Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models
Abstract
:1. Introduction
2. EGMF Models
3. Simulation Methods
4. Results
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Horns, D.; Meyer, M. Indications for a pair-production anomaly from the propagation of VHE gamma-rays. J. Cosmol. Astropart. Phys. 2012, 2012, 033. [Google Scholar] [CrossRef] [Green Version]
- Korochkin, A.; Rubtsov, G.; Troitsky, S. Search for anomalous features in gamma-ray blazar spectra corrected for the absorption on the extragalactic background light. J. Cosmol. Astropart. Phys. 2019, 2019, 002. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. Jetp 1957, 6, 429. [Google Scholar]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zh. Eksp. Teor. Fiz. 1967, 26, 1717–1725. [Google Scholar]
- Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Wolfenstein, L. Neutrino oscillations and stellar collapse. Phys. Rev. D 1979, 20, 2634–2635. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Yad. Fiz. 1985, 42, 1441–1448. [Google Scholar]
- Mikheyev, S.P.; Smirnov, A.Y. Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy. Il Nuovo Cim. C 1986, 9, 17–26. [Google Scholar] [CrossRef]
- Mikheev, S.P.; Smirnov, A.I. Neutrino oscillations in a medium with variable density and θ-flares from gravitational collapses of stars. Zhurnal Eksperimentalnoi I Teor. Fiz. 1986, 91, 7–13. [Google Scholar]
- Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, A.; Roncadelli, M.; Mansutti, O. Evidence for a new light spin-zero boson from cosmological gamma-ray propagation? Phys. Rev. D 2007, 76. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Domínguez, A. Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources. Phys. Rev. D 2009, 79. [Google Scholar] [CrossRef]
- Kartavtsev, A.; Raffelt, G.; Vogel, H. Extragalactic photon-ALP conversion at CTA energies. J. Cosmol. Astropart. Phys. 2017, 2017, 024. [Google Scholar] [CrossRef] [Green Version]
- Montanino, D.; Vazza, F.; Mirizzi, A.; Viel, M. Enhancing the Spectral Hardening of Cosmic TeV Photons by Mixing with Axionlike Particles in the Magnetized Cosmic Web. Phys. Rev. Lett. 2017, 119. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Roncadelli, M. Behavior of axionlike particles in smoothed out domainlike magnetic fields. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Tavecchio, F.; Roncadelli, M.; Evoli, C. Blazar VHE spectral alterations induced by photon–ALP oscillations. Mon. Not. R. Astron. Soc. 2019, 487, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Dessert, C.; Long, A.J.; Safdi, B.R. No evidence for axions from Chandra observation of magnetic white dwarf. arXiv 2021, arXiv:2104.12772. [Google Scholar]
- Abramowski, A.; Acero, F.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G. Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS2155-304energy spectrum. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G. Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libanov, M.; Troitsky, S. On the impact of magnetic-field models in galaxy clusters on constraints on axion-like particles from the lack of irregularities in high-energy spectra of astrophysical sources. Phys. Lett. B 2020, 802, 135252. [Google Scholar] [CrossRef]
- The CAST Collaboration. New CAST limit on the axion–photon interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
- Berezinsky, V.S.; Smirnov, A.Y. Cosmic neutrinos of ultra-high energies and detection possibility. Astrophys. Space Sci. 1975, 32, 461–482. [Google Scholar] [CrossRef]
- Protheroe, R.J. Effect of electron-photon cascading on the observed energy spectra of extragalactic sources of ultra-high-energy -rays. Mon. Not. R. Astron. Soc. 1986, 221, 769–788. [Google Scholar] [CrossRef] [Green Version]
- Protheroe, R.J.; Stanev, T. Electron-photon cascading of very high-energy gamma-rays in the infrared background. Mon. Not. R. Astron. Soc. 1993, 264, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Coppi, P.S.; Voelk, H.J. Very high energy gamma rays from active galactic nuclei: Cascading on the cosmic background radiation fields and the formation of pair halos. Astrophys. J. 1994, 423, L5. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Akhperjanian, A.G.; Barrio, J.A.; Bernlöhr, K.; Bojahr, H. The time averaged TeV energy spectrum of MKN 501 of the extraordinary 1997 outburst as measured with the stereoscopic Cherenkov telescope system of HEGRA. Astron. Astrophys. 1999, 349, 11–28. [Google Scholar]
- Aharonian, F.A.; Timokhin, A.N.; Plyasheshnikov, A.V. On the origin of highest energy gamma-rays from Mkn 501. Astron. Astrophys. 2002, 384, 834–847. [Google Scholar] [CrossRef] [Green Version]
- Waxman, E.; Coppi, P. Delayed GeV-TeV Photons from Gamma-Ray Bursts Producing High-Energy Cosmic Rays. Astrophys. J. 1996, 464, L75. [Google Scholar] [CrossRef]
- Uryson, A.V. Possible observation of electromagnetic cascades in extragalactic space. J. Exp. Theor. Phys. 1998, 86, 213–219. [Google Scholar] [CrossRef]
- Dzhatdoev, T.A.; Khalikov, E.V.; Kircheva, A.P.; Lyukshin, A.A. Electromagnetic cascade masquerade: A way to mimicγ-axion-like particle mixing effects in blazar spectra. Astron. Astrophys. 2017, 603, A59. [Google Scholar] [CrossRef] [Green Version]
- Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J.G.; Gottlöber, S. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields. Mon. Not. R. Astron. Soc. 2018, 475, 2519–2529. [Google Scholar] [CrossRef] [Green Version]
- Dolag, K.; Grasso, D.; Springel, V.; Tkachev, I. Constrained simulations of the magnetic field in the local Universe and the propagation of ultrahigh energy cosmic rays. J. Cosmol. Astropart. Phys. 2005, 2005, 009. [Google Scholar] [CrossRef] [Green Version]
- The CTA Consortium. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Kulsrud, R.M.; Cen, R.; Ostriker, J.P.; Ryu, D. The Protogalactic Origin for Cosmic Magnetic Fields. Astrophys. J. 1997, 480, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Ryu, D.; Kang, H.; Biermann, P.L. Cosmic magnetic fields in large scale filaments and sheets. arXiv 1998, arXiv:astro-ph/astro-ph/9803275. [Google Scholar]
- Sigl, G.; Miniati, F.; Enßlin, T.A. Ultrahigh energy cosmic ray probes of large scale structure and magnetic fields. Phys. Rev. D 2004, 70. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kang, H.; Ryu, D.; Cho, J. Propagation of Ultra–High-Energy Protons through the Magnetized Cosmic Web. Astrophys. J. 2008, 682, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Hackstein, S.; Vazza, F.; Brüggen, M.; Sigl, G.; Dundovic, A. Propagation of ultrahigh energy cosmic rays in extragalactic magnetic fields: A view from cosmological simulations. Mon. Not. R. Astron. Soc. 2016, 462, 3660–3671. [Google Scholar] [CrossRef] [Green Version]
- Sorce, J.G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Courtois, H.M.; Steinmetz, M.; Tully, R.B.; Pomarède, D.; Carlesi, E. Cosmicflows Constrained Local UniversE Simulations. Mon. Not. R. Astron. Soc. 2015, 455, 2078–2090. [Google Scholar] [CrossRef] [Green Version]
- Eichmann, B. High Energy Cosmic Rays from Fanaroff-Riley radio galaxies. J. Cosmol. Astropart. Phys. 2019, 2019, 009. [Google Scholar] [CrossRef] [Green Version]
- Alves Batista, R.; Dundovic, A.; Erdmann, M.; Kampert, K.H.; Kuempel, D.; Müller, G.; Sigl, G.; van Vliet, A.; Walz, D.; Winchen, T. CRPropa 3-a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. J. Cosmol. Astropart. Phys. 2016, 2016, 038. [Google Scholar] [CrossRef]
- Gilmore, R.C.; Somerville, R.S.; Primack, J.R.; Domínguez, A. Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc. 2012, 422, 3189–3207. [Google Scholar] [CrossRef] [Green Version]
- Protheroe, R.; Biermann, P. A new estimate of the extragalactic radio background and implications for ultra-high-energy γ-ray propagation. Astropart. Phys. 1996, 6, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Kalashev, O. High-energy electromagnetic cascades in extragalactic space: Physics and features. Phys. Rev. D 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Kachelrieß, M.; Ostapchenko, S.; Tomàs, R. ELMAG: A Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields. Comput. Phys. Commun. 2012, 183, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Kelner, S.R.; Aharonian, F.A. Energy spectra of gamma rays, electrons, and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Gazizov, A.; Grigorieva, S. On astrophysical solution to ultrahigh energy cosmic rays. Phys. Rev. D 2006, 74. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Behera, B. New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200. Astron. Astrophys. 2007, 475, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Behera, B. A three-year multi-wavelength study of the very-high-energy γ-ray blazar 1ES 0229+200. Astrophys. J. 2014, 782, 13. [Google Scholar] [CrossRef] [Green Version]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G. Discovery of hard-spectrumγ-ray emission from the BL Lacertae object 1ES 0414+009. Astron. Astrophys. 2012, 538, A103. [Google Scholar] [CrossRef] [Green Version]
- Primack, J.R. Observational Gamma-ray Cosmology. In Proceedings of the AIP Conference Proceedings, Salt Lake City, UT, USA, 10–11 August 2005. [Google Scholar] [CrossRef] [Green Version]
- Kneiske, T.M.; Bretz, T.; Mannheim, K.; Hartmann, D.H. Implications of cosmological gamma-ray absorption. Astron. Astrophys. 2004, 413, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B. The Large area telescope on thefermi gamma-ray space telescopemission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.W.; Bao, D.; Bastieri, X.J.; Bi, Y.J.; Bi, H.; Cai, J.T.; et al. The observation of the Crab Nebula with LHAASO-KM2A for the performance study. arXiv 2021, arXiv:2010.06205. [Google Scholar]
- Krennrich, F.; Bond, I.; Boyle, P.; Bradbury, S.; Buckley, J. VERITAS: The Very Energetic Radiation Imaging Telescope Array System. New Astron. Rev. 2004, 48, 345–349. [Google Scholar] [CrossRef]
- Park, N. Performance of the VERITAS experiment. In Proceedings of the 34th International Cosmic Ray Conference—PoS(ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Chang, P.; Pfrommer, C. The cosmological impact of luminous Tev blazars. I. implications of plasma instabilities for the intergalactic magnetic field and extragalactic gamma-ray background. Astrophys. J. 2012, 752, 22. [Google Scholar] [CrossRef]
- Pohl, M.; Hoshino, M.; Niemiec, J. PIC simulation methods for cosmic radiation and plasma instabilities. Prog. Part. Nucl. Phys. 2020, 111, 103751. [Google Scholar] [CrossRef] [Green Version]
- Khalikov, E.V.; Dzhatdoev, T.A. Observable spectral and angular distributions of γ-rays from extragalactic ultrahigh energy cosmic ray accelerators: The case of extreme TeV blazars. Mon. Not. R. Astron. Soc. 2021, 505, 1940–1953. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalikov, E. Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models. Universe 2021, 7, 220. https://doi.org/10.3390/universe7070220
Khalikov E. Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models. Universe. 2021; 7(7):220. https://doi.org/10.3390/universe7070220
Chicago/Turabian StyleKhalikov, Emil. 2021. "Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models" Universe 7, no. 7: 220. https://doi.org/10.3390/universe7070220
APA StyleKhalikov, E. (2021). Modeling Gamma-Ray SEDs and Angular Extensions of Extreme TeV Blazars from Intergalactic Proton-Initiated Cascades in Contemporary Astrophysical EGMF Models. Universe, 7(7), 220. https://doi.org/10.3390/universe7070220