A Dark Matter WIMP That Can Be Detected and Definitively Identified with Currently Planned Experiments
Abstract
:1. Introduction
2. Mathematical Formulation
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aprile, E.; et al. [XENON Collaboration] Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; et al. [XENON Collaboration] Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Phys. Rev. Lett. 2019, 122, 141301. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S.; et al. [LUX Collaboration] Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. Phys. Rev. Lett. 2016, 116, 161302. [Google Scholar] [CrossRef]
- Agnese, R.; et al. [SuperCDMS Collaboration] Search for low-mass dark matter with CDMSlite using a profile likelihood fit. Phys. Rev. D 2019, 99, 062001. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; et al. [PandaX-II Collaboration] Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amole, C.; et al. [PICO Collaboration] Improved dark matter search results from PICO-2L Run 2. Phys. Rev. D 2016, 93, 061101. [Google Scholar] [CrossRef] [Green Version]
- ANTARES Collaboration and IceCube Collaboration. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Phys. Rev. D 2020, 102, 082002. [Google Scholar] [CrossRef]
- Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.; Catena, R.; Conrad, J.; Freese, K.; Krauss, M.B. Determining Dark Matter properties with a XENONnT/LZ signal and LHC-Run3 mono-jet searches. Phys. Rev. D 2018, 97, 083002. [Google Scholar] [CrossRef] [Green Version]
- Lin, T. TASI lectures on dark matter models and direct detection. arXiv 2019, arXiv:1904.07915. and references therein. [Google Scholar]
- Undagoitia, T.M.; Rauch, L. Dark matter direct-detection experiments. J. Phys. G 2016, 43, 013001. [Google Scholar] [CrossRef]
- Lisanti, M. Lectures on Dark Matter Physics. In New Frontiers in Fields and Strings: TASI 2015 Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics; TASI Lecture Notes; World Scientific: Singapore, 2017; pp. 399–446. [Google Scholar]
- Klasen, M.; Pohl, M.; Sigl, G. Indirect and direct search for dark matter. Prog. Part. Nucl. Phys. 2015, 85, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Porter, T.A.; Johnson, R.P.; Graham, P.W. Dark Matter Searches with Astroparticle Data. Annu. Rev. Astron. Astrophys. 2011, 49, 155–194. [Google Scholar] [CrossRef] [Green Version]
- Slatyer, T.R. TASI Lectures on Indirect Detection of Dark Matter. arXiv 2017, arXiv:1710.05137. [Google Scholar]
- Hooper, D. TASI Lectures on Indirect Searches For Dark Matter. arXiv 2018, arXiv:1812.02029. [Google Scholar]
- Strigari, L.E. Galactic Searches for Dark Matter. Phys. Rep. 2013, 531, 1–88. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, See Figure 46 in particular. [Google Scholar] [CrossRef] [Green Version]
- Boveia, A.; Doglioni, C. Dark Matter Searches at Colliders. Annu. Rev. Nucl. Part. Sci. 2018, 68, 429–459, and references therein. [Google Scholar] [CrossRef]
- Kahlhoefer, F. Review of LHC dark matter searches. Int. J. Mod. Phys. A 2017, 32, 1730006. [Google Scholar] [CrossRef]
- Abercrombie, D.; Akchurin, N.; Akilli, E.; Maestre, J.A.; Allen, B.; Gonzalez, B.A.; Andrea, J.; Arbey, A.; Azuelos, G.; Azzi, P.; et al. Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. Phys. Dark Univ. 2019, 26, 100371. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at = 13 TeV. Phys. Lett. B 2019, 793, 520–551. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration]. Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment. Phys. Rev. Lett. 2019, 122, 231801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrenberg, S. Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond; Snowmass 2013 CF4 Working Group Report; Fermi National Accelerator Lab. (FNAL): Batavia, IL, USA, 2013.
- Baer, H.; Choi, K.-Y.; Kim, J.E.; Roszkowski, L. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Phys. Rep. 2015, 555, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Olive, K.A. Supersymmetric Dark Matter after Run I at the LHC: From a TeV to a PeV. In Proceedings of the 18th International Conference from the Planck Scale to the Electroweak Scale, Ioannina, Greece, 25–29 May 2015. [Google Scholar]
- Baer, H.; Barger, V.; Serce, H. SUSY under siege from direct and indirect WIMP detection experiments. Phys. Rev. D 2016, 94, 115019. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Sengupta, D.; Tata, X. Is natural higgsino-only dark matter excluded? Eur. Phys. J. C 2018, 78, 838. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rept. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Sengupta, D.; Salam, S.; Sinha, K. Midi-review: Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches. Eur. Phys. J. Spec. Top. 2020, 229, 3085–3141. [Google Scholar] [CrossRef]
- Kowalska, K.; Sessolo, E.M. The discreet charm of higgsino dark matter: A pocket review. Adv. High Energy Phys. 2018, 2018, 6828560. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Profumo, S. Dark Matter. In M. Tanabashi et al. (Particle Data Group). Phys. Rev. D 2018, 98, 030001, 2018 and 2021 Update. Available online: https://pdg.lbl.gov/ (accessed on 26 July 2021).
- Bertone, G. The moment of truth for WIMP dark matter. Nature 2010, 468, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Peskin, M.E. Supersymmetric dark matter in the harsh light of the Large Hadron Collider. Proc. Natl. Acad. Sci. USA 2015, 112, 12256–12263. [Google Scholar] [CrossRef] [Green Version]
- Olive, K.A. Supersymmetric Dark Matter or Not. In Proceedings of the 11th International Workshop Dark Side of the Universe 2015, Kyoto, Japan, 14–18 December 2015. [Google Scholar]
- Haber, H.E.; Kane, G.L. The search for supersymmetry: Probing physics beyond the standard model. Phys. Rep. 1985, 117, 75–263. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Tata, X. Weak Scale Supersymmetry: From Superfields to Scattering Events; Cambridge University Press: Cambridge, UK, 2006; and references therein. [Google Scholar]
- Kane, G.L. (Ed.) Perspectives on Supersymmetry II; World Scientific: Singapore, 2010. [Google Scholar]
- Allanach, B.C.; Haber, H.E. Supersymmetry, Part I (Theory), and O. Buchmuller and P. de Jon Supersymmetry, Part II (Experiment). In M. Tanabashi et al. (Particle Data Group). Phys. Rev. D 2018, 98, 030001, 2018 and 2019 Update. Available online: http://pdg.lbl.gov (accessed on 26 July 2021).
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric Dark Matter. Phys. Rep. 1996, 267, 195–373. [Google Scholar] [CrossRef] [Green Version]
- Kamionkowski, M. WIMP and Axion Dark Matter. arXiv 1997, arXiv:hep-ph/9710467. [Google Scholar]
- Baer, H.; Barger, V.; Huang, P. Hidden SUSY at the LHC: The light higgsino-world scenario and the role of a lepton collider. J. High Energy Phys. 2011, 2011, 31. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Tata, X. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 2013, 87, 115028. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Mickelson, D. Direct and indirect detection of higgsino-like WIMPs: Concluding the story of electroweak naturalness. Phys. Lett. B 2013, 726, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Tata, X. Natural Supersymmetry: Status and Prospects. Eur. Phys. J. Spec. Top. 2020, 229, 3061–3083. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415. [Google Scholar] [CrossRef]
- Sikivie, P.; Sullivan, N.; Tanner, D.B. Proposal for Axion Dark Matter Detection Using an LC Circuit. Phys. Rev. Lett. 2014, 112, 131301, and references therein. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental Searches for the Axion and Axion-like Particles. Ann. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef] [Green Version]
- Thornberry, R.; Throm, M.; Killough, J.; Blend, D.; Erickson, M.; Sun, B.; Bays, B.; Frohaug, G.; Allen, R.E. Experimental signatures of a new dark matter WIMP. arXiv 2021, arXiv:2104.11715. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus: Cambridge, MA, USA, 1995. [Google Scholar]
- Cheng, T.-P.; Li, L.-F. Gauge Theory of Elementary Particle Physics; Oxford University Press: Oxford, UK, 1984. [Google Scholar]
- Steigman, G.; Dasgupta, B.; Beacom, J.F. Precise relic WIMP abundance and its impact on searches for dark matter annihilation. Phys. Rev. D 2012, 86, 023506. [Google Scholar] [CrossRef] [Green Version]
- Eiteneuer, B.; Goudelis, A.; Heisig, J. The inert doublet model in the light of Fermi-LAT gamma-ray data: A global fit analysis. Eur. Phys. J. C 2017, 77, 624, and references therein. [Google Scholar] [CrossRef] [Green Version]
- Bishara, F.; Contino, R.; Rojo, J. Higgs pair production in vector-boson fusion at the LHC and beyond. Eur. Phys. J. C 2017, 77, 481, and references therein. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyer, F.A.; Karlberg, A.; Lang, J.-N.; Pellen, M. Precise predictions for double-Higgs production via vector-boson fusion. Eur. Phys. J. C 2020, 80, 1037. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Palacio, G.; Restrepo, D.; Ruiz-Ávarez, J.D. Vector Boson Fusion in the Inert Doublet Model. Phys. Rev. D 2018, 97, 055045. [Google Scholar] [CrossRef] [Green Version]
- Dercks, D.; Robens, T. Constraining the Inert Doublet Model using Vector Boson Fusion. Eur. Phys. J. C 2019, 79, 924. [Google Scholar] [CrossRef]
- Klasen, M.; Yaguna, C.E.; Ruiz-Ávarez, J.D. Electroweak corrections to the direct detection cross section of inert higgs dark matter. Phys. Rev. D 2013, 87, 075025. [Google Scholar] [CrossRef] [Green Version]
- Leane, R.K.; Slatyer, T.R.; Beacom, J.F.; Ng, K.C.Y. GeV-scale thermal WIMPs: Not even slightly ruled out. Phys. Rev. D 2018, 98, 023016. [Google Scholar] [CrossRef] [Green Version]
- Ando, S.I.; Geringer-Sameth, A.; Hiroshima, N.; Hoof, S.; Trotta, R.; Walker, M.G. Structure Formation Models Weaken Limits on WIMP Dark Matter from Dwarf Spheroidal Galaxies. Phys. Rev. D 2020, 102, 061302. [Google Scholar] [CrossRef]
- Leane, R.K. Indirect Detection of Dark Matter in the Galaxy. arXiv 2020, arXiv:2006.00513. [Google Scholar]
- Goodenough, L.; Hooper, D. Possible Evidence for Dark Matter Annihilation in the Inner Milky Way from the Fermi Gamma Ray Space Telescope. arXiv 2009, arXiv:0910.2998. [Google Scholar]
- Vitale, V.; et al. [For the Fermi/LAT Collaboration] Indirect Search for Dark Matter from the center of the Milky Way with the Fermi-Large Area Telescope. arXiv 2009, arXiv:0912.3828. [Google Scholar]
- Karwin, C.; Murgia, S.; Tait, T.M.P.; Porter, T.A.; Tanedo, P. Dark matter interpretation of the Fermi-LAT observation toward the Galactic Center. Phys. Rev. D 2017, 95, 103005, and references therein. [Google Scholar] [CrossRef] [Green Version]
- Leane, R.K.; Slatyer, T.R. Revival of the Dark Matter Hypothesis for the Galactic Center Gamma-Ray Excess. Phys. Rev. Lett. 2019, 123, 241101, and references therein. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuoco, A.; Heisig, J.; Korsmeier, M.; Krämer, M. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays. JCAP 2017, 10, 053. [Google Scholar] [CrossRef] [Green Version]
- Cuoco, A.; Krämer, M.; Korsmeier, M. Novel dark matter constraints from antiprotons in the light of AMS-02. Phys. Rev. Lett. 2017, 118, 191102. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.-Y.; Yuan, Q.; Tsai, Y.-L.S.; Fan, Y.-Z. Possible dark matter annihilation signal in the AMS-02 antiproton data. Phys. Rev. Lett. 2017, 118, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholis, I.; Linden, T.; Hooper, D. A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for Annihilating Dark Matter. Phys. Rev. D 2019, 99, 103026. [Google Scholar] [CrossRef] [Green Version]
- Cuoco, A.; Heisig, J.; Klamt, L.; Korsmeier, M.; Krämer, M. Scrutinizing the evidence for dark matter in cosmic-ray antiprotons. Phys. Rev. D 2019, 99, 103014. [Google Scholar] [CrossRef] [Green Version]
- Hermann, G.; et al. [The CTA Consortium] The future ground-based gamma-ray observatory CTA. Nucl. Phys. B Proc. Suppl. 2011, 212, 170–177. [Google Scholar] [CrossRef]
- Ambrogi, F.; Arina, C.; Backović, M.; Heisig, J.; Maltoni, F.; Mantani, L.; Mattelaer, O.; Mohlabeng, G. MadDM v.3.0: A Comprehensive Tool for Dark Matter Studies. Phys. Dark Univ. 2019, 24, 100249, and references therein. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaFontaine, C.; Tallman, B.; Ellis, S.; Croteau, T.; Torres, B.; Hernandez, S.; Guerrero, D.C.; Jaksik, J.; Lubanski, D.; Allen, R. A Dark Matter WIMP That Can Be Detected and Definitively Identified with Currently Planned Experiments. Universe 2021, 7, 270. https://doi.org/10.3390/universe7080270
LaFontaine C, Tallman B, Ellis S, Croteau T, Torres B, Hernandez S, Guerrero DC, Jaksik J, Lubanski D, Allen R. A Dark Matter WIMP That Can Be Detected and Definitively Identified with Currently Planned Experiments. Universe. 2021; 7(8):270. https://doi.org/10.3390/universe7080270
Chicago/Turabian StyleLaFontaine, Caden, Bailey Tallman, Spencer Ellis, Trevor Croteau, Brandon Torres, Sabrina Hernandez, Diego Cristancho Guerrero, Jessica Jaksik, Drue Lubanski, and Roland Allen. 2021. "A Dark Matter WIMP That Can Be Detected and Definitively Identified with Currently Planned Experiments" Universe 7, no. 8: 270. https://doi.org/10.3390/universe7080270
APA StyleLaFontaine, C., Tallman, B., Ellis, S., Croteau, T., Torres, B., Hernandez, S., Guerrero, D. C., Jaksik, J., Lubanski, D., & Allen, R. (2021). A Dark Matter WIMP That Can Be Detected and Definitively Identified with Currently Planned Experiments. Universe, 7(8), 270. https://doi.org/10.3390/universe7080270