, N.E. M87 at 90 cm: A different picture. Astrophys. J. 2000, 543, 611–619. [Google Scholar] [CrossRef]
- Feain, I.J.; Cornwell, T.J.; Ekers, R.D.; Calabretta, M.R.; Norris, R.P.; Johnston-Hollitt, M.; Ott, J.; Lindley, E.; Gaensler, B.M.; Murphy, T.; et al. The radio continuum structure of Centaurus A at 1.4 GHz. Astrophys. J. 2011, 740. [Google Scholar] [CrossRef]
- Junkes, N.; Haynes, R.F.; Harnett, J.J.; Jauncey, D.L. Radio polarization surveys of Centaurus A (NGC5128): The complete radio survey at 6.3 cm. Astron. Astrophys. 1993, 269, 29–38. [Google Scholar]
- Gergely, L.A.; Biermann, P.L. The spin-flip phenomenon in supermassive black hole binary mergers. Astrophys. J. 2009, 697, 1621–1633. [Google Scholar] [CrossRef]
- Rottmann, H. Jet-Reorientation in X-Shaped Radio Galaxies. Ph.D. Thesis, University of Bonn, Zentrum, Germany, 2001. [Google Scholar]
- Andrade-Santos, F.; Bogdán, Á.; Romani, R.W.; Forman, W.R.; Jones, C.; Murray, S.S.; Taylor, G.B.; Zavala, R.T. Binary Black Holes, Gas Sloshing, and Cold Fronts in the X-Ray Halo Hosting 4C+37.11. Astrophys. J. 2016, 826, 91. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. Gravitational instability: An approximate theory for large density perturbations. Astron. Astroph. 1970, 5, 84–89. [Google Scholar]
- Helmi, A. Streams, Substructures, and the Early History of the Milky Way. Annu. Rev. Astron. Astrophys. 2020, 58, 205–256. [Google Scholar] [CrossRef]
- Elias, L.M.; Sales, L.V.; Helmi, A.; Hernquist, L. Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. Mon. Not. R. Astron. Soc. 2020, 495, 29–39. [Google Scholar] [CrossRef]
- Helmi, A.; Babusiaux, C.; Koppelman, H.H.; Massari, D.; Veljanoski, J.; Brown, A.G.A. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 2018, 563, 85–88. [Google Scholar] [CrossRef]
- Recio-Blanco, A.; Fernandez-Alvar, E.; de Laverny, P.; Antoja, T.; Helmi, A.; Crida, A. Heavy-elements heritage of the falling sky. Astron. Astroph. 2021, 648, A108. [Google Scholar] [CrossRef]
- Munyaneza, F.; Biermann, P.L. Fast growth of supermassive black holes in galaxies. Astron. Astrophys. 2005, 436, 805–815. [Google Scholar] [CrossRef]
- Munyaneza, F.; Biermann, P.L. Degenerate sterile neutrino dark matter in the cores of galaxies. Astron. Astroph. Lett. 2006, 458, L9–L12. [Google Scholar] [CrossRef][Green Version]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 2018, 237, 13. [Google Scholar] [CrossRef]
- Mirabel, I.F.; Dijkstra, M.; Laurent, P.; Loeb, A.; Pritchard, J.R. Stellar black holes at the dawn of the universe. Astron. Astroph. 2011, 528, A149. [Google Scholar] [CrossRef]
- Biermann, P.L.; Kusenko, A. Relic keV Sterile Neutrinos and Reionization. Phys. Rev. Lett. 2006, 96, 091301. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The structure of cold dark matter halos. Astrophys. J. 1996, 462, 563–575. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Chiti, A.; Frebel, A.; Simon, J.D.; Erkal, D.; Chang, L.J.; Necib, L.; Ji, A.P.; Jerjen, H.; Kim, D.; Norris, J.E. An extended halo around an ancient dwarf galaxy. Nat. Astron. 2021, 5, 392–400. [Google Scholar] [CrossRef]
- Massari, D.; Helmi, A.; Mucciarelli, A.; Sales, L.V.; Spina, L.; Tolstoy, E. Stellar 3D kinematics in the Draco dwarf spheroidal galaxy. Astron. Astroph. 2020, 633, A36. [Google Scholar] [CrossRef]
- Massari, D.; Breddels, M.A.; Helmi, A.; Posti, L.; Brown, A.G.A.; Tolstoy, E. Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era. Nat. Astron. 2018, 2, 156–161. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2021, arXiv:2108.01045. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari1, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Caramete, L.I.; Biermann, P.L. The mass function of nearby black hole candidates, with VizieR Online Data Catalog: The mass function of nearby black holes (Caramete+, 2010). Astron. Astroph. 2010, 521, A55. [Google Scholar] [CrossRef]
- Silk, J.; Takahashi, T. A statistical model for the initial stellar mass function. Astrophys. J. 1979, 229, 242–256. [Google Scholar] [CrossRef]
- King, I. The structure of star clusters. Astron. J. 1966, 71, 64–75. [Google Scholar] [CrossRef]
- Duncan, M.J.; Wheeler, J.C. Anisotropic velocity distributions in M87: Is a black hole necessary? Astrophys. J. Lett. 1980, 237, L27–L31. [Google Scholar] [CrossRef]
- Visbal, E.; Barkana, R.; Fialkov, A.; Tseliakhovich, D.; Hirata, C.M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 2012, 487, 70–73. [Google Scholar] [CrossRef]
- Ali-Haimoud, Y.; Meerburg, P.D.; Yuan, S. New light on 21 cm intensity fluctuations from the dark ages. Phys. Rev. D 2014, 89, 083506. [Google Scholar] [CrossRef]
- Fialkov, A. Supersonic relative velocity between dark matter and baryons: A review. Int. J. Mod. Phys. 2014, D23, 143001. [Google Scholar] [CrossRef]
- Kang, H.; Ryu, D. Diffusive Shock Acceleration at Cosmological Shock Waves. Astrophys. J. 2013, 764, 95. [Google Scholar] [CrossRef]
- Kang, H.; Petrosian, V.; Ryu, D.; Jones, T.W. Injection of κ-like Suprathermal Particles into Diffusive Shock Acceleration. Astrophys. J. 2014, 788, 142. [Google Scholar] [CrossRef]
- McQuinn, M.; O’Leary, R.M. The impact of the supersonic baryon-dark matter velocity differences on the z ∼ 21 cm background. Astrophys. J. 2012, 760, 3. [Google Scholar] [CrossRef]
- Bell, A.R.; Lucek, S.G. Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 2001, 321, 433–438. [Google Scholar] [CrossRef]
- Ensslin, T.; Simon, P.; Biermann, P.L.; Klein, U.; Kohle, S.; Kronberg, P.P.; Mack, K.-H. Signatures in a Giant Radio Galaxy of a Cosmological Shock Wave at Intersecting Filaments of Galaxies. Astrophys. J. Lett. 2001, 549, L39–L42. [Google Scholar] [CrossRef]
- Massari, D.; Koppelman, H.H.; Helmi, A. Origin of the system of globular clusters in the Milky Way. Astron. Astroph. Lett. 2019, 630, L4. [Google Scholar] [CrossRef]
- Friedmann, A. Über Wirbelbewegung in einer kompressiblen Flüssigkeit—Transl. “On vorticity in a compressible fluid”. Zeitschr. Angew. Math. Mech. 1924, 4, 102–107. [Google Scholar] [CrossRef]
- Chernin, A.D. Shocks and vorticity in cosmic hydrodynamics. Vistas Astron. 1996, 40, 257–301. [Google Scholar] [CrossRef]
- Berger, M.A.; Field, G.B. The topological properties of magnetic helicity. J. Fluid Mech. 1984, 147, 133–148. [Google Scholar] [CrossRef]
- Jana, R.; Nath, B.B.; Biermann, P.L. Radio background and IGM heating due to Pop III supernovae explosions. Mon. Not. R. Astron. Soc. 2019, 483, 5329–5333. [Google Scholar] [CrossRef]
- Skúladóttir, Á.; Salvadori, S.; Amarsi, A.M.; Tolstoy, E.; Irwin, M.J.; Hill, V.; Jablonka, P.; Battaglia, G.; Starkenburg, E.; Massari, D.; et al. Zero-metallicity Hypernova Uncovered by an Ultra-metal-poor Star in the Sculptor Dwarf Spheroidal Galaxy. Astrophys. J. Lett. 2021, 915, L30. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P.T.; Dexter, J.; et al. Improved GRAVITY astrometric accuracy from modeling optical aberrations. Astron. Astroph. 2021, 647, A59. [Google Scholar]
- Biermann, P.L.; Nath, B.B.; Caramete, L.I.; Harms, B.C.; Stanev, T.; Becker Tjus, J. Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Mon. Not. R. Astron. Soc. 2014, 441, 1147–1156. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Dynamical Theory of Spherical Stellar Systems with Large N (invited Paper). In Proceedings of the Dynamics of Stellar Systems: Proceedings from IAU Symposium No. 69, Besancon, France, 9–13 September 1974; Hayli, A., Ed.; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1975; p. 3. [Google Scholar]
- Spitzer, L., Jr. Dynamics of Globular Clusters. Science 1984, 225, 465–472. [Google Scholar] [CrossRef]
- Spitzer, L.J. Precollapse evolution of globular clusters. In Proceedings of the 113th Symposium of the International Astronomical Union, Princeton, NJ, USA, 29 May–1 June 1984; pp. 109–137. [Google Scholar]
- Bahcall, J.N.; Wolf, R.A. Star distribution around a massive black hole in a globular cluster. Astrophys. J. 1976, 209, 214–232. [Google Scholar] [CrossRef]
- Frank, J.; Rees, M.J. Effects of massive central black holes on dense stellar systems. Mon. Not. R. Astron. Soc. 1976, 176, 633–647. [Google Scholar] [CrossRef]
- Hills, J.G. Possible power source of Syfert galaxies and QSOs. Nature 1975, 254, 295–298. [Google Scholar] [CrossRef]
- Spitzer, L., Jr.; Schwarzschild, M. The possible influence of interstellar clouds on stellar velocities. Astrophys. J. 1951, 114, 385–397. [Google Scholar] [CrossRef]
- Habibi, M.; Gillessen, S.; Pfuhl, O.; Eisenhauer, F.; Plewa, P.M.; von Fellenberg, S.; Widmann, F.; Ott, T.; Gao, F.; Waisberg, I.; et al. Spectroscopic Detection of a Cusp of Late-type Stars around the Central Black Hole in the Milky Way. Astrophys. J. Lett. 2019, 872, L15. [Google Scholar] [CrossRef]
- Appenzeller, I.; Fricke, K. Hydrodynamic Model Calculations for Supermassive Stars. II. The Collapse and Explosion of a Nonrotating 5.2 × 105 M⊙ Star. Astron. Astrophys. 1972, 21, 285. [Google Scholar]
- Sanders, R.H. The Effects of Stellar Collisions in Dense Stellar Systems. Astrophys. J. 1970, 162, 791–809. [Google Scholar] [CrossRef]
- Van Paradijs, J.; Stollman, G.M. Super-Eddington luminosities in X-ray bursts. Astron. Astrophys. 1984, 137, L12–L14. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biermann, P.L. Star and Black Hole Formation at High Redshift. Universe 2022, 8, 146. https://doi.org/10.3390/universe8030146
Biermann PL. Star and Black Hole Formation at High Redshift. Universe. 2022; 8(3):146. https://doi.org/10.3390/universe8030146
Chicago/Turabian StyleBiermann, Peter L. 2022. "Star and Black Hole Formation at High Redshift" Universe 8, no. 3: 146. https://doi.org/10.3390/universe8030146
APA StyleBiermann, P. L. (2022). Star and Black Hole Formation at High Redshift. Universe, 8(3), 146. https://doi.org/10.3390/universe8030146