Searching for γ-ray Emission from Binary Black-Hole Mergers Detected in LIGO/Virgo O3 Run
Abstract
:1. Introduction
2. Selection of BBH Merger Targets and Searching Method
3. Fermi LAT Data and Analysis
4. Results
4.1. S200311bg
4.2. S190408an
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | https://gracedb.ligo.org/superevents/public/O3/ (accessed on 9 September 2022) |
2 | https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm (accessed on 28 September 2022) |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914. Astrophys. J. Lett. 2016, 833, L1. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. The LIGO Scientific Collaboration; the Virgo Collaboration] GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2021, arXiv:2108.01045. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. The LIGO Scientific Collaboration; the Virgo Collaboration; the KAGRA Collaboration] GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Özel, F.; Psaltis, D.; Narayan, R.; McClintock, J.E. The Black Hole Mass Distribution in the Galaxy. Astrophys. J. 2010, 725, 1918–1927. [Google Scholar] [CrossRef] [Green Version]
- Mandel, I.; Farmer, A. Merging stellar-mass binary black holes. Phys. Rep. 2022, 955, 1–24. [Google Scholar] [CrossRef]
- Tauris, T.M.; van den Heuvel, E.P.J. Formation and evolution of compact stellar X-ray sources. Compact. Stellar X-ray Sources 2006, 39, 623–665. [Google Scholar]
- Liu, J.; Zhang, H.; Howard, A.W.; Bai, Z.; Lu, Y.; Soria, R.; Justham, S.; Li, X.; Zheng, Z.; Wang, T.; et al. A wide star-black-hole binary system from radial-velocity measurements. Nature 2019, 575, 618–621. [Google Scholar] [CrossRef]
- Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M.S.; Zhang, B.B.; Camp, J.; Christensen, N.; Hui, C.M.; Jenke, P.; et al. Fermi GBM Observations of LIGO Gravitational-wave Event GW150914. Astrophys. J. Lett. 2016, 826, L6. [Google Scholar] [CrossRef]
- Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M.S.; Christensen, N.; Hui, C.M.; Kocevski, D.; Littenberg, T.; McEnery, J.E.; et al. On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914. Astrophys. J. Lett. 2018, 853, L9. [Google Scholar] [CrossRef]
- Greiner, J.; Burgess, J.M.; Savchenko, V.; Yu, H.F. On the Fermi-GBM Event 0.4 s after GW150914. Astrophys. J. Lett. 2016, 827, L38. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Lazzati, D.; Giacomazzo, B. Short Gamma-Ray Bursts from the Merger of Two Black Holes. Astrophys. J. Lett. 2016, 821, L18. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Kashiyama, K.; Mészáros, P.; Shoemaker, I.; Senno, N. Ultrafast Outflows from Black Hole Mergers with a Minidisk. Astrophys. J. Lett. 2016, 822, L9. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, R.; Asano, K.; Ohira, Y. Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914. Prog. Theor. Exp. Phys. 2016, 2016, 051E01. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts. Astrophys. J. Lett. 2016, 827, L31. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.S.; Takahashi, S.Z.; Toma, K. Evolution of an accretion disc in binary black hole systems. Mon. Not. R. Astron. Soc. 2017, 465, 4406–4413. [Google Scholar] [CrossRef] [Green Version]
- Ioka, K.; Matsumoto, T.; Teraki, Y.; Kashiyama, K.; Murase, K. GW 150914-like black holes as Galactic high-energy sources. Mon. Not. R. Astron. Soc. 2017, 470, 3332–3345. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; Bartos, I.; Graham, M.J.; Lyra, W.; Marka, S.; Marka, Z.; Ross, N.P.; Stern, D.; Yang, Y. Ram-pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from the Merger of Stellar Mass Black Holes in an AGN Accretion Disk. Astrophys. J. Lett. 2019, 884, L50. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.J.; Ford, K.E.S.; McKernan, B.; Ross, N.P.; Stern, D.; Burdge, K.; Coughlin, M.; Djorgovski, S.G.; Drake, A.J.; Duev, D.; et al. Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g*. Phys. Rev. Lett. 2020, 124, 251102. [Google Scholar] [CrossRef] [PubMed]
- Kasliwal, M.M.; Cenko, S.B.; Singer, L.P.; Corsi, A.; Cao, Y.; Barlow, T.; Bhalerao, V.; Bellm, E.; Cook, D.; Duggan, G.E.; et al. iPTF Search for an Optical Counterpart to Gravitational-wave Transient GW150914. Astrophys. J. Lett. 2016, 824, L24. [Google Scholar] [CrossRef] [Green Version]
- Palliyaguru, N.T.; Corsi, A.; Kasliwal, M.M.; Cenko, S.B.; Frail, D.A.; Perley, D.A.; Mishra, N.; Singer, L.P.; Gal-Yam, A.; Nugent, P.E.; et al. Radio Follow-up of Gravitational-wave Triggers during Advanced LIGO O1. Astrophys. J. Lett. 2016, 829, L28. [Google Scholar] [CrossRef]
- Dobie, D.; Stewart, A.; Murphy, T.; Lenc, E.; Wang, Z.; Kaplan, D.L.; Andreoni, I.; Banfield, J.; Brown, I.; Corsi, A.; et al. An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv. Astrophys. J. Lett. 2019, 887, L13. [Google Scholar] [CrossRef] [Green Version]
- Gourdji, K.; Rowlinson, A.; Wijers, R.A.M.J.; Broderick, J.W.; Shulevski, A.; Jonker, P.G. Searching for low radio-frequency gravitational wave counterparts in wide-field LOFAR data. Mon. Not. R. Astron. Soc. 2022, 509, 5018–5029. [Google Scholar] [CrossRef]
- Evans, P.A.; Kennea, J.A.; Palmer, D.M.; Bilicki, M.; Osborne, J.P.; O’Brien, P.T.; Tanvir, N.R.; Lien, A.Y.; Barthelmy, S.D.; Burrows, D.N.; et al. Swift follow-up of gravitational wave triggers: Results from the first aLIGO run and optimization for the future. Mon. Not. R. Astron. Soc. 2016, 462, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Ursi, A.; Verrecchia, F.; Piano, G.; Casentini, C.; Tavani, M.; Bulgarelli, A.; Cardillo, M.; Longo, F.; Lucarelli, F.; Morselli, A.; et al. AGILE Observations of the LIGO-Virgo Gravitational-wave Events of the GWTC-1 Catalog. Astrophys. J. 2022, 924, 80. [Google Scholar] [CrossRef]
- Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Batzofin, R.; Becherini, Y.; et al. H.E.S.S. Follow-up Observations of Binary Black Hole Coalescence Events during the Second and Third Gravitational-wave Observing Runs of Advanced LIGO and Advanced Virgo. Astrophys. J. 2021, 923, 109. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Bilicki, M.; Jarrett, T.H.; Peacock, J.A.; Cluver, M.E.; Steward, L. Two Micron All Sky Survey Photometric Redshift Catalog: A Comprehensive Three-dimensional Census of the Whole Sky. Astrophys. J. Suppl. 2014, 210, 9. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. 2022, 260, 53. [Google Scholar] [CrossRef]
- Ballet, J.; Burnett, T.H.; Digel, S.W.; Lott, B. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. arXiv 2020, arXiv:2005.11208. [Google Scholar]
- Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; et al. The Fermi All-sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in Our Galaxy. Astrophys. J. 2013, 771, 57. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Wang, Z. Detection of the Microquasar V404 Cygni at γ-Rays Revisited: Short Flaring Events in Quiescence. Astrophys. J. 2021, 922, 111. [Google Scholar] [CrossRef]
- Condon, J.J.; Cotton, W.D.; Greisen, E.W.; Yin, Q.F.; Perley, R.A.; Taylor, G.B.; Broderick, J.J. The NRAO VLA Sky Survey. Astron. J. 1998, 115, 1693–1716. [Google Scholar] [CrossRef]
- Angioni, R.; Ros, E.; Kadler, M.; Ojha, R.; Müller, C.; Edwards, P.G.; Burd, P.R.; Carpenter, B.; Dutka, M.S.; Gulyaev, S.; et al. Gamma-ray emission in radio galaxies under the VLBI scope. I. Parsec-scale jet kinematics and high-energy properties of γ-ray-detected TANAMI radio galaxies. Astron. Astrophys. 2019, 627, A148. [Google Scholar] [CrossRef]
Event ID | Source (Probability) | Location | 90% Credible Area | Luminosity Distance | Number |
---|---|---|---|---|---|
(deg) | (Mpc) | ||||
S200311bg | BBH (>99%) | ellipse (, , , , ) | 34 | 1115 ± 175 | 31 |
S200225q | BBH (96%), Terrestrial (4%) | ellipse (, , , , ) | 27 | 995 ± 188 | 1 |
S200224ca | BBH (>99%) | ellipse (, , , , ) | 73 | 1585 ± 331 | 13 |
S190701ah | BBH (93%), Terrestrial (7%) | ellipse (, , , , ) | 67 | 1045 ± 234 | 2 |
S190512at | BBH (95%), MassGap (5%) | GWTC-2 skymap | 226 | 1462 ± 347 | 35 |
S190503bf | BBH (96%), MassGap (3%) | GWTC-2 skymap | 94 | 1527 ± 411 | 31 |
S190408an | BBH (>99%) | GWTC-2 skymap | 139 | 1548 ± 302 | 14 |
Source (Serial Number) | RA | DEC | z | Bin | Time | TS |
---|---|---|---|---|---|---|
(deg) | (deg) | (day) | (MJD) | |||
J0004−0825 (71482) | 1.0036 | −8.4207 | 0.22 | 1 | 59007 | 11 |
1 | 15 | |||||
J0006−1030 (504460) | 1.5313 | −10.5091 | 0.21 | 4 | 58950 | 12 |
16 | 10 |
Source (Serial Number) | RA | DEC | z | Bin | Time | TS |
---|---|---|---|---|---|---|
(deg) | (deg) | (Day) | (MJD) | |||
J2250 +4525 (279555) | 342.7093 | 45.4203 | 0.25 | 1 | 58667 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Wang, Z. Searching for γ-ray Emission from Binary Black-Hole Mergers Detected in LIGO/Virgo O3 Run. Universe 2022, 8, 517. https://doi.org/10.3390/universe8100517
Ren C, Wang Z. Searching for γ-ray Emission from Binary Black-Hole Mergers Detected in LIGO/Virgo O3 Run. Universe. 2022; 8(10):517. https://doi.org/10.3390/universe8100517
Chicago/Turabian StyleRen, Chongyang, and Zhongxiang Wang. 2022. "Searching for γ-ray Emission from Binary Black-Hole Mergers Detected in LIGO/Virgo O3 Run" Universe 8, no. 10: 517. https://doi.org/10.3390/universe8100517
APA StyleRen, C., & Wang, Z. (2022). Searching for γ-ray Emission from Binary Black-Hole Mergers Detected in LIGO/Virgo O3 Run. Universe, 8(10), 517. https://doi.org/10.3390/universe8100517