# Scattering in Algebraic Approach to Quantum Theory—Associative Algebras

## Abstract

**:**

## 1. Introduction

## 2. Scattering Matrix

**Lemma**

**1.**

**Definition**

**1.**

**Lemma**

**2.**

**Assumption**

**1.**

**Theorem**

**1.**

## 3. LSZ Formula

## 4. Inclusive Scattering Matrix

## 5. Fermions

## 6. BRST Formalism

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Notes

1 | The spatial and time translations are naturally defined for a theory in $(d+1)$-dimensional flat space-time. Notice that we do not assume that we consider such a a theory. For example we can consider a theory on $(d+2)$-dimensional anti de Sitter space; the symmetry group of this space has a $(d+1)$-dimensional commutative subgroup that can be interpreted as a group of time and spatial translations. In string field theory we can interpret time and spatial translations as transformations of the target. |

2 | It is possible that the “elementary space” $\mathfrak{h}$ does not describe all particles existing in the theory (for example, we are missing some composite particles). In this case we have a chance to get a theory with particle interpretation extending the space $\mathfrak{h}.$ |

## References

- Schwarz, A. Mathematical Foundations of Quantum Field Theory; World Scientific: Singapore, 2020. [Google Scholar]
- Schwarz, A. Scattering matrix and inclusive scattering matrix in algebraic quantum field theory. arXiv
**2019**, arXiv:1908.09388. [Google Scholar] - Araki, H.; Haag, R. Collision cross sections in terms of local observables. Commun. Math. Phys.
**1967**, 4, 77–91. [Google Scholar] [CrossRef] - Fateev, V.A.; Schwarz, A.S. On axiomatic scattering theory. Teor. Mat. Fiz.
**1973**, 14, 152–169. [Google Scholar] [CrossRef] - Schwarz, A. Geometric and algebraic approaches to quantum theory. Nucl. Phys. B
**2021**, 973, 115601. [Google Scholar] [CrossRef] - Hunziker, W.; Sigal, I.M. The quantum n-body problem. J. Math. Phys.
**2000**, 41, 3448–3510. [Google Scholar] [CrossRef] - Chou, K.C.; Su, Z.B.; Hao, B.L.; Yu, L. Equilibrium and nonequilibrium formalisms made unified. Phys. Rep.
**1985**, 118, 1–131. [Google Scholar] [CrossRef] - Chu, H.; Umezawa, H. A unified formalism of thermal quantum field theory. Int. J. Mod. Phys. A
**1994**, 9, 2363–2409. [Google Scholar] [CrossRef] - Kamenev, A.; Levchenko, L. Keldysh technique and non-linear sigma-model: Basic principles and applications. Adv. Phys.
**2009**, 58, 197–319. [Google Scholar] [CrossRef] - Schwarz, A. Inclusive scattering matrix and scattering of quasiparticles. Nucl. Phys. B
**2020**, 950, 114869. [Google Scholar] [CrossRef] - Schwarz, A.; Tyupkin, Y. On adiabatic definition of S-matrix in the formalism of L-functionals. In Proceedings of the International Seminar on Functional methods in Quantum Field Theory and Statistics, Moscow, Russia, 7–9 December 1971; Lebedev Institute: Moscow, Russia, 1971; pp. 38–42. [Google Scholar]
- Tyupkin, Y. On the adiabatic definition of the S matrix in the formalism of L-functionals. Theor. Math. Phys.
**1973**, 16, 751–756. Available online: https://link.springer.com/content/pdf/10.1007%2FBF01037126.pdf (accessed on 12 December 2022). [CrossRef] - Schwarz, A. Scattering in geometric approach to quantum theory. arXiv
**2021**, arXiv:2107.08557. [Google Scholar] - Schwarz, A. Scattering in algebraic approach to quantum theory. Jordan Algebr.
**2023**. in preparation. [Google Scholar] - Kapustin, A. Is there life beyond Quantum Mechanics? arXiv
**2013**, arXiv:1303.6917. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Schwarz, A.
Scattering in Algebraic Approach to Quantum Theory—Associative Algebras. *Universe* **2022**, *8*, 660.
https://doi.org/10.3390/universe8120660

**AMA Style**

Schwarz A.
Scattering in Algebraic Approach to Quantum Theory—Associative Algebras. *Universe*. 2022; 8(12):660.
https://doi.org/10.3390/universe8120660

**Chicago/Turabian Style**

Schwarz, Albert.
2022. "Scattering in Algebraic Approach to Quantum Theory—Associative Algebras" *Universe* 8, no. 12: 660.
https://doi.org/10.3390/universe8120660