Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies
Abstract
:1. Introduction
2. Overview of Simulations That Model Groups
3. Computational Methods Relevant for Simulations of Groups
3.1. Hydrodynamics
3.2. Gas Cooling and Heating
3.3. Star Formation, Stellar Evolution, and Nucleosynthetic Production
3.4. Metal Spreading
3.5. Stellar Feedback
3.6. Black Hole Seeding
3.7. Black Hole Growth
3.8. AGN Feedback
3.9. Transport Processes and Magnetic Fields
3.10. Cosmic Rays
- (1)
- Cosmic ray transport (either streaming or diffusion) can drive galactic outflows [182,183,184,185,186]. Cosmic rays are injected into the ISM during stellar feedback events (typically ∼10% of the total supernova energy). CR transport redistributes CR pressure out of the galaxy, creating a non-thermal pressure gradient that exerts a force opposing gravity. If the force exerted by the CR pressure gradient is sufficiently strong, it will trigger galactic outflows. Relative to thermally driven winds, CR driven winds are cooler, smoother, and more mass-loaded [187]. Additionally, since cosmic rays do not suffer radiative losses, CR-driven winds may continue accelerating gas at large distances from the galactic disc. However, since the gravitational force is stronger in more massive galaxies, CR-driven winds may become inefficient in galaxy groups [188].
- (2)
- Streaming cosmic rays impart energy to heat the surrounding gas. In massive galaxies, this CR heating rate can efficiently balance radiative cooling, preventing a cooling catastrophe (e.g., [189,190,191,192]). CR heating may also be a key aspect in the self-regulated AGN feedback cycle. As cosmic rays lose energy, gas cools more efficiently, fueling AGN feedback which re-injects CR energy into the IGrM [193].
- (3)
- CR pressure qualitatively alters the structure of multiphase gas in galactic halos (e.g., [180,194,195,196]). Non-thermal pressure support enables cool gas to exist at lower densities than expected from purely thermal equilibrium. Figure 2 demonstrates how the density contrast between cold and hot gas in a two-phase medium diminishes with increasing CR pressure support. In the extreme case of a CR pressure-dominated galaxy halo, cool and hot gas can exist at the same densities. However, CR pressure is unlikely to be the dominant source of pressure in the halos of massive galaxies. Therefore, the likely effect of cosmic rays in the IGrM is a modest decrease of cool cloud and cool filament densities [197,198].
4. Results of Simulations at the Group Scale
4.1. The Baryonic Content of Group Halos
4.1.1. Gaseous and Stellar Masses in Recent Simulations
4.1.2. Gaseous Profiles in Recent Simulations
4.2. Brightest Groups Galaxies
4.2.1. Central Galaxy Stellar Masses
4.2.2. Central Galaxy Star Formation Rates
4.2.3. Central Galaxy Morphologies
4.2.4. The Link between the BGG and IGrM
4.3. The Multiphase IGrM
4.4. Satellite Galaxies in Groups
4.5. Simulating the Impact of Galaxy Group Astrophysics on Large-Scale Structure Cosmology
5. Future Directions
5.1. Using Simulations to Make Predictions for Existing and Future Missions and Telescopes
5.2. Observations and Simulations in Support of Each Other
5.3. Timely Research Topics for Simulations of Groups
- The relationship between the central SMBH and properties of the IGrM/ICM/CGM: The strong correlations between the mass of the central SMBH in a group () and the temperature and X-ray luminosity ( and ) of the IGrM/ICM [372,373], provide fundamental tests of AGN feedback in simulations (see also Section 4 of the companion review by Lovisari et al. [1]). On the one hand, the scaling with , assuming measures , is a natural expectation of the SMBH growth being controlled by the binding energy of the halo [374]. The EAGLE simulation prediction that scales inversely with at fixed halo mass and most strongly for the CGM (i.e., galactic halo masses below the group scale; Davies et al. [162] suggests the opposite, inverse trend, which is also seen in TNG100 [140]. As the latter paper explains, the CGM is reduced in response to the integrated SMBH feedback lifting baryons out of galaxy halos, lowering the density, and significantly increasing cooling times. However, by group masses, the Gaspari et al. [372] correlations appear reproduced by TNG100 with showing surprisingly little scatter for quenched galaxies with [375]. This link between and halo-wide , which is the best X-ray observational proxy for halo mass, indicates that simulations predict a fundamental relationship between and transmitted through the virialization of halo gas. The nature of this relationship contains both the virial temperature being set by hierarchical growth of group/cluster-scale halos (as discussed by [375]), and the mechanisms of gas accretion and AGN feedback determining SMBH growth, which span scales from the SMBH radius to (as discussed in Section 4.1 of the companion review by [78]. and in [376]). Bassini et al. [377] explored Gadget-3 cluster zoom simulations, finding that they were able to reproduce the observed and other correlations in the group and cluster regime. We emphasize the need for more simulations to explore the rich and diverse astrophysics contained in the relationship between group properties and their central SMBHs.
- Cooling flows or cold rain?: One of the key phenomenon that links the IGrM/ICM to the BGG/BCG and ultimately, to the SMBH hosted by the central galaxy is the flow of gas from the former to the latter two, particularly in CC clusters. During the cooling phase, the conventional view is that the gas typically flows inwards subsonically and en masse, meaning that if gas is multiphased, then all phases move inwards in a comoving fashion. This is how cooling flows were originally conceived ([378]; see also reviews by [379,380]); this is what pre-AGN feedback simulations found (see Figures 17 and 19 of [95]); and recently, this is how the inflow is thought to behave during times when the central AGN is quiescent (or in quadrants about the cluster center where cooling is dominant). Recent very high resolution simulations of idealized galaxy groups and clusters [150,381,382,383,384,385,386] find that when the ratio in a cooling group/cluster core drops below some threshold (nominally ∼10), local density perturbations can become thermally unstable [288,290], leading to the formation of cold dense clouds. These clouds then separate from the rest of the CGM and stochastically rain down upon central galaxy and its SMBH. This “cold rain” fuels both star formation events as well as AGN outbursts.There are number of problems with the conventional Bondi accretion model indicating that it is untenable (see, e.g., [384,385,387,388]), which the cold rain model appears to resolve. We argue that this warrants further investigation of the cold rain model within the context cosmological hydrodynamics simulations of the formation/evolution of massive galaxies, groups, and clusters. Two potential directions of study stand out: Firstly, current insights about the cold rain phenomenon come from idealized simulations that neither have satellite galaxies moving through the IGrM/ICM and inducing perturbations in their wakes, nor do they allow for interactions, like ram pressure stripping of these satellite galaxies. How these complications alter the thermal instability/cold rain picture remains unexplored. Secondly, it is not currently feasible to directly model the cold rain phenomenon in cosmological hydrodynamics simulations because that would require being able to resolve spatial scales approaching ∼1 pc ( see [389] for further details). This however means that there is an opportunity for developing innovative subgrid models that can capture the most important elements of the cold rain model. There is precedence for the second option in that the torque-limited accretion subgrid model of Anglés-Alcázar et al. [153] was created to encompass idealized simulations of gas-rich accretion discs from 10 kpc to 0.1 pc [390].
- New models for AGN feedback: Non-spherical, jet-like feedback appears necessary to impart energy to the IGrM/ICM while not over-evacuating the inner region, as discussed in Section 4 of the Lovisari et al. [1] companion review where they show in their Figure 7 results from an idealized simulation by Gaspari et al. [391] demonstrating a self-regulated jet capable of preserving the cool core (see also [382,383,384,385,386]). Collimated jet feedback is currently inadequately modeled in cosmological simulations; however, thermal blast feedback should not be dismissed as a potential mode operating at late times until it is confirmed that cored NCC underluminous groups do not exist. Meece et al. [392] found a hybrid kinetic jet with thermal heating in idealized hydro simulations could best achieve self-regulation and produce a cool core, whereas a thermal-only jet results in a cored profile that rapidly radiates energy away leading to a cooling catastrophe. Their kinetic-only model also achieves self-regulation, but appears too steady compared to observed AGN duty cycles.The failure of cosmological simulations to reproduce the observed thermal structure of the IGrM (Section 4.1.2) may be related to cosmological simulation’s inability to model narrow, high momentum flux, jet outflows. Narrow beams are better able to drill their way out through a highly pressurized IGrM/ICM that can easily stall an isotropic outflow, preventing the deposition of energy where it is needed. Nonetheless, narrow outflows have their own challenges, which become apparent through running idealized simulations. Firstly, as shown by Vernaleo and Reynolds [393] and confirmed by Cielo et al. [394], jets that fire in a fixed direction tend to deposit their energy at increasing larger distances and ultimately, end up doing so beyond the group/cluster core. As a result, such jets only delay the onset of catastrophic cooling, not prevent it. The second and equally vexing problem concerns the coupling between the narrow jets and the IGrM/ICM: how do narrow, bipolar jets manage to heat gas in the group/cluster cores in a near-isotropic fashion? This motivated Babul et al. [395] to argue for tilting jets, which change direction every so often as evidenced by observations detailed in this paper. Cielo et al. [394]—and most recently, Su et al. [396]—found that not only is tilting necessary, but the angle between jet events must also be reasonably large, and furthermore heated jets work better than cold jets. In effect, the desired outflows are those that have the appropriate energy/momentum flux, create near-spherical cocoons because these optimize energy transfer in transverse directions relatively to the jets, and in a time-averaged sense, distribute their energy in a near-isotropic fashion within the group/cluster core.
- X-ray detectability of new classes of groups: The largest number of diffuse object detections by eROSITA will be groups (e.g., [352]). The complete eRASS:8 survey should detect groups with out to [397]. While simulations of EAGLE and TNG100 eRASS:8 stacking show galactic-scale halos at will not be individually detected [361], eROSITA should observe groups in the local volume covered by CLoGS. Simulations will provide necessary guidance in the interpretation of any prospective cored NCC under-luminous groups and/or coalescing groups that have yet to virialize. It may well be that significantly under-luminous groups potentially exist as Pearson et al. [398] cannot detect with Chandra two of their 10 optically selected groups, which do not show signs of being unvirialized. The near future holds promise to detect new potential classes of groups—poor, under-luminous, and coalescing—in X-rays.
- Multi-phase gas stripping from group satellites: A shortcoming in common to all simulations that we have discussed in this review is the lack of a cold () and dense molecular phase in the ISM of galaxies. Both observations (e.g., [399]) and idealized hydrodynamic simulations (e.g., [400]) clearly indicate that ram pressure has a different effect on the dense molecular phase from which stars are formed than the more tenuous, warmer components traced by H i and H ii. Although post-processing can be used to estimate the molecular content of group satellites (albeit with strong assumptions; [307]), it cannot capture the different dynamical evolution of the two phases. Simulations with direct modeling of molecular gas—as is now often done in high-resolution zooms of individual galaxies (e.g., [113,299])—would therefore reveal a fundamentally new aspect of the interaction between the IGrM and satellite galaxies. Recent advances in subgrid cooling models [401] make such large-scale cold ISM simulations possible, but the high resolution required to resolve giant molecular clouds at least marginally () makes them unfeasible on cluster scales for the foreseeable future. Galaxy groups, on the other hand, would be perfectly suited to exploring this additional facet of the baryon cycle in a full cosmological setting.
- The Sunyaev-Zel’dovich Effect: SZ stacking is already measuring the pressure and density profiles of groups from large radii inward. Cross-correlating large spectroscopic surveys (e.g., BOSS [402]) with high-resolution maps of the CMB from the Atacama Cosmology Telescope (ACT) has measured the extended pressure and density profiles of groups via the tSZ and kSZ effect respectively. Amodeo et al. [403] detected elevated gas pressure profiles outside of groups indicating that feedback energy equivalent to double the gaseous halo binding energy needs to coupled directly to the IGrM, which is significantly above predictions from TNG100 simulations and even more so the EAGLE simulations [140]. Schaan et al. [404] showed that groups are far more devoid of baryons in kSZ measurements than a Navarro et al. [405] (NFW) profile. Lim et al. [406] tested groups in Illustris, EAGLE, TNG300, and Magneticum simulations against Planck Collaboration et al. [407] stacks, finding that the scale provides a very promising scale to constrain the nature of AGN feedback. The measurements of pressure, density, and, through division, temperature profiles of groups will dramatically increase in the 2020’s as the Rubin Telescope comes on line and the Roman and Euclid Telescopes are launched, providing spectroscopic surveys to cross-correlate further CMB observations from the ACT, the Simons Observatory, the Large Millimeter Telescope, and CMB-S4. These future SZ surveys will provide standard calibrations against which simulated groups are compared.
6. Final Statement
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1. | In the remainder of this review, we omit the ‘c’ suffix that identifies the overdensity as measured with respect to the critical, rather than for example, mean, density of the universe |
2. | All conversions are median differences obtained from the IllustrisTNG300 simulation |
3. | We note that the ability of particles to move through the simulation volume is not particular to this approach, and is also an integral feature of the SPH approach |
4. | |
5. | |
6. | We note the work of Ragagnin et al. [71] who measured the “fossil-ness” of Magneticum groups in the even larger 900 Mpc Box2b/hr volume, which apparently ran to |
7. | |
8. | IllustrisTNG does include anisotropic thermal conduction (and magnetic fields), though the impact on the evolution on hot gas in groups has not yet, to our knowledge, been examined in detail. However, Barnes et al. [167] have examined the impact of anisotropic thermal conduction on more massive clusters, concluded that it has the effect of making cool cores more prevalent |
9. | The companion review by Eckert et al. [78], Figures 14 and 15, plots gas fractions, , as a function of , which are more evacuated for a given halo than as plotted here. The gas, stellar, and baryon fractions within are less well constrained due to group X-ray measurements not extending out to yet, and therefore represent predictions for future observations |
10. | For EAGLE, TNG100, and SIMBA, all profiles shown are at ; for ROMULUS we combine five snapshots at because the simulation contains only a single halo in this mass |
11. | At first sight, this offset may be surprising given the explicit normalization of our profiles by the integrated . The reason for this apparent contradiction lies in the definition of , which is calculated under the assumption that the baryon fraction within is equal to the cosmic average . As shown in Figure 3, the actual gas fraction, and hence electron density, is lower by a factor of up to ≈3 at even within , so that |
12. | |
13. | As discussed in Section 4.1.1, there is already evidence for this, although at least the central regions of EAGLE groups appear to reproduce current observations (see Figure 5) |
14. | http://hea-www.cfa.harvard.edu/~jzuhone/pyxsim/ (accessed on 10 June 2021) pyXSIM is an implementation of the PHOX algorithm [355,356] |
15. | http://hea-www.cfa.harvard.edu/~jzuhone/soxs/ (accessed on 10 June 2021) |
References
- Lovisari, L.; Ettori, S.; Gaspari, M.; Giles, P.A. Scaling Properties of Galaxy Groups. Universe 2021, 7, 139. [Google Scholar] [CrossRef]
- Sun, M.; Voit, G.M.; Donahue, M.; Jones, C.; Forman, W.; Vikhlinin, A. Chandra Studies of the X-Ray Gas Properties of Galaxy Groups. Astrophys. J. 2009, 693, 1142–1172. [Google Scholar] [CrossRef] [Green Version]
- Eckmiller, H.J.; Hudson, D.S.; Reiprich, T.H. Testing the low-mass end of X-ray scaling relations with a sample of Chandra galaxy groups. Astron. Astrophys. 2011, 535, A105. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, V.; Reiprich, T.H.; Lovisari, L.; Eckmiller, H.J. Extending the LX—T relation from clusters to groups. Impact of cool core nature, AGN feedback, and selection effects. Astron. Astrophys. 2015, 573, A75. [Google Scholar] [CrossRef] [Green Version]
- Lovisari, L.; Reiprich, T.H.; Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 2015, 573, A118. [Google Scholar] [CrossRef]
- Mitchell, N.L.; McCarthy, I.G.; Bower, R.G.; Theuns, T.; Crain, R.A. On the origin of cores in simulated galaxy clusters. Mon. Not. R. Astron. Soc. 2009, 395, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Le Brun, A.M.C.; McCarthy, I.G.; Schaye, J.; Ponman, T.J. Towards a realistic population of simulated galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2014, 441, 1270–1290. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, E.; Ponman, T.J.; Kolokythas, K.; Raychaudhury, S.; Babul, A.; Vrtilek, J.M.; David, L.P.; Giacintucci, S.; Gitti, M.; Haines, C.P. The Complete Local Volume Groups Sample—I. Sample selection and X-ray properties of the high-richness subsample. Mon. Not. R. Astron. Soc. 2017, 472, 1482–1505. [Google Scholar] [CrossRef] [Green Version]
- Cavagnolo, K.W.; Donahue, M.; Voit, G.M.; Sun, M. Intracluster Medium Entropy Profiles for a Chandra Archival Sample of Galaxy Clusters. Astrophys. J. Suppl. 2009, 182, 12–32. [Google Scholar] [CrossRef]
- Pratt, G.W.; Croston, J.H.; Arnaud, M.; Böhringer, H. Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS). Astron. Astrophys. 2009, 498, 361–378. [Google Scholar] [CrossRef]
- Wetzel, A.R.; Tinker, J.L.; Conroy, C. Galaxy evolution in groups and clusters: Star formation rates, red sequence fractions and the persistent bimodality. Mon. Not. R. Astron. Soc. 2012, 424, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Davies, L.J.M.; Robotham, A.S.G.; Lagos, C.d.P.; Driver, S.P.; Stevens, A.R.H.; Bahé, Y.M.; Alpaslan, M.; Bremer, M.N.; Brown, M.J.I.; Brough, S.; et al. Galaxy and Mass Assembly (GAMA): Environmental quenching of centrals and satellites in groups. Mon. Not. R. Astron. Soc. 2019, 483, 5444–5458. [Google Scholar] [CrossRef] [Green Version]
- Moffett, A.J.; Ingarfield, S.A.; Driver, S.P.; Robotham, A.S.G.; Kelvin, L.S.; Lange, R.; Meštrić, U.; Alpaslan, M.; Baldry, I.K.; Bland-Hawthorn, J.; et al. Galaxy And Mass Assembly (GAMA): The stellar mass budget by galaxy type. Mon. Not. R. Astron. Soc. 2016, 457, 1308–1319. [Google Scholar] [CrossRef] [Green Version]
- Somerville, R.S.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef] [Green Version]
- Tumlinson, J.; Peeples, M.S.; Werk, J.K. The Circumgalactic Medium. Annu. Rev. Astron. Astrophys. 2017, 55, 389–432. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Donahue, M.; Bryan, G.L.; McDonald, M. Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 2015, 519, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Temi, P.; Brighenti, F. Raining on black holes and massive galaxies: The top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 2017, 466, 677–704. [Google Scholar] [CrossRef]
- Emerick, A.; Bryan, G.; Putman, M.E. Warm gas in and around simulated galaxy clusters as probed by absorption lines. Mon. Not. R. Astron. Soc. 2015, 453, 4051–4069. [Google Scholar] [CrossRef] [Green Version]
- Butsky, I.S.; Burchett, J.N.; Nagai, D.; Tremmel, M.; Quinn, T.R.; Werk, J.K. Ultraviolet signatures of the multiphase intracluster and circumgalactic media in the ROMULUSC simulation. Mon. Not. R. Astron. Soc. 2019, 490, 4292–4306. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.; Veilleux, S.; Mushotzky, R. The Effect of Environment on the Formation of Hα Filaments and Cool Cores in Galaxy Groups and Clusters. Astrophys. J. 2011, 731, 33. [Google Scholar] [CrossRef]
- Tremblay, G.R.; Combes, F.; Oonk, J.B.R.; Russell, H.R.; McDonald, M.A.; Gaspari, M.; Husemann, B.; Nulsen, P.E.J.; McNamara, B.R.; Hamer, S.L.; et al. A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophys. J. 2018, 865, 13. [Google Scholar] [CrossRef] [Green Version]
- Tonnesen, S.; Bryan, G.L.; Chen, R. How to Light it Up: Simulating Ram-pressure Stripped X-ray Bright Tails. Astrophys. J. 2011, 731, 98. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.; Pillepich, A.; Zinger, E.; Nelson, D.; Donnari, M.; Joshi, G.; Rodriguez-Gomez, V.; Genel, S.; Weinberger, R.; Vogelsberger, M.; et al. Jellyfish galaxies with the IllustrisTNG simulations—I. Gas-stripping phenomena in the full cosmological context. Mon. Not. R. Astron. Soc. 2019, 483, 1042–1066. [Google Scholar] [CrossRef]
- Campitiello, M.G.; Ignesti, A.; Gitti, M.; Brighenti, F.; Radovich, M.; Wolter, A.; Tomičić, N.; Bellhouse, C.; Poggianti, B.M.; Moretti, A.; et al. GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201. Astrophys. J. 2021, 911, 144. [Google Scholar] [CrossRef]
- McGee, S.L.; Bower, R.G.; Balogh, M.L. Overconsumption, outflows and the quenching of satellite galaxies. Mon. Not. R. Astron. Soc. 2014, 442, L105–L109. [Google Scholar] [CrossRef] [Green Version]
- Burchett, J.N.; Tripp, T.M.; Wang, Q.D.; Willmer, C.N.A.; Bowen, D.V.; Jenkins, E.B. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments. Mon. Not. R. Astron. Soc. 2018, 475, 2067–2085. [Google Scholar] [CrossRef] [Green Version]
- Stocke, J.T.; Keeney, B.A.; Danforth, C.W.; Oppenheimer, B.D.; Pratt, C.T.; Berlind, A.A.; Impey, C.; Jannuzi, B. The Ultraviolet Detection of Diffuse Gas in Galaxy Groups. Astrophys. J. Suppl. 2019, 240, 15. [Google Scholar] [CrossRef] [Green Version]
- Borthakur, S.; Yun, M.S.; Verdes-Montenegro, L. Detection of Diffuse Neutral Intragroup Medium in Hickson Compact Groups. Astrophys. J. 2010, 710, 385–407. [Google Scholar] [CrossRef]
- Oman, K.A.; Bahé, Y.M.; Healy, J.; Hess, K.M.; Hudson, M.J.; Verheijen, M.A.W. A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters. Mon. Not. R. Astron. Soc. 2021, 501, 5073–5095. [Google Scholar] [CrossRef]
- Brown, T.; Catinella, B.; Cortese, L.; Lagos, C.d.P.; Davé, R.; Kilborn, V.; Haynes, M.P.; Giovanelli, R.; Rafieferantsoa, M. Cold gas stripping in satellite galaxies: From pairs to clusters. Mon. Not. R. Astron. Soc. 2017, 466, 1275–1289. [Google Scholar] [CrossRef]
- Bahé, Y.M.; Schaye, J.; Barnes, D.J.; Dalla Vecchia, C.; Kay, S.T.; Bower, R.G.; Hoekstra, H.; McGee, S.L.; Theuns, T. Disruption of satellite galaxies in simulated groups and clusters: The roles of accretion time, baryons, and pre-processing. Mon. Not. R. Astron. Soc. 2019, 485, 2287–2311. [Google Scholar] [CrossRef]
- Fujita, Y. Pre-Processing of Galaxies before Entering a Cluster. Publ. Astron. Soc. Jpn. 2004, 56, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, A.R.; Tinker, J.L.; Conroy, C.; van den Bosch, F.C. Galaxy evolution in groups and clusters: Satellite star formation histories and quenching time-scales in a hierarchical Universe. Mon. Not. R. Astron. Soc. 2013, 432, 336–358. [Google Scholar] [CrossRef]
- Donnari, M.; Pillepich, A.; Joshi, G.D.; Nelson, D.; Genel, S.; Marinacci, F.; Rodriguez-Gomez, V.; Pakmor, R.; Torrey, P.; Vogelsberger, M.; et al. Quenched fractions in the IllustrisTNG simulations: The roles of AGN feedback, environment, and pre-processing. Mon. Not. R. Astron. Soc. 2021, 500, 4004–4024. [Google Scholar] [CrossRef]
- Jenkins, A.; Frenk, C.S.; White, S.D.M.; Colberg, J.M.; Cole, S.; Evrard, A.E.; Couchman, H.M.P.; Yoshida, N. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 2001, 321, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Bryan, G.L.; Norman, M.L. Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons. Astrophys. J. 1998, 495, 80–99. [Google Scholar] [CrossRef]
- Liang, L.; Durier, F.; Babul, A.; Davé, R.; Oppenheimer, B.D.; Katz, N.; Fardal, M.; Quinn, T. The growth and enrichment of intragroup gas. Mon. Not. R. Astron. Soc. 2016, 456, 4266–4290. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518–1547. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Dubois, Y.; Peirani, S.; Pichon, C.; Devriendt, J.; Gavazzi, R.; Welker, C.; Volonteri, M. The HORIZON-AGN simulation: Morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 2016, 463, 3948–3964. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, I.G.; Schaye, J.; Bird, S.; Le Brun, A.M.C. The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 2936–2965. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; Barnes, D.J.; Dalla Vecchia, C.; Kay, S.T.; White, S.D.M.; McCarthy, I.G.; Schaye, J.; Bower, R.G.; Crain, R.A.; Theuns, T.; et al. The Hydrangea simulations: Galaxy formation in and around massive clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4186–4208. [Google Scholar] [CrossRef]
- Barnes, D.J.; Kay, S.T.; Bahé, Y.M.; Dalla Vecchia, C.; McCarthy, I.G.; Schaye, J.; Bower, R.G.; Jenkins, A.; Thomas, P.A.; Schaller, M.; et al. The Cluster-EAGLE project: Global properties of simulated clusters with resolved galaxies. Mon. Not. R. Astron. Soc. 2017, 471, 1088–1106. [Google Scholar] [CrossRef] [Green Version]
- Henden, N.A.; Puchwein, E.; Shen, S.; Sijacki, D. The FABLE simulations: A feedback model for galaxies, groups, and clusters. Mon. Not. R. Astron. Soc. 2018, 479, 5385–5412. [Google Scholar] [CrossRef]
- Cui, W.; Knebe, A.; Yepes, G.; Pearce, F.; Power, C.; Dave, R.; Arth, A.; Borgani, S.; Dolag, K.; Elahi, P.; et al. The Three Hundred project: A large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Mon. Not. R. Astron. Soc. 2018, 480, 2898–2915. [Google Scholar] [CrossRef] [Green Version]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Pillepich, A.; Springel, V.; Weinberger, R.; Hernquist, L.; Pakmor, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Kauffmann, G.; et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Mon. Not. R. Astron. Soc. 2018, 475, 624–647. [Google Scholar] [CrossRef] [Green Version]
- Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T.R.; Pontzen, A.; Anderson, L.; Bellovary, J. The Romulus cosmological simulations: A physical approach to the formation, dynamics and accretion models of SMBHs. Mon. Not. R. Astron. Soc. 2017, 470, 1121–1139. [Google Scholar] [CrossRef] [Green Version]
- Tremmel, M.; Quinn, T.R.; Ricarte, A.; Babul, A.; Chadayammuri, U.; Natarajan, P.; Nagai, D.; Pontzen, A.; Volonteri, M. Introducing ROMULUSC: A cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 2019, 483, 3336–3362. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Nelson, D.; Pillepich, A.; Springel, V.; Pakmor, R.; Weinberger, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Marinacci, F.; Hernquist, L. First results from the TNG50 simulation: Galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 2019, 490, 3234–3261. [Google Scholar] [CrossRef] [Green Version]
- Teyssier, R. Grid-Based Hydrodynamics in Astrophysical Fluid Flows. Annu. Rev. Astron. Astrophys. 2015, 53, 325–364. [Google Scholar] [CrossRef]
- Springel, V. Smoothed Particle Hydrodynamics in Astrophysics. Annu. Rev. Astron. Astrophys. 2010, 48, 391–430. [Google Scholar] [CrossRef] [Green Version]
- Price, D.J. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 2012, 231, 759–794. [Google Scholar] [CrossRef] [Green Version]
- Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 2010, 401, 791–851. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 2015, 450, 53–110. [Google Scholar] [CrossRef] [Green Version]
- Koshizuka, S.; Oka, Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 1996, 123, 421–434. [Google Scholar] [CrossRef]
- Hu, C.Y.; Naab, T.; Walch, S.; Moster, B.P.; Oser, L. SPHGal: Smoothed particle hydrodynamics with improved accuracy for galaxy simulations. Mon. Not. R. Astron. Soc. 2014, 443, 1173–1191. [Google Scholar] [CrossRef]
- Schaller, M.; Dalla Vecchia, C.; Schaye, J.; Bower, R.G.; Theuns, T.; Crain, R.A.; Furlong, M.; McCarthy, I.G. The EAGLE simulations of galaxy formation: The importance of the hydrodynamics scheme. Mon. Not. R. Astron. Soc. 2015, 454, 2277–2291. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.M.; Murante, G.; Arth, A.; Remus, R.S.; Teklu, A.F.; Donnert, J.M.F.; Planelles, S.; Beck, M.C.; Förster, P.; Imgrund, M.; et al. An improved SPH scheme for cosmological simulations. Mon. Not. R. Astron. Soc. 2016, 455, 2110–2130. [Google Scholar] [CrossRef]
- Borrow, J.; Schaller, M.; Bower, R.G.; Schaye, J. Sphenix: Smoothed Particle Hydrodynamics for the next generation of galaxy formation simulations. arXiv 2020, arXiv:2012.03974. [Google Scholar]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937–1961. [Google Scholar] [CrossRef]
- McAlpine, S.; Helly, J.C.; Schaller, M.; Trayford, J.W.; Qu, Y.; Furlong, M.; Bower, R.G.; Crain, R.A.; Schaye, J.; Theuns, T.; et al. The EAGLE simulations of galaxy formation: Public release of halo and galaxy catalogues. Astron. Comput. 2016, 15, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Marinacci, F.; Vogelsberger, M.; Pakmor, R.; Torrey, P.; Springel, V.; Hernquist, L.; Nelson, D.; Weinberger, R.; Pillepich, A.; Naiman, J.; et al. First results from the IllustrisTNG simulations: Radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 2018, 480, 5113–5139. [Google Scholar] [CrossRef] [Green Version]
- Naiman, J.P.; Pillepich, A.; Springel, V.; Ramirez-Ruiz, E.; Torrey, P.; Vogelsberger, M.; Pakmor, R.; Nelson, D.; Marinacci, F.; Hernquist, L.; et al. First results from the IllustrisTNG simulations: A tale of two elements—Chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 2018, 477, 1206–1224. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Pakmor, R.; Pillepich, A.; Weinberger, R.; Nelson, D.; Hernquist, L.; Vogelsberger, M.; Genel, S.; Torrey, P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: Matter and galaxy clustering. Mon. Not. R. Astron. Soc. 2018, 475, 676–698. [Google Scholar] [CrossRef] [Green Version]
- Pillepich, A.; Nelson, D.; Hernquist, L.; Springel, V.; Pakmor, R.; Torrey, P.; Weinberger, R.; Genel, S.; Naiman, J.P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: The stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 648–675. [Google Scholar] [CrossRef]
- Donnari, M.; Pillepich, A.; Nelson, D.; Marinacci, F.; Vogelsberger, M.; Hernquist, L. Quenched fractions in the IllustrisTNG simulations: Comparison with observations and other theoretical models. arXiv 2020, arXiv:2008.00004. [Google Scholar]
- Dolag, K.; Komatsu, E.; Sunyaev, R. SZ effects in the Magneticum Pathfinder simulation: Comparison with the Planck, SPT, and ACT results. Mon. Not. R. Astron. Soc. 2016, 463, 1797–1811. [Google Scholar] [CrossRef] [Green Version]
- Castro, T.; Borgani, S.; Dolag, K.; Marra, V.; Quartin, M.; Saro, A.; Sefusatti, E. On the impact of baryons on the halo mass function, bias, and cluster cosmology. Mon. Not. R. Astron. Soc. 2021, 500, 2316–2335. [Google Scholar] [CrossRef]
- Ragagnin, A.; Dolag, K.; Moscardini, L.; Biviano, A.; D’Onofrio, M. Dependency of halo concentration on mass, redshift and fossilness in Magneticum hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2019, 486, 4001–4012. [Google Scholar] [CrossRef]
- Chadayammuri, U.; Tremmel, M.; Nagai, D.; Babul, A.; Quinn, T. Fountains and storms: The effects of AGN feedback and mergers on the evolution of the intracluster medium in the ROMULUSC simulation. Mon. Not. R. Astron. Soc. 2021, 504, 3922–3937. [Google Scholar] [CrossRef]
- Jung, S.L.; Rennehan, D.; Saeedzadeh, V.; Babul, A.; Tremmel, M.; Quinn, T.R.; S.I., L.; Sukyoung, K.Y. Brightest Group Galaxies in Romulus Simulations: A link between kinematics and morphology. In preparation.
- Pillepich, A.; Nelson, D.; Springel, V.; Pakmor, R.; Torrey, P.; Weinberger, R.; Vogelsberger, M.; Marinacci, F.; Genel, S.; van der Wel, A.; et al. First results from the TNG50 simulation: The evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 2019, 490, 3196–3233. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, R.; Carollo, C.M.; Mayer, L.; Renzini, A.; Lake, G.; Quinn, T.; Stinson, G.S.; Yepes, G. The Evolution of Central Group Galaxies in Hydrodynamical Simulations. Astrophys. J. 2010, 709, 218–240. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Crain, R.A.; Schaye, J.; Rahmati, A.; Richings, A.J.; Trayford, J.W.; Tumlinson, J.; Bower, R.G.; Schaller, M.; Theuns, T. Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations. Mon. Not. R. Astron. Soc. 2016, 460, 2157–2179. [Google Scholar] [CrossRef]
- Joshi, G.D.; Parker, L.C.; Wadsley, J.; Keller, B.W. The trajectories of galaxies in groups: Mass-loss and preprocessing. Mon. Not. R. Astron. Soc. 2019, 483, 235–248. [Google Scholar] [CrossRef]
- Eckert, D.; Gaspari, M.; Gastaldello, F.; Le Brun, A.M.C.; O’Sullivan, E. Feedback from Active Galactic Nuclei in Galaxy Groups. Universe 2021, 7, 142. [Google Scholar] [CrossRef]
- Dolag, K.; Stasyszyn, F. An MHD GADGET for cosmological simulations. Mon. Not. R. Astron. Soc. 2009, 398, 1678–1697. [Google Scholar] [CrossRef] [Green Version]
- Pakmor, R.; Springel, V. Simulations of magnetic fields in isolated disc galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Frenk, C.S.; White, S.D.M.; Bode, P.; Bond, J.R.; Bryan, G.L.; Cen, R.; Couchman, H.M.P.; Evrard, A.E.; Gnedin, N.; Jenkins, A.; et al. The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions. Astrophys. J. 1999, 525, 554–582. [Google Scholar] [CrossRef] [Green Version]
- Wadsley, J.W.; Veeravalli, G.; Couchman, H.M.P. On the treatment of entropy mixing in numerical cosmology. Mon. Not. R. Astron. Soc. 2008, 387, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Rasia, E.; Borgani, S.; Murante, G.; Planelles, S.; Beck, A.M.; Biffi, V.; Ragone-Figueroa, C.; Granato, G.L.; Steinborn, L.K.; Dolag, K. Cool Core Clusters from Cosmological Simulations. Astrophys. J. Lett. 2015, 813, L17. [Google Scholar] [CrossRef]
- Hahn, O.; Martizzi, D.; Wu, H.Y.; Evrard, A.E.; Teyssier, R.; Wechsler, R.H. rhapsody-g simulations—I. The cool cores, hot gas and stellar content of massive galaxy clusters. Mon. Not. R. Astron. Soc. 2017, 470, 166–186. [Google Scholar] [CrossRef] [Green Version]
- Sembolini, F.; Yepes, G.; Pearce, F.R.; Knebe, A.; Kay, S.T.; Power, C.; Cui, W.; Beck, A.M.; Borgani, S.; Dalla Vecchia, C.; et al. nIFTy galaxy cluster simulations—I. Dark matter and non-radiative models. Mon. Not. R. Astron. Soc. 2016, 457, 4063–4080. [Google Scholar] [CrossRef] [Green Version]
- Haardt, F.; Madau, P. Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background. Astrophys. J. 2012, 746, 125. [Google Scholar] [CrossRef] [Green Version]
- Ferland, G.J.; Porter, R.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Lykins, M.L.; Shaw, G.; Henney, W.J.; Stancil, P.C. The 2013 Release of Cloudy. Rev. Mex. Astron. Astrofis. 2013, 49, 137–163. [Google Scholar]
- Wiersma, R.P.C.; Schaye, J.; Smith, B.D. The effect of photoionization on the cooling rates of enriched, astrophysical plasmas. Mon. Not. R. Astron. Soc. 2009, 393, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.D.; Bryan, G.L.; Glover, S.C.O.; Goldbaum, N.J.; Turk, M.J.; Regan, J.; Wise, J.H.; Schive, H.Y.; Abel, T.; Emerick, A.; et al. GRACKLE: A chemistry and cooling library for astrophysics. Mon. Not. R. Astron. Soc. 2017, 466, 2217–2234. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Sijacki, D.; Torrey, P.; Springel, V.; Hernquist, L. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 2013, 436, 3031–3067. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Fang, T. Where Are the Baryons? III. Nonequilibrium Effects and Observables. Astrophys. J. 2006, 650, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Gnat, O.; Sternberg, A. Time-dependent Ionization in Radiatively Cooling Gas. Astrophys. J. Suppl. 2007, 168, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Gnat, O.; Ferland, G.J. Ion-by-ion Cooling Efficiencies. Astrophys. J. Suppl. 2012, 199, 20. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Schaye, J. Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background. Mon. Not. R. Astron. Soc. 2013, 434, 1043–1062. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.F.; Babul, A.; Katz, N.; Quinn, T.; Hernquist, L.; Weinberg, D.H. The effects of gasdynamics, cooling, star formation, and numerical resolution in simulations of cluster formation. Astrophys. J. 2000, 536, 623. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Kay, S.T.; Bryan, G.L. The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 2005, 364, 909–916. [Google Scholar] [CrossRef]
- Taylor, J.E.; Babul, A. The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics. Mon. Not. R. Astron. Soc. 2004, 348, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.I.; Williams, L.L.R.; Babul, A.; Dalcanton, J.J. Density Profiles of Collisionless Equilibria. II. Anisotropic Spherical Systems. Astrophys. J. 2007, 654, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: A hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 2003, 339, 289–311. [Google Scholar] [CrossRef]
- Schaye, J.; Dalla Vecchia, C. On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations. Mon. Not. R. Astron. Soc. 2008, 383, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Thompson, R.; Hopkins, P.F. MUFASA: Galaxy formation simulations with meshless hydrodynamics. Mon. Not. R. Astron. Soc. 2016, 462, 3265–3284. [Google Scholar] [CrossRef]
- Kennicutt, J.; Robert, C. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 2001, 322, 231–246. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef] [Green Version]
- Gastaldello, F.; Simionescu, A.; Mernier, F.; Biffi, V.; Gaspari, M.; Sato, K.; Matsushita, K. The metal content of the hot atmospheres of galaxy groups. Universe. accepted.
- Wiersma, R.P.C.; Schaye, J.; Theuns, T.; Dalla Vecchia, C.; Tornatore, L. Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 2009, 399, 574–600. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Kauffmann, G.; Pillepich, A.; Genel, S.; Springel, V.; Pakmor, R.; Hernquist, L.; Weinberger, R.; Torrey, P.; Vogelsberger, M.; et al. The abundance, distribution, and physical nature of highly ionized oxygen O VI, O VII, and O VIII in IllustrisTNG. Mon. Not. R. Astron. Soc. 2018, 477, 450–479. [Google Scholar] [CrossRef]
- Tornatore, L.; Borgani, S.; Dolag, K.; Matteucci, F. Chemical enrichment of galaxy clusters from hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2007, 382, 1050–1072. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Oppenheimer, B.D.; Sivanand am, S. Enrichment and pre-heating in intragroup gas from galactic outflows. Mon. Not. R. Astron. Soc. 2008, 391, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.R.; Kahn, S.M.; Paerels, F.B.S.; Kaastra, J.S.; Tamura, T.; Bleeker, J.A.M.; Ferrigno, C.; Jernigan, J.G. High-Resolution X-Ray Spectroscopic Constraints on Cooling-Flow Models for Clusters of Galaxies. Astrophys. J. 2003, 590, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Biffi, V.; Mernier, F.; Medvedev, P. Enrichment of the Hot Intracluster Medium: Numerical Simulations. Space Sci. Rev. 2018, 214, 123. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wadsley, J.; Stinson, G. The enrichment of the intergalactic medium with adiabatic feedback - I. Metal cooling and metal diffusion. Mon. Not. R. Astron. Soc. 2010, 407, 1581–1596. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Wetzel, A.; Kereš, D.; Faucher-Giguère, C.A.; Quataert, E.; Boylan-Kolchin, M.; Murray, N.; Hayward, C.C.; Garrison-Kimmel, S.; Hummels, C.; et al. FIRE-2 simulations: Physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 2018, 480, 800–863. [Google Scholar] [CrossRef] [Green Version]
- Rennehan, D. Mixing matters. arXiv 2021, arXiv:2104.07673. [Google Scholar]
- Oppenheimer, B.D.; Davé, R.; Kereš, D.; Fardal, M.; Katz, N.; Kollmeier, J.A.; Weinberg, D.H. Feedback and recycled wind accretion: Assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 2010, 406, 2325–2338. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Dalla Vecchia, C.; Booth, C.M.; Wiersma, R.P.C.; Theuns, T.; Haas, M.R.; Bertone, S.; Duffy, A.R.; McCarthy, I.G.; van de Voort, F. The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 2010, 402, 1536–1560. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, C.; Wadepuhl, M.; Parry, O.H.; Navarro, J.F.; Jenkins, A.; Springel, V.; Teyssier, R.; Carlson, E.; Couchman, H.M.P.; Crain, R.A.; et al. The Aquila comparison project: The effects of feedback and numerical methods on simulations of galaxy formation. Mon. Not. R. Astron. Soc. 2012, 423, 1726–1749. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.R.; Schaye, J.; Booth, C.M.; Dalla Vecchia, C.; Springel, V.; Theuns, T.; Wiersma, R.P.C. Physical properties of simulated galaxy populations at z = 2 - I. Effect of metal-line cooling and feedback from star formation and AGN. Mon. Not. R. Astron. Soc. 2013, 435, 2931–2954. [Google Scholar] [CrossRef] [Green Version]
- Torrey, P.; Vogelsberger, M.; Genel, S.; Sijacki, D.; Springel, V.; Hernquist, L. A model for cosmological simulations of galaxy formation physics: Multi-epoch validation. Mon. Not. R. Astron. Soc. 2014, 438, 1985–2004. [Google Scholar] [CrossRef] [Green Version]
- White, S.D.M.; Frenk, C.S. Galaxy Formation through Hierarchical Clustering. Astrophys. J. 1991, 379, 52. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davé, R.; Finlator, K. Tracing the re-ionization-epoch intergalactic medium with metal absorption lines. Mon. Not. R. Astron. Soc. 2009, 396, 729–758. [Google Scholar] [CrossRef] [Green Version]
- Keating, L.C.; Puchwein, E.; Haehnelt, M.G.; Bird, S.; Bolton, J.S. Testing the effect of galactic feedback on the IGM at z ∼ 6 with metal-line absorbers. Mon. Not. R. Astron. Soc. 2016, 461, 606–626. [Google Scholar] [CrossRef] [Green Version]
- Finlator, K.; Oppenheimer, B.D.; Davé, R.; Zackrisson, E.; Thompson, R.; Huang, S. The soft, fluctuating UVB at z ∼ 6 as traced by C IV, Si IV, and C II. Mon. Not. R. Astron. Soc. 2016, 459, 2299–2310. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, A.; Schaye, J.; Crain, R.A.; Oppenheimer, B.D.; Schaller, M.; Theuns, T. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2016, 459, 310–332. [Google Scholar] [CrossRef]
- Bird, S.; Rubin, K.H.R.; Suresh, J.; Hernquist, L. Simulating the carbon footprint of galactic haloes. Mon. Not. R. Astron. Soc. 2016, 462, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Chisari, N.E. Star Formation Feedback and Metal-enrichment History of the Intergalactic Medium. Astrophys. J. 2011, 731, 11. [Google Scholar] [CrossRef] [Green Version]
- Cooksey, K.L.; Thom, C.; Prochaska, J.X.; Chen, H.W. The Last Eight-Billion Years of Intergalactic C IV Evolution. Astrophys. J. 2010, 708, 868–908. [Google Scholar] [CrossRef]
- Becker, G.D.; Rauch, M.; Sargent, W.L.W. High-Redshift Metals. I. The Decline of C IV at z > 5.3. Astrophys. J. 2009, 698, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Songaila, A. The Minimum Universal Metal Density between Redshifts of 1.5 and 5.5. Astrophys. J. Lett. 2001, 561, L153–L156. [Google Scholar] [CrossRef]
- D’Odorico, V.; Cupani, G.; Cristiani, S.; Maiolino, R.; Molaro, P.; Nonino, M.; Centurión, M.; Cimatti, A.; di Serego Alighieri, S.; Fiore, F.; et al. Metals in the IGM approaching the re-ionization epoch: Results from X-shooter at the VLT. Mon. Not. R. Astron. Soc. 2013, 435, 1198–1232. [Google Scholar] [CrossRef] [Green Version]
- Matejek, M.S.; Simcoe, R.A. A Survey of Mg II Absorption at 2 < z < 6 with Magellan/FIRE. I. Sample and Evolution of the Mg II Frequency. Astrophys. J. 2012, 761, 112. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, I.G.; Schaye, J.; Ponman, T.J.; Bower, R.G.; Booth, C.M.; Dalla Vecchia, C.; Crain, R.A.; Springel, V.; Theuns, T.; Wiersma, R.P.C. The case for AGN feedback in galaxy groups. Mon. Not. R. Astron. Soc. 2010, 406, 822–839. [Google Scholar] [CrossRef] [Green Version]
- Planelles, S.; Borgani, S.; Fabjan, D.; Killedar, M.; Murante, G.; Granato, G.L.; Ragone-Figueroa, C.; Dolag, K. On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium. Mon. Not. R. Astron. Soc. 2014, 438, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 2006, 373, 1265–1292. [Google Scholar] [CrossRef]
- Murray, N.; Quataert, E.; Thompson, T.A. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. Astrophys. J. 2005, 618, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Dalla Vecchia, C.; Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 2012, 426, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Davé, R. Mass, metal, and energy feedback in cosmological simulations. Mon. Not. R. Astron. Soc. 2008, 387, 577–600. [Google Scholar] [CrossRef] [Green Version]
- Muratov, A.L.; Kereš, D.; Faucher-Giguère, C.A.; Hopkins, P.F.; Quataert, E.; Murray, N. Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 2015, 454, 2691–2713. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Kereš, D.; Oñorbe, J.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N.; Bullock, J.S. Galaxies on FIRE (Feedback In Realistic Environments): Stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 2014, 445, 581–603. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.J.; Crain, R.A.; Oppenheimer, B.D.; Schaye, J. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Mon. Not. R. Astron. Soc. 2020, 491, 4462–4480. [Google Scholar] [CrossRef] [Green Version]
- Stinson, G.; Seth, A.; Katz, N.; Wadsley, J.; Governato, F.; Quinn, T. Star formation and feedback in smoothed particle hydrodynamic simulations—I. Isolated galaxies. Mon. Not. R. Astron. Soc. 2006, 373, 1074–1090. [Google Scholar] [CrossRef]
- Crain, R.A.; Theuns, T.; Dalla Vecchia, C.; Eke, V.R.; Frenk, C.S.; Jenkins, A.; Kay, S.T.; Peacock, J.A.; Pearce, F.R.; Schaye, J.; et al. Galaxies-intergalactic medium interaction calculation—I. Galaxy formation as a function of large-scale environment. Mon. Not. R. Astron. Soc. 2009, 399, 1773–1794. [Google Scholar] [CrossRef] [Green Version]
- Bower, R.G.; Schaye, J.; Frenk, C.S.; Theuns, T.; Schaller, M.; Crain, R.A.; McAlpine, S. The dark nemesis of galaxy formation: Why hot haloes trigger black hole growth and bring star formation to an end. Mon. Not. R. Astron. Soc. 2017, 465, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.M.; Schaye, J. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: Method and tests. Mon. Not. R. Astron. Soc. 2009, 398, 53–74. [Google Scholar] [CrossRef]
- Di Matteo, T.; Colberg, J.; Springel, V.; Hernquist, L.; Sijacki, D. Direct Cosmological Simulations of the Growth of Black Holes and Galaxies. Astrophys. J. 2008, 676, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Hirschmann, M.; Dolag, K.; Saro, A.; Bachmann, L.; Borgani, S.; Burkert, A. Cosmological simulations of black hole growth: AGN luminosities and downsizing. Mon. Not. R. Astron. Soc. 2014, 442, 2304–2324. [Google Scholar] [CrossRef] [Green Version]
- Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T.R. Off the beaten path: A new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations. Mon. Not. R. Astron. Soc. 2015, 451, 1868–1874. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Di Matteo, T.; Hernquist, L. Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. 2005, 361, 776–794. [Google Scholar] [CrossRef] [Green Version]
- Steinborn, L.K.; Dolag, K.; Hirschmann, M.; Prieto, M.A.; Remus, R.S. A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. Mon. Not. R. Astron. Soc. 2015, 448, 1504–1525. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Ruszkowski, M.; Oh, S.P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 2013, 432, 3401–3422. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Guevara, Y.M.; Bower, R.G.; Schaye, J.; Furlong, M.; Frenk, C.S.; Booth, C.M.; Crain, R.A.; Dalla Vecchia, C.; Schaller, M.; Theuns, T. The impact of angular momentum on black hole accretion rates in simulations of galaxy formation. Mon. Not. R. Astron. Soc. 2015, 454, 1038–1057. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Quataert, E. An analytic model of angular momentum transport by gravitational torques: From galaxies to massive black holes. Mon. Not. R. Astron. Soc. 2011, 415, 1027–1050. [Google Scholar] [CrossRef] [Green Version]
- Anglés-Alcázar, D.; Davé, R.; Faucher-Giguère, C.A.; Özel, F.; Hopkins, P.F. Gravitational torque-driven black hole growth and feedback in cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 464, 2840–2853. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Crain, R.A.; Stevens, A.R.H.; Narayanan, D.; Saintonge, A.; Catinella, B.; Cortese, L. Galaxy cold gas contents in modern cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2020, 497, 146–166. [Google Scholar] [CrossRef]
- Lin, Y.T.; Mohr, J.J. K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light. Astrophys. J. 2004, 617, 879–895. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Weinberger, R.; Springel, V.; Hernquist, L.; Pillepich, A.; Marinacci, F.; Pakmor, R.; Nelson, D.; Genel, S.; Vogelsberger, M.; Naiman, J.; et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 2017, 465, 3291–3308. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, I.G.; Schaye, J.; Bower, R.G.; Ponman, T.J.; Booth, C.M.; Dalla Vecchia, C.; Springel, V. Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2011, 412, 1965–1984. [Google Scholar] [CrossRef] [Green Version]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef] [Green Version]
- Genel, S.; Vogelsberger, M.; Springel, V.; Sijacki, D.; Nelson, D.; Snyder, G.; Rodriguez-Gomez, V.; Torrey, P.; Hernquist, L. Introducing the Illustris project: The evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 2014, 445, 175–200. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Teyssier, R. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations. Mon. Not. R. Astron. Soc. 2012, 420, 2662–2683. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.J.; Crain, R.A.; McCarthy, I.G.; Oppenheimer, B.D.; Schaye, J.; Schaller, M.; McAlpine, S. The gas fractions of dark matter haloes hosting simulated ~L☆ galaxies are governed by the feedback history of their black holes. Mon. Not. R. Astron. Soc. 2019, 485, 3783–3793. [Google Scholar] [CrossRef] [Green Version]
- Terrazas, B.A.; Bell, E.F.; Pillepich, A.; Nelson, D.; Somerville, R.S.; Genel, S.; Weinberger, R.; Habouzit, M.; Li, Y.; Hernquist, L.; et al. The relationship between black hole mass and galaxy properties: Examining the black hole feedback model in IllustrisTNG. Mon. Not. R. Astron. Soc. 2020, 493, 1888–1906. [Google Scholar] [CrossRef] [Green Version]
- Nulsen, P.E.J. Transport processes and the stripping of cluster galaxies. Mon. Not. R. Astron. Soc. 1982, 198, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Sijacki, D.; Springel, V. Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 2006, 371, 1025–1046. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics. Mon. Not. R. Astron. Soc. 2017, 466, 3387–3405. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.J.; Kannan, R.; Vogelsberger, M.; Pfrommer, C.; Puchwein, E.; Weinberger, R.; Springel, V.; Pakmor, R.; Nelson, D.; Marinacci, F.; et al. Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Mon. Not. R. Astron. Soc. 2019, 488, 3003–3013. [Google Scholar] [CrossRef]
- Rennehan, D.; Babul, A.; Hopkins, P.F.; Davé, R.; Moa, B. Dynamic localized turbulent diffusion and its impact on the galactic ecosystem. Mon. Not. R. Astron. Soc. 2019, 483, 3810–3831. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C.; Sanders, J.S.; Ettori, S.; Taylor, G.B.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Ogle, P.M. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2000, 318, L65–L68. [Google Scholar] [CrossRef] [Green Version]
- Brüggen, M.; Ruszkowski, M.; Hallman, E. Active Galactic Nuclei Heating and Dissipative Processes in Galaxy Clusters. Astrophys. J. 2005, 630, 740–749. [Google Scholar] [CrossRef]
- Dursi, L.J.; Pfrommer, C. Draping of Cluster Magnetic Fields over Bullets and Bubbles—Morphology and Dynamic Effects. Astrophys. J. 2008, 677, 993–1018. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Schmidt, R.W.; Taylor, G.B. A deep Chandra observation of the Perseus cluster: Shocks and ripples. Mon. Not. R. Astron. Soc. 2003, 344, L43–L47. [Google Scholar] [CrossRef] [Green Version]
- Ruszkowski, M.; Brüggen, M.; Begelman, M.C. Three-Dimensional Simulations of Viscous Dissipation in the Intracluster Medium. Astrophys. J. 2004, 615, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.F.; Oh, S.P. A New Numerical Scheme for Cosmic-Ray Transport. Astrophys. J. 2018, 854, 5. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.K.; Kereš, D.; Hopkins, P.F.; Quataert, E.; Su, K.Y.; Hayward, C.C.; Faucher-Giguère, C.A. Cosmic ray feedback in the FIRE simulations: Constraining cosmic ray propagation with GeV γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 488, 3716–3744. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Pfrommer, C. Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. Mon. Not. R. Astron. Soc. 2019, 485, 2977–3008. [Google Scholar] [CrossRef]
- Zweibel, E.G. The microphysics and macrophysics of cosmic rays. Phys. Plasmas 2013, 20, 055501. [Google Scholar] [CrossRef] [Green Version]
- Zweibel, E.G. The basis for cosmic ray feedback: Written on the wind. Phys. Plasmas 2017, 24, 055402. [Google Scholar] [CrossRef]
- Wiener, J.; Pfrommer, C.; Oh, S.P. Cosmic ray-driven galactic winds: Streaming or diffusion? Mon. Not. R. Astron. Soc. 2017, 467, 906–921. [Google Scholar] [CrossRef] [Green Version]
- Butsky, I.S.; Quinn, T.R. The Role of Cosmic-ray Transport in Shaping the Simulated Circumgalactic Medium. Astrophys. J. 2018, 868, 108. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Chan, T.K.; Squire, J.; Quataert, E.; Ji, S.; Kereš, D.; Faucher-Giguère, C.A. Effects of different cosmic ray transport models on galaxy formation. Mon. Not. R. Astron. Soc. 2021, 501, 3663–3669. [Google Scholar] [CrossRef]
- Ipavich, F.M. Galactic winds driven by cosmic rays. Astrophys. J. 1975, 196, 107–120. [Google Scholar] [CrossRef]
- Uhlig, M.; Pfrommer, C.; Sharma, M.; Nath, B.B.; Enßlin, T.A.; Springel, V. Galactic winds driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 2012, 423, 2374–2396. [Google Scholar] [CrossRef] [Green Version]
- Pakmor, R.; Pfrommer, C.; Simpson, C.M.; Springel, V. Galactic Winds Driven by Isotropic and Anisotropic Cosmic-Ray Diffusion in Disk Galaxies. Astrophys. J. Lett. 2016, 824, L30. [Google Scholar] [CrossRef] [Green Version]
- Ruszkowski, M.; Yang, H.Y.K.; Zweibel, E. Global Simulations of Galactic Winds Including Cosmic-ray Streaming. Astrophys. J. 2017, 834, 208. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Chan, T.K.; Ji, S.; Hummels, C.B.; Kereš, D.; Quataert, E.; Faucher-Giguère, C.A. Cosmic ray driven outflows to Mpc scales from L* galaxies. Mon. Not. R. Astron. Soc. 2021, 501, 3640–3662. [Google Scholar] [CrossRef]
- Girichidis, P.; Naab, T.; Hanasz, M.; Walch, S. Cooler and smoother—The impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 2018, 479, 3042–3067. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.; Pakmor, R.; Simpson, C.M.; Springel, V.; Pfrommer, C. The dependence of cosmic ray-driven galactic winds on halo mass. Mon. Not. R. Astron. Soc. 2018, 475, 570–584. [Google Scholar] [CrossRef]
- Guo, F.; Oh, S.P. Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 2008, 384, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Enßlin, T.; Pfrommer, C.; Miniati, F.; Subramanian, K. Cosmic ray transport in galaxy clusters: Implications for radio halos, gamma-ray signatures, and cool core heating. Astron. Astrophys. 2011, 527, A99. [Google Scholar] [CrossRef]
- Wiener, J.; Oh, S.P.; Guo, F. Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 2013, 434, 2209–2228. [Google Scholar] [CrossRef] [Green Version]
- Su, K.Y.; Hopkins, P.F.; Hayward, C.C.; Faucher-Giguère, C.A.; Kereš, D.; Ma, X.; Orr, M.E.; Chan, T.K.; Robles, V.H. Cosmic rays or turbulence can suppress cooling flows (where thermal heating or momentum injection fail). Mon. Not. R. Astron. Soc. 2020, 491, 1190–1212. [Google Scholar] [CrossRef]
- Jacob, S.; Pfrommer, C. Cosmic ray heating in cool core clusters II: Self-regulation cycle and non-thermal emission. Mon. Not. R. Astron. Soc. 2017. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Bryan, G.L.; Corlies, L. Role of cosmic rays in the circumgalactic medium. Mon. Not. R. Astron. Soc. 2016, 456, 582–601. [Google Scholar] [CrossRef]
- Ji, S.; Chan, T.K.; Hummels, C.B.; Hopkins, P.F.; Stern, J.; Kereš, D.; Quataert, E.; Faucher-Giguère, C.A.; Murray, N. Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Mon. Not. R. Astron. Soc. 2020, 496, 4221–4238. [Google Scholar] [CrossRef]
- Buck, T.; Pfrommer, C.; Pakmor, R.; Grand, R.J.J.; Springel, V. The effects of cosmic rays on the formation of Milky Way-mass galaxies in a cosmological context. Mon. Not. R. Astron. Soc. 2020, 497, 1712–1737. [Google Scholar] [CrossRef]
- Sharma, P.; Parrish, I.J.; Quataert, E. Thermal Instability with Anisotropic Thermal Conduction and Adiabatic Cosmic Rays: Implications for Cold Filaments in Galaxy Clusters. Astrophys. J. 2010, 720, 652–665. [Google Scholar] [CrossRef] [Green Version]
- Ruszkowski, M.; Yang, H.Y.K.; Reynolds, C.S. Powering of Hα Filaments by Cosmic Rays. Astrophys. J. 2018, 858, 64. [Google Scholar] [CrossRef]
- Butsky, I.S.; Fielding, D.B.; Hayward, C.C.; Hummels, C.B.; Quinn, T.R.; Werk, J.K. The Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium. Astrophys. J. 2020, 903, 77. [Google Scholar] [CrossRef]
- Helsdon, S.F.; Ponman, T.J. The intragroup medium in loose groups of galaxies. Mon. Not. R. Astron. Soc. 2000, 315, 356–370. [Google Scholar] [CrossRef] [Green Version]
- White, D.A.; Jones, C.; Forman, W. An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies. Mon. Not. R. Astron. Soc. 1997, 292, 419–467. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.L.; Babul, A.; Patton, D.R. Pre-heated isentropic gas in groups of galaxies. Mon. Not. R. Astron. Soc. 1999, 307, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Bryan, G.L. Explaining the Entropy Excess in Clusters and Groups of Galaxies without Additional Heating. Astrophys. J. Lett. 2000, 544, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Katz, N.; Weinberg, D.H. X-Ray Scaling Relations of Galaxy Groups in a Hydrodynamic Cosmological Simulation. Astrophys. J. 2002, 579, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.H.; Zaritsky, D.; Zabludoff, A.I. A Census of Baryons in Galaxy Clusters and Groups. Astrophys. J. 2007, 666, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.L.; McCarthy, I.G.; Bower, R.G.; Eke, V.R. Testing cold dark matter with the hierarchical build-up of stellar light. Mon. Not. R. Astron. Soc. 2008, 385, 1003–1014. [Google Scholar] [CrossRef] [Green Version]
- Kravtsov, A.V.; Vikhlinin, A.A.; Meshcheryakov, A.V. Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos. Astron. Lett. 2018, 44, 8–34. [Google Scholar] [CrossRef] [Green Version]
- Ponman, T.J.; Sanderson, A.J.R.; Finoguenov, A. The Birmingham-CfA cluster scaling project—III. Entropy and similarity in galaxy systems. Mon. Not. R. Astron. Soc. 2003, 343, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C.; Nulsen, P.E.J.; Canizares, C.R. Cooling flows in clusters of galaxies. Nature 1984, 310, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Giodini, S.; Pierini, D.; Finoguenov, A.; Pratt, G.W.; Boehringer, H.; Leauthaud, A.; Guzzo, L.; Aussel, H.; Bolzonella, M.; Capak, P.; et al. Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1. Astrophys. J. 2009, 703, 982–993. [Google Scholar] [CrossRef] [Green Version]
- Schaller, M.; Frenk, C.S.; Bower, R.G.; Theuns, T.; Jenkins, A.; Schaye, J.; Crain, R.A.; Furlong, M.; Dalla Vecchia, C.; McCarthy, I.G. Baryon effects on the internal structure of ΛCDM haloes in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2015, 451, 1247–1267. [Google Scholar] [CrossRef]
- Sun, M.; Sehgal, N.; Voit, G.M.; Donahue, M.; Jones, C.; Forman, W.; Vikhlinin, A.; Sarazin, C. The Pressure Profiles of Hot Gas in Local Galaxy Groups. Astrophys. J. Lett. 2011, 727, L49. [Google Scholar] [CrossRef]
- Babul, A.; Balogh, M.L.; Lewis, G.F.; Poole, G.B. Physical implications of the X-ray properties of galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2002, 330, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.J.; Vogelsberger, M.; Kannan, R.; Marinacci, F.; Weinberger, R.; Springel, V.; Torrey, P.; Pillepich, A.; Nelson, D.; Pakmor, R.; et al. A census of cool-core galaxy clusters in IllustrisTNG. Mon. Not. R. Astron. Soc. 2018, 481, 1809–1831. [Google Scholar] [CrossRef]
- Robson, D.; Davé, R. X-ray emission from hot gas in galaxy groups and clusters in SIMBA. Mon. Not. R. Astron. Soc. 2020, 498, 3061–3076. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Babul, A.; Bower, R.G.; Balogh, M.L. Towards a holistic view of the heating and cooling of the intracluster medium. Mon. Not. R. Astron. Soc. 2008, 386, 1309–1331. [Google Scholar] [CrossRef] [Green Version]
- Gitti, M.; Nulsen, P.E.J.; David, L.P.; McNamara, B.R.; Wise, M.W. A Chandra Study of the Large-scale Shock and Cool Filaments in Hydra A: Evidence for Substantial Gas Dredge-up by the Central Outburst. Astrophys. J. 2011, 732, 13. [Google Scholar] [CrossRef] [Green Version]
- Vantyghem, A.N.; McNamara, B.R.; Russell, H.R.; Main, R.A.; Nulsen, P.E.J.; Wise, M.W.; Hoekstra, H.; Gitti, M. Cycling of the powerful AGN in MS 0735.6+7421 and the duty cycle of radio AGN in clusters. Mon. Not. R. Astron. Soc. 2014, 442, 3192–3205. [Google Scholar] [CrossRef] [Green Version]
- David, L.P.; Nulsen, P.E.J.; McNamara, B.R.; Forman, W.; Jones, C.; Ponman, T.; Robertson, B.; Wise, M. A High-Resolution Study of the Hydra A Cluster with Chandra: Comparison of the Core Mass Distribution with Theoretical Predictions and Evidence for Feedback in the Cooling Flow. Astrophys. J. 2001, 557, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Hlavacek-Larrondo, J.; McDonald, M.; Benson, B.A.; Forman, W.R.; Allen, S.W.; Bleem, L.E.; Ashby, M.L.N.; Bocquet, S.; Brodwin, M.; Dietrich, J.P.; et al. X-Ray Cavities in a Sample of 83 SPT-selected Clusters of Galaxies: Tracing the Evolution of AGN Feedback in Clusters of Galaxies out to z = 1.2. Astrophys. J. 2015, 805, 35. [Google Scholar] [CrossRef]
- Cavaliere, A.; Menci, N.; Tozzi, P. Diffuse Baryons in Groups and Clusters of Galaxies. Astrophys. J. 1998, 501, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Bryan, G.L. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback. Nature 2001, 414, 425–427. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Bryan, G.L.; Balogh, M.L.; Bower, R.G. Modified Entropy Models for the Intracluster Medium. Astrophys. J. 2002, 576, 601–624. [Google Scholar] [CrossRef] [Green Version]
- Borgani, S.; Murante, G.; Springel, V.; Diaferio, A.; Dolag, K.; Moscardini, L.; Tormen, G.; Tornatore, L.; Tozzi, P. X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 2004, 348, 1078–1096. [Google Scholar] [CrossRef] [Green Version]
- Brough, S.; Forbes, D.A.; Kilborn, V.A.; Couch, W. Southern GEMS groups—I. Dynamical properties. Mon. Not. R. Astron. Soc. 2006, 370, 1223–1246. [Google Scholar] [CrossRef] [Green Version]
- Brough, S.; Couch, W.J.; Collins, C.A.; Jarrett, T.; Burke, D.J.; Mann, R.G. The luminosity-halo mass relation for brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2008, 385, L103–L107. [Google Scholar] [CrossRef] [Green Version]
- Von Der Linden, A.; Best, P.N.; Kauffmann, G.; White, S.D.M. How special are brightest group and cluster galaxies? Mon. Not. R. Astron. Soc. 2007, 379, 867–893. [Google Scholar] [CrossRef] [Green Version]
- Weinmann, S.M.; van den Bosch, F.C.; Yang, X.; Mo, H.J. Properties of galaxy groups in the Sloan Digital Sky Survey—I. The dependence of colour, star formation and morphology on halo mass. Mon. Not. R. Astron. Soc. 2006, 366, 2–28. [Google Scholar] [CrossRef] [Green Version]
- Gozaliasl, G.; Finoguenov, A.; Khosroshahi, H.G.; Mirkazemi, M.; Erfanianfar, G.; Tanaka, M. Brightest group galaxies: Stellar mass and star formation rate (paper I). Mon. Not. R. Astron. Soc. 2016, 458, 2762–2775. [Google Scholar] [CrossRef] [Green Version]
- Cougo, J.; Rembold, S.B.; Ferrari, F.; Kaipper, A.L.P. Morphometric analysis of brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2020, 498, 4433–4449. [Google Scholar] [CrossRef]
- Loubser, S.I.; Hoekstra, H.; Babul, A.; O’Sullivan, E. Diversity in the stellar velocity dispersion profiles of a large sample of brightest cluster galaxies z ≤ 0.3. Mon. Not. R. Astron. Soc. 2018, 477, 335–358. [Google Scholar] [CrossRef] [Green Version]
- Murante, G.; Giovalli, M.; Gerhard, O.; Arnaboldi, M.; Borgani, S.; Dolag, K. The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 2007, 377, 2–16. [Google Scholar] [CrossRef]
- Dubinski, J. The Origin of the Brightest Cluster Galaxies. Astrophys. J. 1998, 502, 141–149. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, G.; Blaizot, J. The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2007, 375, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.P.; Gao, L.; Guo, Q.; Frenk, C.S.; Jenkins, A.; Springel, V.; White, S.D.M. Surface photometry of brightest cluster galaxies and intracluster stars in ΛCDM. Mon. Not. R. Astron. Soc. 2015, 451, 2703–2722. [Google Scholar] [CrossRef] [Green Version]
- Nipoti, C. The special growth history of central galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 2017, 467, 661–673. [Google Scholar] [CrossRef]
- Ragone-Figueroa, C.; Granato, G.L.; Ferraro, M.E.; Murante, G.; Biffi, V.; Borgani, S.; Planelles, S.; Rasia, E. BCG mass evolution in cosmological hydro-simulations. Mon. Not. R. Astron. Soc. 2018, 479, 1125–1136. [Google Scholar] [CrossRef]
- Clauwens, B.; Schaye, J.; Franx, M.; Bower, R.G. The three phases of galaxy formation. Mon. Not. R. Astron. Soc. 2018, 478, 3994–4009. [Google Scholar] [CrossRef] [Green Version]
- Davison, T.A.; Norris, M.A.; Pfeffer, J.L.; Davies, J.J.; Crain, R.A. An EAGLE’s view of ex situ galaxy growth. Mon. Not. R. Astron. Soc. 2020, 497, 81–93. [Google Scholar] [CrossRef]
- Henden, N.A.; Puchwein, E.; Sijacki, D. The baryon content of groups and clusters of galaxies in the FABLE simulations. Mon. Not. R. Astron. Soc. 2020, 498, 2114–2137. [Google Scholar] [CrossRef]
- Jackson, T.M.; Pasquali, A.; Pacifici, C.; Engler, C.; Pillepich, A.; Grebel, E.K. The stellar mass assembly of low-redshift, massive, central galaxies in SDSS and the TNG300 simulation. Mon. Not. R. Astron. Soc. 2020, 497, 4262–4275. [Google Scholar] [CrossRef]
- Katsianis, A.; Xu, H.; Yang, X.; Luo, Y.; Cui, W.; Davé, R.; Lagos, C.D.P.; Zheng, X.; Zhao, P. The specific star formation rate function at different mass scales and quenching: A comparison between cosmological models and SDSS. Mon. Not. R. Astron. Soc. 2021, 500, 2036–2048. [Google Scholar] [CrossRef]
- Remus, R.S.; Dolag, K.; Hoffmann, T. The Outer Halos of Very Massive Galaxies: BCGs and their DSC in the Magneticum Simulations. Galaxies 2017, 5, 49. [Google Scholar] [CrossRef]
- Tacchella, S.; Diemer, B.; Hernquist, L.; Genel, S.; Marinacci, F.; Nelson, D.; Pillepich, A.; Rodriguez-Gomez, V.; Sales, L.V.; Springel, V.; et al. Morphology and star formation in IllustrisTNG: The build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 2019, 487, 5416–5440. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.H.; Sivanandam, S.; Zabludoff, A.I.; Zaritsky, D. Galaxy Cluster Baryon Fractions Revisited. Astrophys. J. 2013, 778, 14. [Google Scholar] [CrossRef] [Green Version]
- Coupon, J.; Arnouts, S.; van Waerbeke, L.; Moutard, T.; Ilbert, O.; van Uitert, E.; Erben, T.; Garilli, B.; Guzzo, L.; Heymans, C.; et al. The galaxy–halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field. Mon. Not. R. Astron. Soc. 2015, 449, 1352–1379. [Google Scholar] [CrossRef] [Green Version]
- Girelli, G.; Pozzetti, L.; Bolzonella, M.; Giocoli, C.; Marulli, F.; Baldi, M. The stellar-to-halo mass relation over the past 12 Gyr. I. Standard ΛCDM model. Astron. Astrophys. 2020, 634, A135. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Mo, H.J.; van den Bosch, F.C. Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics. Astrophys. J. 2008, 676, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Mo, H.J.; van den Bosch, F.C.; Zhang, Y.; Han, J. Evolution of the Galaxy-Dark Matter Connection and the Assembly of Galaxies in Dark Matter Halos. Astrophys. J. 2012, 752, 41. [Google Scholar] [CrossRef] [Green Version]
- Moster, B.P.; Naab, T.; White, S.D.M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 428, 3121–3138. [Google Scholar] [CrossRef]
- Van Uitert, E.; Cacciato, M.; Hoekstra, H.; Brouwer, M.; Sifón, C.; Viola, M.; Baldry, I.; Bland-Hawthorn, J.; Brough, S.; Brown, M.J.I.; et al. The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data. Mon. Not. R. Astron. Soc. 2016, 459, 3251–3270. [Google Scholar] [CrossRef] [Green Version]
- Erfanianfar, G.; Finoguenov, A.; Furnell, K.; Popesso, P.; Biviano, A.; Wuyts, S.; Collins, C.A.; Mirkazemi, M.; Comparat, J.; Khosroshahi, H.; et al. Stellar mass-halo mass relation for the brightest central galaxies of X-ray clusters since z ~ 0.65. Astron. Astrophys. 2019, 631, A175. [Google Scholar] [CrossRef] [Green Version]
- Kolokythas, K.; Vaddi, S. Star-formation & galaxy growth in the dominant galaxies of CLoGS sample: Feedback implications in Local Universe galaxy groups. In preparation.
- Sand, D.J.; Graham, M.L.; Bildfell, C.; Zaritsky, D.; Pritchet, C.; Hoekstra, H.; Just, D.W.; Herbert-Fort, S.; Sivanandam, S.; Foley, R.J.; et al. The Multi-Epoch nearby Cluster Survey: Type Ia Supernova Rate Measurement in z ~0.1 Clusters and the Late-time Delay Time Distribution. Astrophys. J. 2012, 746, 163. [Google Scholar] [CrossRef] [Green Version]
- Bildfell, C.; Hoekstra, H.; Babul, A.; Mahdavi, A. Resurrecting the red from the dead: Optical properties of BCGs in X-ray luminous clusters. Mon. Not. R. Astron. Soc. 2008, 389, 1637–1654. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.; Hoekstra, H.; Babul, A.; Bildfell, C.; Jeltema, T.; Henry, J.P. Joint Analysis of Cluster Observations. II. Chandra/XMM-Newton X-Ray and Weak Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies. Astrophys. J. 2013, 767, 116. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, H.; Herbonnet, R.; Muzzin, A.; Babul, A.; Mahdavi, A.; Viola, M.; Cacciato, M. The Canadian Cluster Comparison Project: Detailed study of systematics and updated weak lensing masses. Mon. Not. R. Astron. Soc. 2015, 449, 685–714. [Google Scholar] [CrossRef] [Green Version]
- Loubser, S.I.; Babul, A.; Hoekstra, H.; Mahdavi, A.; Donahue, M.; Bildfell, C.; Voit, G.M. The regulation of star formation in cool-core clusters: Imprints on the stellar populations of brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2016, 456, 1565–1578. [Google Scholar] [CrossRef] [Green Version]
- Herbonnet, R.; Sifón, C.; Hoekstra, H.; Bahé, Y.; van der Burg, R.F.J.; Melin, J.B.; von der Linden, A.; Sand, D.; Kay, S.; Barnes, D. CCCP and MENeaCS: (updated) weak-lensing masses for 100 galaxy clusters. Mon. Not. R. Astron. Soc. 2020, 497, 4684–4703. [Google Scholar] [CrossRef]
- Mittal, R.; Whelan, J.T.; Combes, F. Constraining star formation rates in cool-core brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2015, 450, 2564–2592. [Google Scholar] [CrossRef] [Green Version]
- Cooke, K.C.; Fogarty, K.; Kartaltepe, J.S.; Moustakas, J.; O’Dea, C.P.; Postman, M. Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since z ∼ 1.0. Astrophys. J. 2018, 857, 122. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.E.; van Dokkum, P.G.; Brammer, G.; Franx, M. The Star Formation Mass Sequence Out to z = 2.5. Astrophys. J. Lett. 2012, 754, L29. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.; Veilleux, S.; Rupke, D.S.N.; Mushotzky, R.; Reynolds, C. Star formation efficiency in the cool cores of galaxy clusters. Astrophys. J. 2011, 734, 95. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, I.G.; Balogh, M.L.; Babul, A.; Poole, G.B.; Horner, D.J. Models of the Intracluster Medium with Heating and Cooling: Explaining the Global and Structural X-Ray Properties of Clusters. Astrophys. J. 2004, 613, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Santos, F.; Jones, C.; Forman, W.R.; Lovisari, L.; Vikhlinin, A.; Weeren, R.J.V.; Murray, S.S.; Kraft, R.; Mazzotta, P.; David, L.; et al. The Fraction of Cool-core Clusters in X-ray versus SZ Samples Using Chandra Observations. Astrophys. J. 2017, 843. [Google Scholar] [CrossRef] [Green Version]
- Bonjean, V.; Aghanim, N.; Salomé, P.; Beelen, A.; Douspis, M.; Soubrié, E. Star formation rates and stellar masses from machine learning. Astron. Astrophys. 2019, 622, A137. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C.; Evans, N.J. Star Formation in the Milky Way and Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531–608. [Google Scholar] [CrossRef] [Green Version]
- Pipino, A.; Kaviraj, S.; Bildfell, C.; Babul, A.; Hoekstra, H.; Silk, J. Evidence for recent star formation in BCGs: A correspondence between blue cores and UV excess. Mon. Not. R. Astron. Soc. 2009, 395, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Fogarty, K.; Postman, M.; Larson, R.; Donahue, M.; Moustakas, J. The Relationship Between Brightest Cluster Galaxy Star Formation and the Intracluster Medium in CLASH. Astrophys. J. 2017, 846, 103. [Google Scholar] [CrossRef] [Green Version]
- Mittal, R.; McDonald, M.; Whelan, J.T.; Bruzual, G. The challenging task of determining star formation rates: The case of a massive stellar burst in the brightest cluster galaxy of Phoenix galaxy cluster. Mon. Not. R. Astron. Soc. 2017, 465, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Loubser, S.I.; Sánchez-Blázquez, P. The ultraviolet upturn in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 2011, 410, 2679–2689. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Chen, L.W. First ranked galaxies of non-elliptical morphology. Mon. Not. R. Astron. Soc. 2019, 482, 4084–4095. [Google Scholar] [CrossRef]
- Scannapieco, C.; Gadotti, D.A.; Jonsson, P.; White, S.D.M. An observer’s view of simulated galaxies: Disc-to-total ratios, bars and (pseudo-)bulges. Mon. Not. R. Astron. Soc. 2010, 407, L41–L45. [Google Scholar] [CrossRef] [Green Version]
- Bottrell, C.; Torrey, P.; Simard, L.; Ellison, S.L. Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey—II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass. Mon. Not. R. Astron. Soc. 2017, 467, 2879–2895. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; van de Ven, G.; Méndez-Abreu, J.; Obreja, A. Morphology and kinematics of orbital components in CALIFA galaxies across the Hubble sequence. Mon. Not. R. Astron. Soc. 2018, 479, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Valageas, P.; Silk, J. The entropy history of the universe. Astron. Astrophys. 1999, 350, 725–742. [Google Scholar]
- Nath, B.B.; Roychowdhury, S. Heating of the intracluster medium by quasar outflows. Mon. Not. R. Astron. Soc. 2002, 333, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Pointon, S.K.; Nielsen, N.M.; Kacprzak, G.G.; Muzahid, S.; Churchill, C.W.; Charlton, J.C. The Impact of the Group Environment on the O VI Circumgalactic Medium. Astrophys. J. 2017, 844, 23. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.M.; Kacprzak, G.G.; Pointon, S.K.; Churchill, C.W.; Murphy, M.T. MAGIICAT VI. The Mg II Intragroup Medium Is Kinematically Complex. Astrophys. J. 2018, 869, 153. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Putman, M.E.; Thom, C.; Chen, H.W.; Bryan, G.L. Warm Gas in the Virgo Cluster. I. Distribution of Lyα Absorbers. Astrophys. J. 2012, 754, 84. [Google Scholar] [CrossRef] [Green Version]
- Manuwal, A.; Narayanan, A.; Muzahid, S.; Charlton, J.C.; Khaire, V.; Chand, H. C IV absorbers tracing cool gas in dense galaxy group/cluster environments. Mon. Not. R. Astron. Soc. 2019, 485, 30–46. [Google Scholar] [CrossRef]
- Yoon, J.H.; Putman, M.E. Lyα Absorbers and the Coma Cluster. Astrophys. J. 2017, 839, 117. [Google Scholar] [CrossRef] [Green Version]
- Connor, T.; Zahedy, F.S.; Chen, H.W.; Cooper, T.J.; Mulchaey, J.S.; Vikhlinin, A. COS Observations of the Cosmic Web: A Search for the Cooler Components of a Hot, X-Ray Identified Filament. Astrophys. J. Lett. 2019, 884, L20. [Google Scholar] [CrossRef]
- Muzahid, S.; Charlton, J.; Nagai, D.; Schaye, J.; Srianand, R. Discovery of an H i-rich Gas Reservoir in the Outskirts of SZ-effect-selected Clusters. Astrophys. J. Lett. 2017, 846, L8. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, J.; Narayanan, A.; Muzahid, S.; Nagai, D.; Charlton, J.C.; Srianand, R. Detection of metal-rich, cool-warm gas in the outskirts of galaxy clusters. Mon. Not. R. Astron. Soc. 2019, 488, 5327–5339. [Google Scholar] [CrossRef] [Green Version]
- Zahedy, F.S.; Chen, H.W.; Johnson, S.D.; Pierce, R.M.; Rauch, M.; Huang, Y.H.; Weiner, B.J.; Gauthier, J.R. Characterizing circumgalactic gas around massive ellipticals at z ∼ 0.4—II. Physical properties and elemental abundances. Mon. Not. R. Astron. Soc. 2019, 484, 2257–2280. [Google Scholar] [CrossRef] [Green Version]
- Biffi, V.; Planelles, S.; Borgani, S.; Rasia, E.; Murante, G.; Fabjan, D.; Gaspari, M. The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2018, 476, 2689–2703. [Google Scholar] [CrossRef]
- McCourt, M.; Sharma, P.; Quataert, E.; Parrish, I.J. Thermal instability in gravitationally stratified plasmas: Implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 2012, 419, 3319–3337. [Google Scholar] [CrossRef] [Green Version]
- Esmerian, C.J.; Kravtsov, A.V.; Hafen, Z.; Faucher-Giguère, C.A.; Quataert, E.; Stern, J.; Kereš, D.; Wetzel, A. Thermal instability in the CGM of L☆ galaxies: Testing ’precipitation’ models with the FIRE simulations. Mon. Not. R. Astron. Soc. 2021. [Google Scholar] [CrossRef]
- Sharma, P.; McCourt, M.; Quataert, E.; Parrish, I.J. Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 2012, 420, 3174–3194. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Sharma, P.; Pillepich, A.; Springel, V.; Pakmor, R.; Weinberger, R.; Vogelsberger, M.; Marinacci, F.; Hernquist, L. Resolving small-scale cold circumgalactic gas in TNG50. Mon. Not. R. Astron. Soc. 2020, 498, 2391–2414. [Google Scholar] [CrossRef]
- Tumlinson, J.; Thom, C.; Werk, J.K.; Prochaska, J.X.; Tripp, T.M.; Katz, N.; Davé, R.; Oppenheimer, B.D.; Meiring, J.D.; Ford, A.B.; et al. The COS-Halos Survey: Rationale, Design, and a Census of Circumgalactic Neutral Hydrogen. Astrophys. J. 2013, 777, 59. [Google Scholar] [CrossRef]
- Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A.S.G.; van Uitert, E.; Alpaslan, M.; Baldry, I.K.; et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Mon. Not. R. Astron. Soc. 2015, 452, 3529–3550. [Google Scholar] [CrossRef] [Green Version]
- Jeltema, T.E.; Binder, B.; Mulchaey, J.S. The Hot Gas Halos of Galaxies in Groups. Astrophys. J. 2008, 679, 1162–1172. [Google Scholar] [CrossRef]
- Bamford, S.P.; Nichol, R.C.; Baldry, I.K.; Land, K.; Lintott, C.J.; Schawinski, K.; Slosar, A.; Szalay, A.S.; Thomas, D.; Torki, M.; et al. Galaxy Zoo: The dependence of morphology and colour on environment. Mon. Not. R. Astron. Soc. 2009, 393, 1324–1352. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; McCarthy, I.G.; Crain, R.A.; Theuns, T. The competition between confinement and ram pressure and its implications for galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 2012, 424, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Zinger, E.; Dekel, A.; Kravtsov, A.V.; Nagai, D. Quenching of satellite galaxies at the outskirts of galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 475, 3654–3681. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; McCarthy, I.G. Star formation quenching in simulated group and cluster galaxies: When, how, and why? Mon. Not. R. Astron. Soc. 2015, 447, 969–992. [Google Scholar] [CrossRef]
- Applebaum, E.; Brooks, A.M.; Christensen, C.R.; Munshi, F.; Quinn, T.R.; Shen, S.; Tremmel, M. Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations. Astrophys. J. 2021, 906, 96. [Google Scholar] [CrossRef]
- Blitz, L.; Rosolowsky, E. The Role of Pressure in GMC Formation II: The H2-Pressure Relation. Astrophys. J. 2006, 650, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, A.; Pawlik, A.H.; Raičević, M.; Schaye, J. On the evolution of the H I column density distribution in cosmological simulations. Mon. Not. R. Astron. Soc. 2013, 430, 2427–2445. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, N.Y.; Draine, B.T. Line Overlap and Self-Shielding of Molecular Hydrogen in Galaxies. Astrophys. J. 2014, 795, 37. [Google Scholar] [CrossRef] [Green Version]
- Marasco, A.; Crain, R.A.; Schaye, J.; Bahé, Y.M.; van der Hulst, T.; Theuns, T.; Bower, R.G. The environmental dependence of H I in galaxies in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2016, 461, 2630–2649. [Google Scholar] [CrossRef]
- Stevens, A.R.H.; Diemer, B.; Lagos, C.d.P.; Nelson, D.; Pillepich, A.; Brown, T.; Catinella, B.; Hernquist, L.; Weinberger, R.; Vogelsberger, M.; et al. Atomic hydrogen in IllustrisTNG galaxies: The impact of environment parallelled with local 21-cm surveys. Mon. Not. R. Astron. Soc. 2019, 483, 5334–5354. [Google Scholar] [CrossRef] [Green Version]
- Diemer, B.; Stevens, A.R.H.; Forbes, J.C.; Marinacci, F.; Hernquist, L.; Lagos, C.d.P.; Sternberg, A.; Pillepich, A.; Nelson, D.; Popping, G.; et al. Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation. Astrophys. J. Suppl. 2018, 238, 33. [Google Scholar] [CrossRef]
- Bahé, Y.M.; Crain, R.A.; Kauffmann, G.; Bower, R.G.; Schaye, J.; Furlong, M.; Lagos, C.; Schaller, M.; Trayford, J.W.; Dalla Vecchia, C.; et al. The distribution of atomic hydrogen in EAGLE galaxies: Morphologies, profiles, and H I holes. Mon. Not. R. Astron. Soc. 2016, 456, 1115–1136. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.R.H.; Lagos, C.d.P.; Cortese, L.; Catinella, B.; Diemer, B.; Nelson, D.; Pillepich, A.; Hernquist, L.; Marinacci, F.; Vogelsberger, M. Molecular hydrogen in IllustrisTNG galaxies: Carefully comparing signatures of environment with local CO and SFR data. Mon. Not. R. Astron. Soc. 2021, 502, 3158–3178. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B.; Tacconi, L.J.; Kauffmann, G.; Genzel, R.; Cortese, L.; Davé, R.; Fletcher, T.J.; Graciá-Carpio, J.; Kramer, C.; et al. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophys. J. Suppl. 2017, 233, 22. [Google Scholar] [CrossRef]
- Genel, S. How Environment Affects Galaxy Metallicity through Stripping and Formation History: Lessons from the Illustris Simulation. Astrophys. J. 2016, 822, 107. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; Schaye, J.; Crain, R.A.; McCarthy, I.G.; Bower, R.G.; Theuns, T.; McGee, S.L.; Trayford, J.W. The origin of the enhanced metallicity of satellite galaxies. Mon. Not. R. Astron. Soc. 2017, 464, 508–529. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Yuan, T.; Torrey, P.; Vogelsberger, M.; Martizzi, D.; Tran, K.V.H.; Kewley, L.J.; Marinacci, F.; Nelson, D.; Pillepich, A.; et al. Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 2018, 477, L35–L39. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, A.; Gallazzi, A.; van den Bosch, F.C. The gas-phase metallicity of central and satellite galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2012, 425, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Van de Voort, F.; Bahé, Y.M.; Bower, R.G.; Correa, C.A.; Crain, R.A.; Schaye, J.; Theuns, T. The environmental dependence of gas accretion on to galaxies: Quenching satellites through starvation. Mon. Not. R. Astron. Soc. 2017, 466, 3460–3471. [Google Scholar] [CrossRef]
- Watts, A.B.; Power, C.; Catinella, B.; Cortese, L.; Stevens, A.R.H. Global H I asymmetries in IllustrisTNG: A diversity of physical processes disturb the cold gas in galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 5205–5219. [Google Scholar] [CrossRef]
- Chung, A.; van Gorkom, J.H.; Kenney, J.D.P.; Vollmer, B. Virgo Galaxies with Long One-sided H I Tails. Astrophys. J. Lett. 2007, 659, L115–L119. [Google Scholar] [CrossRef] [Green Version]
- Ricarte, A.; Tremmel, M.; Natarajan, P.; Quinn, T. A Link between Ram Pressure Stripping and Active Galactic Nuclei. Astrophys. J. Lett. 2020, 895, L8. [Google Scholar] [CrossRef]
- Poggianti, B.M.; Jaffé, Y.L.; Moretti, A.; Gullieuszik, M.; Radovich, M.; Tonnesen, S.; Fritz, J.; Bettoni, D.; Vulcani, B.; Fasano, G.; et al. Ram-pressure feeding of supermassive black holes. Nature 2017, 548, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Troncoso-Iribarren, P.; Padilla, N.; Santander, C.; Lagos, C.D.P.; García-Lambas, D.; Rodríguez, S.; Contreras, S. The better half—Asymmetric star formation due to ram pressure in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2020, 497, 4145–4161. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, R.; Carollo, C.M.; Mayer, L. The Hubble Sequence in Groups: The Birth of the Early-type Galaxies. Astrophys. J. 2011, 736, 88. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.D.; Pillepich, A.; Nelson, D.; Marinacci, F.; Springel, V.; Rodriguez-Gomez, V.; Vogelsberger, M.; Hernquist, L. The fate of disc galaxies in IllustrisTNG clusters. Mon. Not. R. Astron. Soc. 2020, 496, 2673–2703. [Google Scholar] [CrossRef]
- Van den Bosch, F.C.; Ogiya, G. Dark matter substructure in numerical simulations: A tale of discreteness noise, runaway instabilities, and artificial disruption. Mon. Not. R. Astron. Soc. 2018, 475, 4066–4087. [Google Scholar] [CrossRef]
- Engler, C.; Pillepich, A.; Joshi, G.D.; Nelson, D.; Pasquali, A.; Grebel, E.K.; Lisker, T.; Zinger, E.; Donnari, M.; Marinacci, F.; et al. The distinct stellar-to-halo mass relations of satellite and central galaxies: Insights from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 2021, 500, 3957–3975. [Google Scholar] [CrossRef]
- Pallero, D.; Gómez, F.A.; Padilla, N.D.; Bahé, Y.M.; Vega-Martínez, C.A.; Torres-Flores, S. Too dense to go through: The importance of low-mass clusters for satellite quenching. arXiv 2020, arXiv:2012.08593. [Google Scholar]
- Jung, S.L.; Choi, H.; Wong, O.I.; Kimm, T.; Chung, A.; Yi, S.K. On the Origin of Gas-poor Galaxies in Galaxy Clusters Using Cosmological Hydrodynamic Simulations. Astrophys. J. 2018, 865, 156. [Google Scholar] [CrossRef]
- Bahé, Y.M.; McCarthy, I.G.; Balogh, M.L.; Font, A.S. Why does the environmental influence on group and cluster galaxies extend beyond the virial radius? Mon. Not. R. Astron. Soc. 2013, 430, 3017–3031. [Google Scholar] [CrossRef]
- Peebles, P.J.E. The Large-Scale Structure of the Universe; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Bond, J.R.; Efstathiou, G.; Silk, J. Massive neutrinos and the large-scale structure of the universe. Phys. Rev. Lett. 1980, 45, 1980–1984. [Google Scholar] [CrossRef]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371–394. [Google Scholar] [CrossRef]
- Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 1987, 227, 1–21. [Google Scholar] [CrossRef]
- Peacock, J.A.; Dodds, S.J. Reconstructing the Linear Power Spectrum of Cosmological Mass Fluctuations. Mon. Not. R. Astron. Soc. 1994, 267, 1020. [Google Scholar] [CrossRef]
- Mead, A.J.; Heymans, C.; Lombriser, L.; Peacock, J.A.; Steele, O.I.; Winther, H.A. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces. Mon. Not. R. Astron. Soc. 2016, 459, 1468–1488. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Sato, M.; Nishimichi, T.; Taruya, A.; Oguri, M. Revising the Halofit Model for the Nonlinear Matter Power Spectrum. Astrophys. J. 2012, 761, 152. [Google Scholar] [CrossRef] [Green Version]
- Van Daalen, M.P.; Schaye, J.; Booth, C.M.; Dalla Vecchia, C. The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology. Mon. Not. R. Astron. Soc. 2011, 415, 3649–3665. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Teyssier, R. A new method to quantify the effects of baryons on the matter power spectrum. J. Cosmol. Astropart. Phys. 2015, 12, 049. [Google Scholar] [CrossRef] [Green Version]
- Mummery, B.O.; McCarthy, I.G.; Bird, S.; Schaye, J. The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure. Mon. Not. R. Astron. Soc. 2017, 471, 227–242. [Google Scholar] [CrossRef]
- Semboloni, E.; Hoekstra, H.; Schaye, J.; van Daalen, M.P.; McCarthy, I.G. Quantifying the effect of baryon physics on weak lensing tomography. Mon. Not. R. Astron. Soc. 2011, 417, 2020–2035. [Google Scholar] [CrossRef] [Green Version]
- Debackere, S.N.B.; Schaye, J.; Hoekstra, H. How baryons can significantly bias cluster count cosmology. Mon. Not. R. Astron. Soc. 2021. [Google Scholar] [CrossRef]
- Mead, A.J.; Tröster, T.; Heymans, C.; Van Waerbeke, L.; McCarthy, I.G. A hydrodynamical halo model for weak-lensing cross correlations. Astron. Astrophys. 2020, 641, A130. [Google Scholar] [CrossRef]
- Van Daalen, M.P.; Schaye, J. The contributions of matter inside and outside of haloes to the matter power spectrum. Mon. Not. R. Astron. Soc. 2015, 452, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Huterer, D.; Takada, M. Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys. Astropart. Phys. 2005, 23, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Hearin, A.P.; Zentner, A.R.; Ma, Z. General requirements on matter power spectrum predictions for cosmology with weak lensing tomography. J. Cosmol. Astropart. Phys. 2012, 2012, 034. [Google Scholar] [CrossRef] [Green Version]
- Puchwein, E.; Sijacki, D.; Springel, V. Simulations of AGN Feedback in Galaxy Clusters and Groups: Impact on Gas Fractions and the LX-T Scaling Relation. Astrophys. J. Lett. 2008, 687, L53. [Google Scholar] [CrossRef] [Green Version]
- Chisari, N.E.; Richardson, M.L.A.; Devriendt, J.; Dubois, Y.; Schneider, A.; Le Brun, A.M.C.; Beckmann, R.S.; Peirani, S.; Slyz, A.; Pichon, C. The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 2018, 480, 3962–3977. [Google Scholar] [CrossRef] [Green Version]
- Van Daalen, M.P.; McCarthy, I.G.; Schaye, J. Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Mon. Not. R. Astron. Soc. 2020, 491, 2424–2446. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Stoira, N.; Refregier, A.; Weiss, A.J.; Knabenhans, M.; Stadel, J.; Teyssier, R. Baryonic effects for weak lensing. Part I. Power spectrum and covariance matrix. J. Cosmol. Astropart. Phys. 2020, 2020, 019. [Google Scholar] [CrossRef] [Green Version]
- Aricò, G.; Angulo, R.E.; Contreras, S.; Ondaro-Mallea, L.; Pellejero-Ibañez, M.; Zennaro, M. The BACCO Simulation Project: A baryonification emulator with Neural Networks. arXiv 2020, arXiv:2011.15018. [Google Scholar]
- McCarthy, I.G.; Bird, S.; Schaye, J.; Harnois-Deraps, J.; Font, A.S.; van Waerbeke, L. The BAHAMAS project: The CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation. Mon. Not. R. Astron. Soc. 2018, 476, 2999–3030. [Google Scholar] [CrossRef] [Green Version]
- White, S.D.M.; Navarro, J.F.; Evrard, A.E.; Frenk, C.S. The baryon content of galaxy clusters: A challenge to cosmological orthodoxy. Nature 1993, 366, 429–433. [Google Scholar] [CrossRef]
- Pillepich, A.; Porciani, C.; Reiprich, T.H. The X-ray cluster survey with eRosita: Forecasts for cosmology, cluster physics and primordial non-Gaussianity. Mon. Not. R. Astron. Soc. 2012, 422, 44–69. [Google Scholar] [CrossRef] [Green Version]
- Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M.N.; et al. The XXL Survey. I. Scientific motivations—XMM-Newton observing plan—Follow-up observations and simulation programme. Astron. Astrophys. 2016, 592, A1. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, S.; Saro, A.; Dolag, K.; Mohr, J.J. Halo mass function: Baryon impact, fitting formulae, and implications for cluster cosmology. Mon. Not. R. Astron. Soc. 2016, 456, 2361–2373. [Google Scholar] [CrossRef] [Green Version]
- Pillepich, A.; Reiprich, T.H.; Porciani, C.; Borm, K.; Merloni, A. Forecasts on dark energy from the X-ray cluster survey with eROSITA: Constraints from counts and clustering. Mon. Not. R. Astron. Soc. 2018, 481, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Wijers, N.A.; Schaye, J.; Oppenheimer, B.D. The warm-hot circumgalactic medium around EAGLE-simulation galaxies and its detection prospects with X-ray and UV line absorption. Mon. Not. R. Astron. Soc. 2020, 498, 574–598. [Google Scholar] [CrossRef]
- Yoshida, N.; Furlanetto, S.R.; Hernquist, L. The Temperature Structure of the Warm-Hot Intergalactic Medium. Astrophys. J. Lett. 2005, 618, L91–L94. [Google Scholar] [CrossRef]
- Biffi, V.; Dolag, K.; Böhringer, H.; Lemson, G. Observing simulated galaxy clusters with PHOX: A novel X-ray photon simulator. Mon. Not. R. Astron. Soc. 2012, 420, 3545–3556. [Google Scholar] [CrossRef] [Green Version]
- Biffi, V.; Dolag, K.; Böhringer, H. Investigating the velocity structure and X-ray observable properties of simulated galaxy clusters with PHOX. Mon. Not. R. Astron. Soc. 2013, 428, 1395–1409. [Google Scholar] [CrossRef] [Green Version]
- Zuhone, J.A.; Hallman, E.J. pyXSIM: Synthetic X-ray observations generator. arXiv 2016, arXiv:1608.002. [Google Scholar]
- Dauser, T.; Falkner, S.; Lorenz, M.; Kirsch, C.; Peille, P.; Cucchetti, E.; Schmid, C.; Brand, T.; Oertel, M.; Smith, R.; et al. SIXTE: A generic X-ray instrument simulation toolkit. Astron. Astrophys. 2019, 630, A66. [Google Scholar] [CrossRef]
- Merloni, A.; Predehl, P.; Becker, W.; Böhringer, H.; Boller, T.; Brunner, H.; Brusa, M.; Dennerl, K.; Freyberg, M.; Friedrich, P.; et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv 2012, arXiv:1209.3114. [Google Scholar]
- Biffi, V.; Dolag, K.; Merloni, A. AGN contamination of galaxy-cluster thermal X-ray emission: Predictions for eRosita from cosmological simulations. Mon. Not. R. Astron. Soc. 2018, 481, 2213–2227. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Bogdán, Á.; Crain, R.A.; ZuHone, J.A.; Forman, W.R.; Schaye, J.; Wijers, N.A.; Davies, J.J.; Jones, C.; Kraft, R.P.; et al. EAGLE and Illustris-TNG Predictions for Resolved eROSITA X-Ray Observations of the Circumgalactic Medium around Normal Galaxies. Astrophys. J. Lett. 2020, 893, L24. [Google Scholar] [CrossRef] [Green Version]
- Mazzotta, P.; Rasia, E.; Moscardini, L.; Tormen, G. Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations. Mon. Not. R. Astron. Soc. 2004, 354, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Rasia, E.; Ettori, S.; Moscardini, L.; Mazzotta, P.; Borgani, S.; Dolag, K.; Tormen, G.; Cheng, L.M.; Diaferio, A. Systematics in the X-ray cluster mass estimators. Mon. Not. R. Astron. Soc. 2006, 369, 2013–2024. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.J.; Vogelsberger, M.; Pearce, F.A.; Pop, A.R.; Kannan, R.; Cao, K.; Kay, S.T.; Hernquist, L. Characterizing hydrostatic mass bias with MOCK-X. Mon. Not. R. Astron. Soc. 2021. [Google Scholar] [CrossRef]
- Avila, S.; Crocce, M.; Ross, A.J.; García-Bellido, J.; Percival, W.J.; Banik, N.; Camacho, H.; Kokron, N.; Chan, K.C.; Andrade-Oliveira, F.; et al. Dark Energy Survey Year-1 results: Galaxy mock catalogues for BAO. Mon. Not. R. Astron. Soc. 2018, 479, 94–110. [Google Scholar] [CrossRef]
- Korytov, D.; Hearin, A.; Kovacs, E.; Larsen, P.; Rangel, E.; Hollowed, J.; Benson, A.J.; Heitmann, K.; Mao, Y.Y.; Bahmanyar, A.; et al. CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST. Astrophys. J. Suppl. 2019, 245, 26. [Google Scholar] [CrossRef]
- To, C.H.; Krause, E.; Rozo, E.; Wu, H.Y.; Gruen, D.; DeRose, J.; Rykoff, E.; Wechsler, R.H.; Becker, M.; Costanzi, M.; et al. Combination of cluster number counts and two-point correlations: Validation on mock Dark Energy Survey. Mon. Not. R. Astron. Soc. 2021, 502, 4093–4111. [Google Scholar] [CrossRef]
- Arnaud, M.; Pratt, G.W.; Piffaretti, R.; Böhringer, H.; Croston, J.H.; Pointecouteau, E. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ - M500 relation. Astron. Astrophys. 2010, 517, A92. [Google Scholar] [CrossRef] [Green Version]
- Le Brun, A.M.C.; McCarthy, I.G.; Melin, J.B. Testing Sunyaev-Zel’dovich measurements of the hot gas content of dark matter haloes using synthetic skies. Mon. Not. R. Astron. Soc. 2015, 451, 3868–3881. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, M. Locating the “Missing” Baryons with Extragalactic Dispersion Measure Estimates. Astrophys. J. Lett. 2014, 780, L33. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, J.X.; Zheng, Y. Probing Galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 2019, 485, 648–665. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Eckert, D.; Ettori, S.; Tozzi, P.; Bassini, L.; Rasia, E.; Brighenti, F.; Sun, M.; Borgani, S.; Johnson, S.D.; et al. The X-Ray Halo Scaling Relations of Supermassive Black Holes. Astrophys. J. 2019, 884, 169. [Google Scholar] [CrossRef] [Green Version]
- Bogdán, Á.; Lovisari, L.; Volonteri, M.; Dubois, Y. Correlation between the Total Gravitating Mass of Groups and Clusters and the Supermassive Black Hole Mass of Brightest Galaxies. Astrophys. J. 2018, 852, 131. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.M.; Schaye, J. Dark matter haloes determine the masses of supermassive black holes. Mon. Not. R. Astron. Soc. 2010, 405, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Truong, N.; Pillepich, A.; Werner, N. Correlations between supermassive black holes and hot gas atmospheres in IllustrisTNG and X-ray observations. Mon. Not. R. Astron. Soc. 2021, 501, 2210–2230. [Google Scholar] [CrossRef]
- Gaspari, M.; Tombesi, F.; Cappi, M. Linking macro-, meso- and microscales in multiphase AGN feeding and feedback. Nature Astronomy 2020, 4, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Bassini, L.; Rasia, E.; Borgani, S.; Ragone-Figueroa, C.; Biffi, V.; Dolag, K.; Gaspari, M.; Granato, G.L.; Murante, G.; Taffoni, G.; et al. Black hole mass of central galaxies and cluster mass correlation in cosmological hydro-dynamical simulations. Astron. Astrophys. 2019, 630, A144. [Google Scholar] [CrossRef] [Green Version]
- Cowie, L.L.; Binney, J. Radiative regulation of gas flow within clusters of galaxies: A model for cluster X-ray sources. Astrophys. J. 1977, 215, 723–732. [Google Scholar] [CrossRef]
- Fabian, A.C. Cooling Flows in Clusters of Galaxies. Annu. Rev. Astron. Astrophys. 1994, 32, 277–318. [Google Scholar] [CrossRef]
- Peterson, J.; Fabian, A. X-ray spectroscopy of cooling clusters. Phys. Rep. 2006, 427, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bryan, G.L. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Balance between Heating and Cooling. Astrophys. J. 2014, 789, 54. [Google Scholar] [CrossRef]
- Li, Y.; Bryan, G.L.; Ruszkowski, M.; Voit, G.M.; O’Shea, B.W.; Donahue, M. Cooling, AGN Feedback, and Star Formation in Simulated Cool-core Galaxy Clusters. Astrophys. J. 2015, 811, 73. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.; Sharma, P.; Babul, A. Cool Core Cycles: Cold Gas and AGN Jet Feedback in Cluster Cores. Astrophys. J. 2015, 811, 108. [Google Scholar] [CrossRef]
- Prasad, D.; Sharma, P.; Babul, A. AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 2017, 471, 1531–1542. [Google Scholar] [CrossRef]
- Prasad, D.; Sharma, P.; Babul, A. Cool-core Clusters: The Role of BCG, Star Formation, and AGN-driven Turbulence. Astrophys. J. 2018, 863, 62. [Google Scholar] [CrossRef]
- Nemmen, R.S.; Tchekhovskoy, A. On the efficiency of jet production in radio galaxies. Mon. Not. R. Astron. Soc. 2015, 449, 316–327. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Rohanizadegan, M.; Nulsen, P.E.J. Are Radio Active Galactic Nuclei Powered by Accretion or Black Hole Spin? Astrophys. J. 2011, 727, 39. [Google Scholar] [CrossRef] [Green Version]
- Hummels, C.B.; Smith, B.D.; Hopkins, P.F.; O’Shea, B.W.; Silvia, D.W.; Werk, J.K.; Lehner, N.; Wise, J.H.; Collins, D.C.; Butsky, I.S. The Impact of Enhanced Halo Resolution on the Simulated Circumgalactic Medium. Astrophys. J. 2019, 882, 156. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Quataert, E. How do massive black holes get their gas? Mon. Not. R. Astron. Soc. 2010, 407, 1529–1564. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Brighenti, F.; Temi, P.; Ettori, S. Can AGN Feedback Break the Self-similarity of Galaxies, Groups, and Clusters? Astrophys. J. Lett. 2014, 783, L10. [Google Scholar] [CrossRef] [Green Version]
- Meece, G.R.; Voit, G.M.; O’Shea, B.W. Triggering and Delivery Algorithms for AGN Feedback. Astrophys. J. 2017, 841, 133. [Google Scholar] [CrossRef]
- Vernaleo, J.C.; Reynolds, C.S. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models. Astrophys. J. 2006, 645, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Cielo, S.; Babul, A.; Antonuccio-Delogu, V.; Silk, J.; Volonteri, M. Feedback from reorienting AGN jets. I. Jet-ICM coupling, cavity properties and global energetics. Astron. Astrophys. 2018, 617, A58. [Google Scholar] [CrossRef]
- Babul, A.; Sharma, P.; Reynolds, C.S. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets. Astrophys. J. 2013, 768, 11. [Google Scholar] [CrossRef]
- Su, K.Y.; Hopkins, P.F.; Bryan, G.L.; Somerville, R.S.; Hayward, C.C.; Anglés-Alcázar, D.; Faucher-Giguère, C.A.; Wellons, S.; Stern, J.; Terrazas, B.A.; et al. Which AGN Jets Quench Star Formation in Massive Galaxies? arXiv 2021, arXiv:2102.02206. [Google Scholar]
- Käfer, F.; Finoguenov, A.; Eckert, D.; Clerc, N.; Ramos-Ceja, M.E.; Sanders, J.S.; Ghirardini, V. Toward the low-scatter selection of X-ray clusters. Galaxy cluster detection with eROSITA through cluster outskirts. Astron. Astrophys. 2020, 634, A8. [Google Scholar] [CrossRef]
- Pearson, R.J.; Ponman, T.J.; Norberg, P.; Robotham, A.S.G.; Babul, A.; Bower, R.G.; McCarthy, I.G.; Brough, S.; Driver, S.P.; Pimbblet, K. Galaxy And Mass Assembly: Search for a population of high-entropy galaxy groups. Mon. Not. R. Astron. Soc. 2017, 469, 3489–3504. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Paladino, R.; Poggianti, B.M.; Serra, P.; Ramatsoku, M.; Franchetto, A.; Deb, T.; Gullieuszik, M.; Tomičić, N.; Mingozzi, M.; et al. The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies. Astrophys. J. Lett. 2020, 897, L30. [Google Scholar] [CrossRef]
- Tonnesen, S.; Bryan, G.L. Gas Stripping in Simulated Galaxies with a Multiphase Interstellar Medium. Astrophys. J. 2009, 694, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Ploeckinger, S.; Schaye, J. Radiative cooling rates, ion fractions, molecule abundances, and line emissivities including self-shielding and both local and metagalactic radiation fields. Mon. Not. R. Astron. Soc. 2020, 497, 4857–4883. [Google Scholar] [CrossRef]
- Ahn, C.P.; Alexandroff, R.; Allende Prieto, C.; Anders, F.; Anderson, S.F.; Anderton, T.; Andrews, B.H.; Aubourg, É.; Bailey, S.; Bastien, F.A.; et al. The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. 2014, 211, 17. [Google Scholar] [CrossRef]
- Amodeo, S.; Battaglia, N.; Schaan, E.; Ferraro, S.; Moser, E.; Aiola, S.; Austermann, J.E.; Beall, J.A.; Bean, R.; Becker, D.T.; et al. Atacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel’dovich measurements. Phys. Rev. D 2021, 103, 063514. [Google Scholar] [CrossRef]
- Schaan, E.; Ferraro, S.; Amodeo, S.; Battaglia, N.; Aiola, S.; Austermann, J.E.; Beall, J.A.; Bean, R.; Becker, D.T.; Bond, R.J.; et al. Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel’dovich measurements from BOSS CMASS and LOWZ halos. Phys. Rev. D 2021, 103, 063513. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Lim, S.H.; Barnes, D.; Vogelsberger, M.; Mo, H.J.; Nelson, D.; Pillepich, A.; Dolag, K.; Marinacci, F. Properties of the ionized CGM and IGM: Tests for galaxy formation models from the Sunyaev-Zel’dovich effect. Mon. Not. R. Astron. Soc. 2021, 504, 5131–5143. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; et al. Planck intermediate results. XI. The gas content of dark matter halos: The Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies. Astron. Astrophys. 2013, 557, A52. [Google Scholar] [CrossRef] [Green Version]
- The EAGLE team. The EAGLE simulations of galaxy formation: Public release of particle data. arXiv 2017, arXiv:1706.09899.
- Nelson, D.; Springel, V.; Pillepich, A.; Rodriguez-Gomez, V.; Torrey, P.; Genel, S.; Vogelsberger, M.; Pakmor, R.; Marinacci, F.; Weinberger, R.; et al. The IllustrisTNG simulations: Public data release. Comput. Astrophys. Cosmol. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
Simulation | Simulation | Hydrodynamic | Baryon | Volume | AGN | at | at |
---|---|---|---|---|---|---|---|
Code | Scheme | Resolution | (Mpc ) | Feedback | |||
() | Scheme | ||||||
cosmo-OWLS a | Gadget-3 | Classical SPH | Thermal | 0.05 | |||
Illustris b | Arepo | Moving Mesh | Dual | 0.01 | 0.04 | ||
EAGLE c | Gadget-3 | Modern SPH | Thermal | 0.11 | 0.01 | ||
Liang et al. [37] | Gadget-2 | Classical SPH | None | 0.09 | 0.06 | ||
Horizon-AGN d | RAMSES | AMR | Dual | 0.09 | |||
BAHAMAS e | Gadget-3 | Classical SPH | Thermal | 0.04 | 0.02 | ||
C-EAGLE/Hydrangea f | Gadget-3 | Modern SPH | 30 zooms | Thermal | 0.08 | 0.02 | |
FABLE g | Arepo | Moving Mesh | + 6 zooms | Dual | 0.07 | 0.02 | |
The Three Hundred h | Gadget-3 | Modern SPH | 324 zooms | Dual | 0.10 | 0.02 | |
IllustrisTNG100 i | Arepo | Moving Mesh | Dual | 0.08 | 0.02 | ||
IllustrisTNG300 j | Arepo | Moving Mesh | Dual | 0.08 | |||
ROMULUS k | CHANGA | Modern SPH | + 3 zooms | Thermal | 0.11 | 0.04 | |
SIMBA l | GIZMO | Meshless Finite Mass | Dual | 0.04 | 0.02 | ||
IllustrisTNG50 m | Arepo | Moving Mesh | Dual | 0.09 | |||
Magneticum-Box2/hr n | Gadget-3 | Modern SPH | Dual |
Simulation | Mode | Injection | Energy Dump | Efficiency () | Frequency | Loading Factor |
---|---|---|---|---|---|---|
cosmo-OWLS | – | Thermal | K | 0.015 | Build-up | 1 particle |
Illustris | Quasar | Thermal | – | 0.01 | Continuous | |
– | Radio | Bubble | – | 0.07 | ||
EAGLE | – | Thermal | K | 0.015 | Build-up | 1 particle |
Horizon-AGN | Quasar | Thermal | K | 0.015 | Build-up | |
– | Jet | Kinetic | 0.10 | Continuous | ||
BAHAMAS | – | Thermal | K | 0.015 | Build-up | 20 particles |
C-EAGLE/Hydrangea | – | Thermal | K | 0.015 | Build-up | 1 particle |
ROMULUS | – | Thermal | – | 0.002 | Continuous | |
FABLE | Quasar | Thermal | – | 0.01 | Myr | |
– | Radio | Bubble | – | 0.08 | ||
IllustrisTNG | “High” | Thermal | – | 0.02 | Continuous | |
– | “Low” | Kinetic “Pulse” | – | Build-Up | Weinberger et al. [157] Equation (13) | |
SIMBA | “Radiative” | Kinetic | 0.003 a | Continuous | ||
– | “Jet” | Kinetic “Jet” | 0.03 a | Continuous |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oppenheimer, B.D.; Babul, A.; Bahé, Y.; Butsky, I.S.; McCarthy, I.G. Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe 2021, 7, 209. https://doi.org/10.3390/universe7070209
Oppenheimer BD, Babul A, Bahé Y, Butsky IS, McCarthy IG. Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe. 2021; 7(7):209. https://doi.org/10.3390/universe7070209
Chicago/Turabian StyleOppenheimer, Benjamin D., Arif Babul, Yannick Bahé, Iryna S. Butsky, and Ian G. McCarthy. 2021. "Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies" Universe 7, no. 7: 209. https://doi.org/10.3390/universe7070209
APA StyleOppenheimer, B. D., Babul, A., Bahé, Y., Butsky, I. S., & McCarthy, I. G. (2021). Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe, 7(7), 209. https://doi.org/10.3390/universe7070209