Search for and Identification of Young Compact Galactic Supernova Remnants Using THOR
Abstract
:1. Introduction
- Source has a shell-like morphology,
- Source has a non-thermal spectral index (negative (0.2), where ),
- Source has weak or absent mid-infrared (MIR) emission (e.g., 8 m, 24 m).
2. Data and Analysis
2.1. Data
2.2. Identification of SNR Candidates
2.2.1. Identification of Non-Thermal Sources Which Are Not Parts of Known SNRs
2.2.2. Identification of Extragalactic Sources
2.2.3. Selection of SNR Candidates
- The SPIDX progressive survey (http://tgssadr.strw.leidenuniv.nl/hips_spidx/, accessed on 3 March 2020; [30]) was used to verify the spectral index.
- From the GLIMPSE and MIPSGAL surveys, 5.8, 8.0, and 24 m data were obtained to verify the weak or absent mid-infrared (MIR) emission of the candidates.
- CORNISH and MAGPIS survey images were examined to verify the extended nature of the radio sources.
- Angular size of the candidates was measured.
- Using the TGSS, THOR, and CORNISH surveys, we independently obtained the spectral indices for the candidates.
- The CO data were examined to determine any molecular cloud associations.
3. Results
3.1. Extragalactic Sources
3.2. Angular Sizes of the 17 Candidates/Galactic Non-Thermal Sources
3.3. HI Absorption Distances to the 17 Galactic Non-Thermal Sources
3.3.1. SNR G18.760−0.072
3.3.2. SNR G31.299−0.493
3.4. Radii of the 17 Galactic Non-Thermal Sources
3.5. Spectral Indices
4. Discussion
4.1. The Two New SNRs
4.2. The Other Galactic Non-Thermal Sources
4.3. Implication for Number of Compact Galactic SNRs
4.3.1. Angular Size Distribution of SNRs and THOR Sources
4.3.2. Flux Density Distribution of SNRs and THOR Sources
4.3.3. Expected vs. Detected Number of New THOR SNRs
4.4. General Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Distance Estimations of the 15 Non-Thermal Sources
Appendix A.1. Sample 1 Sources
Appendix A.1.1. G27.920+0.977
Appendix A.1.2. G35.351+0.239
Appendix A.1.3. G35.484+0.424
Appendix A.1.4. G41.889-0.386
Appendix A.1.5. G42.028−0.605
Appendix A.1.6. G42.093−0.430
Appendix A.2. Sample 2 Sources
Appendix A.2.1. G23.088+0.224
Appendix A.2.2. G24.430−1.017
Appendix A.2.3. G34.421−1.031
Appendix A.2.4. G36.204−0.342
Appendix A.2.5. G43.030−0.077
Appendix A.2.6. G44.324−0.730
Appendix A.2.7. G56.364+0.617
Appendix A.2.8. G56.608−1.105
Appendix A.2.9. G64.019−0.846
1 | Of the 294 known SNRs, there are 55 SNRs in the area covered by THOR survey. |
2 | THOR covers ∼ 1/4 of the area of the galactic disc for a galactic radius of 16 kpc. |
3 | http://third.ucllnl.org/gps, accessed on 16 December 2020. |
4 | The THOR survey objects are in the first quadrant of the galaxy, so absorption from the far side of the galaxy outside the solar circle is at negative velocities. |
5 | The lack of absorption features at the negative velocity range does not necessarily mean that they are galactic sources due to the low abundance of cold HI gas towards the edge of the galaxy. However, a comparison with the spectrum a nearby known galactic (e.g., HII region) or extragalactic objects yields evidence of absorbing HI gas in the outer galaxy, and a more definite conclusion on the distance and galactic or extragalactic nature of the candidate. |
6 | We tested two definitions of effective angular radius. For the first, we used the radius that gives the same circular area () as the island area of each source in the catalogue. The threshold of defining an island for each source was 2.6 above background. This definition gives a smallest size, which is 1 pixel area and does not account for source smearing by the beam area. For the second, we used a radius determined by the ratio C = (integrated flux density)/(peak flux density) given by , which is valid for a Gaussian-shaped source. When we compare radius distributions for the two definitions, we find the first definition results in a peak at near caused by the beam, so we chose to use the second definition. |
References
- Green, D.A. A revised catalogue of 294 Galactic supernova remnants. J. Astrophys. Astron. 2019, 40, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wheeler, J.C.; Bash, F.N.; Jefferys, W.H. A Statistical Study of the Correlation of Galactic Supernova Remnants and Spiral Arms. Astrophys. J. 1991, 378, 93. [Google Scholar] [CrossRef] [Green Version]
- Case, G.L.; Bhattacharya, D. A New Σ-D Relation and Its Application to the Galactic Supernova Remnant Distribution. Astrophys. J. 1998, 504, 761–772. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, S.P.; Borkowski, K.J.; Green, D.A.; Hwang, U.; Harrus, I.; Petre, R. The Youngest Galactic Supernova Remnant: G1.9+0.3. Astrophys. J. 2008, 680, L41. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame, T.M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; et al. Trigonometric Parallaxes of High Mass Star Forming Regions: The Structure and Kinematics of the Milky Way. Astrophys. J. 2014, 783, 130. [Google Scholar] [CrossRef] [Green Version]
- Frail, D.A.; Goss, W.M.; Whiteoak, J.B.Z. The Radio Lifetime of Supernova Remnants and the Distribution of Pulsar Velocities at Birth. Astrophys. J. 1994, 437, 781. [Google Scholar] [CrossRef]
- Tammann, G.A.; Loeffler, W.; Schroeder, A. The Galactic Supernova Rate. Astrophys. J. Suppl. Ser. 1994, 92, 487. [Google Scholar] [CrossRef]
- Green, D.A. Limitations Imposed on Statistical Studies of Galactic Supernova Remnants by Observational Selection Effects. Publ. Astron. Soc. Pac. 1991, 103, 209. [Google Scholar] [CrossRef]
- Hurley-Walker, N.; Filipović, M.D.; Gaensler, B.M.; Leahy, D.A.; Hancock, P.J.; Franzen, T.M.O.; Offringa, A.R.; Callingham, J.R.; Hindson, L.; Wu, C.; et al. New candidate radio supernova remnants detected in the GLEAM survey over 345circ < l < 60circ, 180circ < l < 240circ. Publ. Astron. Soc. Aust. 2019, 36, e045. [Google Scholar] [CrossRef] [Green Version]
- Hurley-Walker, N.; Gaensler, B.M.; Leahy, D.A.; Filipović, M.D.; Hancock, P.J.; Franzen, T.M.O.; Offringa, A.R.; Callingham, J.R.; Hindson, L.; Wu, C.; et al. Candidate radio supernova remnants observed by the GLEAM survey over 345circ < l < 60circ and 180circ < l < 240circ. Publ. Astron. Soc. Aust. 2019, 36, e048. [Google Scholar] [CrossRef] [Green Version]
- Helfand, D.J.; Becker, R.H.; White, R.L.; Fallon, A.; Tuttle, S. MAGPIS: A Multi-Array Galactic Plane Imaging Survey. Astron. J. 2006, 131, 2525–2537. [Google Scholar] [CrossRef]
- Beuther, H.; Bihr, S.; Rugel, M.; Johnston, K.; Wang, Y.; Walter, F.; Brunthaler, A.; Walsh, A.J.; Ott, J.; Stil, J.; et al. The HI/OH/Recombination line survey of the inner Milky Way (THOR). Survey overview and data release 1. Astron. Astrophys. 2016, 595, A32. [Google Scholar] [CrossRef]
- Bihr, S.; Johnston, K.G.; Beuther, H.; Anderson, L.D.; Ott, J.; Rugel, M.; Bigiel, F.; Brunthaler, A.; Glover, S.C.O.; Henning, T.; et al. Continuum sources from the THOR survey between 1 and 2 GHz. Astron. Astrophys. 2016, 588, A97. [Google Scholar] [CrossRef]
- Brogan, C.L.; Gelfand, J.D.; Gaensler, B.M.; Kassim, N.E.; Lazio, T.J.W. Discovery of 35 New Supernova Remnants in the Inner Galaxy. Astrophys. J. 2006, 639, L25–L29. [Google Scholar] [CrossRef]
- Wang, Y.; Beuther, H.; Rugel, M.R.; Soler, J.D.; Stil, J.M.; Ott, J.; Bihr, S.; McClure-Griffiths, N.M.; Anderson, L.D.; Klessen, R.S.; et al. The HI/OH/Recombination line survey of the inner Milky Way (THOR): Data release 2 and H I overview. Astron. Astrophys. 2020, 634, A83. [Google Scholar] [CrossRef]
- Intema, H.T.; Jagannathan, P.; Mooley, K.P.; Frail, D.A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 2017, 598, A78. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.M.; Rathborne, J.M.; Shah, R.Y.; Simon, R.; Bania, T.M.; Clemens, D.P.; Chambers, E.T.; Johnson, A.M.; Dormody, M.; Lavoie, R.; et al. The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey. Astrophys. J. Suppl. Ser. 2006, 163, 145–159. [Google Scholar] [CrossRef]
- Purcell, C.R.; Hoare, M.G.; Cotton, W.D.; Lumsden, S.L.; Urquhart, J.S.; Chandler, C.; Churchwell, E.B.; Diamond, P.; Dougherty, S.M.; Fender, R.P.; et al. The Coordinated Radio and Infrared Survey for High-mass Star Formation. II. Source Catalog. Astrophys. J. Suppl. Ser. 2013, 205, 1. [Google Scholar] [CrossRef]
- White, R.L.; Becker, R.H.; Helfand, D.J. New Catalogs of Compact Radio Sources in the Galactic Plane. Astron. J. 2005, 130, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, R.A.; Churchwell, E.; Babler, B.L.; Bania, T.M.; Clemens, D.P.; Cohen, M.; Dickey, J.M.; Indebetouw, R.; Jackson, J.M.; Kobulnicky, H.A.; et al. GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy. Publ. Astron. Soc. Pac. 2003, 115, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Carey, S.J.; Noriega-Crespo, A.; Mizuno, D.R.; Shenoy, S.; Paladini, R.; Kraemer, K.E.; Price, S.D.; Flagey, N.; Ryan, E.; Ingalls, J.G.; et al. MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm. Publ. Astron. Soc. Pac. 2009, 121, 76. [Google Scholar] [CrossRef]
- Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Johnston, K.G.; Ott, J.; Soler, J.D.; Brunthaler, A.; Anderson, L.D.; Urquhart, J.S.; et al. Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey. Astron. Astrophys. 2018, 619, A124. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, S.; Leahy, D.A. Distances to Supernova Remnants G31.9+0.0 and G54.4-0.3 Associated with Molecular Clouds. Astrophys. J. 2017, 843, 119. [Google Scholar] [CrossRef]
- Lockman, F.J. A Survey of Radio H II Regions in the Northern Sky. Astrophys. J. Suppl. Ser. 1989, 71, 469. [Google Scholar] [CrossRef]
- Watson, C.; Araya, E.; Sewilo, M.; Churchwell, E.; Hofner, P.; Kurtz, S. Resolution of Distance Ambiguities of Inner Galaxy Massive Star Formation Regions. I. Astrophys. J. 2003, 587, 714–726. [Google Scholar] [CrossRef]
- Anderson, L.D.; Bania, T.M.; Balser, D.S.; Rood, R.T. The Green Bank Telescope H II Region Discovery Survey. II. The Source Catalog. Astrophys. J. Suppl. Ser. 2011, 194, 32. [Google Scholar] [CrossRef]
- Jones, C.; Dickey, J.M. Kinematic Distance Assignments with H I Absorption. Astrophys. J. 2012, 753, 62. [Google Scholar] [CrossRef]
- Anderson, L.D.; Armentrout, W.P.; Luisi, M.; Bania, T.M.; Balser, D.S.; Wenger, T.V. A Green Bank Telescope Survey of Large Galactic H II Regions. Astrophys. J. Suppl. Ser. 2018, 234, 33. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S.C.O.; Goodman, A.A.; Henning, T.; et al. Galactic supernova remnant candidates discovered by THOR. Astron. Astrophys. 2017, 605, A58. [Google Scholar] [CrossRef]
- de Gasperin, F.; Intema, H.T.; Frail, D.A. A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky. Mon. Not. R. Astron. Soc. 2018, 474, 5008–5022. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, S.; Leahy, D.A. Distances to supernova remnants G20.4+0.1, G24.7-0.6, and G28.6 - 0.1 and new molecular cloud associations. Mon. Not. R. Astron. Soc. 2018, 477, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.; Wang, Y.; Lawton, B.; Ranasinghe, S.; Filipović, M. Emission Measures and Emission-measure-weighted Temperatures of Shocked Interstellar Medium and Ejecta in Supernova Remnants. Astron. J. 2019, 158, 149. [Google Scholar] [CrossRef] [Green Version]
- Leahy, D.A.; Williams, J.E. A Python Calculator for Supernova Remnant Evolution. Astron. J. 2017, 153, 239. [Google Scholar] [CrossRef] [Green Version]
- Cendes, Y.; Gaensler, B.M.; Ng, C.Y.; Zanardo, G.; Staveley-Smith, L.; Tzioumis, A.K. The Reacceleration of the Shock Wave in the Radio Remnant of SN 1987A. Astrophys. J. 2018, 867, 65. [Google Scholar] [CrossRef] [Green Version]
- Churchwell, E.; Bieging, J.H.; van der Hucht, K.A.; Williams, P.M.; Spoelstra, T.A.T.; Abbott, D.C. The Wolf-Rayet System WR 147: A Binary Radio Source with Thermal and Nonthermal Components. Astrophys. J. 1992, 393, 329. [Google Scholar] [CrossRef]
- Monageng, I.M.; Motta, S.E.; Fender, R.; Yu, W.; Woudt, P.A.; Tremou, E.; Miller-Jones, J.C.A.; van der Horst, A.J. Radio flaring and dual radio loud/quiet behaviour in the new candidate black hole X-ray binary MAXI J1631-472. Mon. Not. R. Astron. Soc. 2021, 501, 5776–5781. [Google Scholar] [CrossRef]
- Poggiani, R. Galactic and Extragalactic Novae—A Multiwavelenght Review. In Proceedings of the Golden Age of Cataclysmic Variables and Related Objects V, Palermo, Italy, 2–7 September 2019; p. 26. [Google Scholar] [CrossRef]
- Marcote, B.; Callingham, J.R.; De Becker, M.; Edwards, P.G.; Han, Y.; Schulz, R.; Stevens, J.; Tuthill, P.G. AU-scale radio imaging of the wind collision region in the brightest and most luminous non-thermal colliding wind binary Apep. Mon. Not. R. Astron. Soc. 2021, 501, 2478–2486. [Google Scholar] [CrossRef]
- Leahy, D.A.; Ranasinghe, S.; Gelowitz, M. Evolutionary Models for 43 Galactic Supernova Remnants with Distances and X-ray Spectra. Astrophys. J. Suppl. Ser. 2020, 248, 16. [Google Scholar] [CrossRef]
- Dubner, G.; Giacani, E. Radio emission from supernova remnants. Astron. Astrophys. Rev. 2015, 23, 3. [Google Scholar] [CrossRef]
- Truelove, J.K.; McKee, C.F. Evolution of Nonradiative Supernova Remnants. Astrophys. J. Suppl. Ser. 1999, 120, 299–326. [Google Scholar] [CrossRef]
- Chevalier, R.A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 1982, 258, 790–797. [Google Scholar] [CrossRef]
- Alp, D.; Larsson, J.; Maeda, K.; Fransson, C.; Wongwathanarat, A.; Gabler, M.; Janka, H.T.; Jerkstrand, A.; Heger, A.; Menon, A. X-ray and Gamma-Ray Emission from Core-collapse Supernovae: Comparison of Three-dimensional Neutrino-driven Explosions with SN 1987A. Astrophys. J. 2019, 882, 22. [Google Scholar] [CrossRef]
- Pavlović, M.Z.; Urošević, D.; Arbutina, B.; Orlando, S.; Maxted, N.; Filipović, M.D. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations. Astrophys. J. 2018, 852, 84. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodríguez, H.; Badenes, C.; Lee, S.H.; Patnaude, D.J.; Foster, A.R.; Yamaguchi, H.; Auchettl, K.; Bravo, E.; Slane, P.O.; Piro, A.L.; et al. Chandrasekhar and Sub-Chandrasekhar Models for the X-ray Emission of Type Ia Supernova Remnants. I. Bulk Properties. Astrophys. J. 2018, 865, 151. [Google Scholar] [CrossRef] [Green Version]
Category | Number of Sources in Category | Remaining Number of Sources |
---|---|---|
Initial THOR source catalog | 10,387 | 10,387 |
Sources with undefined spectral indices | 2157 | 8230 |
Sources with S mJy or | 7722 | 508 |
Part of known SNRs | 158 | 350 |
Sources with lobe-like morphology | 77 | 273 |
Extragalactic sources (from HI spectra) | 150 | 123 |
Sources too faint for reliable HI spectra | 75 | 48 |
HII regions | 31 | 17 |
SNR Candidates | 17 |
# | Object | l (deg) | b (deg) | RA (deg) | Dec (deg) | Spectral Index | Error | CORNISH | V (km s) | Double-Lobed |
---|---|---|---|---|---|---|---|---|---|---|
1 | G17.910+0.372 | 17.91 | 0.372 | 275.545 | −13.162 | −0.77 | 0.01 | Ex G | −35 | N |
2 | G17.913−0.329 | 17.913 | −0.329 | 276.184 | −13.488 | −0.99 | 0.04 | IRQ G | … | P |
3 | G18.092+1.167 | 18.092 | 1.167 | 274.915 | −12.627 | −0.98 | 0.01 | Ex P | −39 | N |
4 | G18.106+0.186 | 18.106 | 0.186 | 275.809 | −13.077 | −0.94 | 0.01 | Ex G | −33.5 | N |
5 | G18.312+1.044 | 18.312 | 1.044 | 275.131 | −12.491 | −1.05 | 0.02 | IRQ G | −33.5 | S |
6 | G18.368−1.126 | 18.368 | −1.126 | 277.126 | −13.457 | −1.01 | 0.03 | … | −23 | S |
7 | G18.495+0.273 | 18.495 | 0.273 | 275.917 | −12.692 | −1.22 | 0.03 | IR Q | −32 | N |
8 | G18.696−0.401 | 18.696 | −0.401 | 276.625 | −12.829 | −0.90 | 0.02 | IR Q | −32 | N |
9 | G18.755−0.497 | 18.755 | −0.497 | 276.739 | −12.822 | −0.77 | 0.03 | Ex G | −27.5 | N |
10 | G18.791+0.628 | 18.791 | 0.628 | 275.737 | −12.264 | −1.21 | 0.04 | EX G | −24.5 | S |
# | Object | R (″) | R b (″) | R b (″) |
---|---|---|---|---|
1 | G18.760−0.072 | PR | 50 | … |
2 | G31.299−0.493 | 10 | … | |
3 | G27.920+0.977 | PR: | ||
4 | G35.351+0.239 | |||
5 | G35.484+0.424 | |||
6 | G41.889−0.386 | PR | … | |
7 | G42.028−0.605 | PR | PR: 0.8/0.74 | |
8 | G42.093−0.430 |
# | Object | 1.4 GHz Integrated Flux Density (Jy) | Spectral Index | Spectral Index | V (km s) | KDAR | Distance (kpc) | Radius (pc) |
---|---|---|---|---|---|---|---|---|
SNRs | ||||||||
1 | G18.760−0.072 | 0.155 | 70 | N | ||||
2 | G31.299−0.493 | 0.052 | 85 | N | ||||
Sample 1 | ||||||||
1 | G27.920+0.977 | 0.699 | 55 | F | ||||
2 | G35.351+0.239 | 0.071 | – | N | ||||
3 | G35.484+0.424 | 0.096 | F | 6.8–13.5 | 0.016–0.032 | |||
4 | G41.889−0.386 | 0.078 | 55 | F | ||||
5 | G42.028−0.605 | 0.473 | F | |||||
6 | G42.093−0.430 | 0.078 | N | |||||
Sample 2 | ||||||||
1 | G23.088+0.224 | 0.888 | TP | |||||
2 | G24.430−1.017 | 0.126 | TP | |||||
3 | G34.421−1.031 | 0.145 | 85 | N | ||||
4 | G36.204−0.342 | 0.084 | 92 | TP | ||||
5 | G43.030−0.077 | 0.102 | 37 | F | ||||
6 | G44.324−0.730 | 0.111 | TP | |||||
7 | G56.364+0.617 | 0.056 | TP | |||||
8 | G56.608−1.105 | 0.104 | 43 | TP | … | |||
9 | G64.019−0.846 | 0.232 | TP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranasinghe, S.; Leahy, D.; Stil, J. Search for and Identification of Young Compact Galactic Supernova Remnants Using THOR. Universe 2021, 7, 338. https://doi.org/10.3390/universe7090338
Ranasinghe S, Leahy D, Stil J. Search for and Identification of Young Compact Galactic Supernova Remnants Using THOR. Universe. 2021; 7(9):338. https://doi.org/10.3390/universe7090338
Chicago/Turabian StyleRanasinghe, Sujith, Denis Leahy, and Jeroen Stil. 2021. "Search for and Identification of Young Compact Galactic Supernova Remnants Using THOR" Universe 7, no. 9: 338. https://doi.org/10.3390/universe7090338
APA StyleRanasinghe, S., Leahy, D., & Stil, J. (2021). Search for and Identification of Young Compact Galactic Supernova Remnants Using THOR. Universe, 7(9), 338. https://doi.org/10.3390/universe7090338