# Possible Effects of the Fractal Distribution of Relic Wormholes

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Stable Wormholes and Factorization of the Open Model

#### 2.1. Factorization of the Open Friedman Model

#### 2.2. Stability of Wormholes

## 3. Fractal Distribution of Wormholes and Modification of Newton’s Law

## 4. Concluding Remarks

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- De Blok, W.J.G.; Bosma, A. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys.
**2002**, 385, 816–846. [Google Scholar] [CrossRef] - Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron.
**2004**, 351, 903–922. [Google Scholar] [CrossRef][Green Version] - Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev.
**2019**, 27, 2. [Google Scholar] [CrossRef][Green Version] - Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J.
**1996**, 462, 563–575. [Google Scholar] [CrossRef][Green Version] - Diem, J.; Zemp, M.; Moore, B.; Stadel, J.; Carollo, M. Cusps in cold dark matter haloes. Mon. Not. R. Astron.
**2005**, 364, 665–673. [Google Scholar] - Kirillov, A.A. The nature of dark matter. Phys. Lett. B
**2006**, 632, 453–462. [Google Scholar] [CrossRef][Green Version] - Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ.
**2018**, 21, 2. [Google Scholar] [CrossRef] [PubMed][Green Version] - Harko, T.; Lobo, F. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. Astrophysical effects of spacetime foam. Gravit. Cosmol.
**2008**, 14, 256–261. [Google Scholar] [CrossRef] - Kirillov, A.A.; Turaev, D. Foam-like structure of the Universe. Phys. Lett. B
**2007**, 656, 1–8. [Google Scholar] [CrossRef][Green Version] - Tully, R.B.; Fisher, J.R. A new method of determining distances to galaxies. Astron. Astrophys.
**1977**, 54, 661–673. [Google Scholar] - Faber, S.M.; Jackson, R.E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J.
**1976**, 206, 668–683. [Google Scholar] [CrossRef] - Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J.
**1983**, 270, 365–370. [Google Scholar] [CrossRef] - Kirillov, A.A.; Turaev, D. The Universal rotation curve of spiral galaxies. Mon. Not. RAS. L
**2006**, 371, 31–35. [Google Scholar] [CrossRef][Green Version] - Knizhnik, V.; Polyakov, A.; Zamolodchikov, A. Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A
**1988**, 3, 819. [Google Scholar] [CrossRef] - Kawai, H.; Kawamoo, N.; Mogami, T.; Watabiki, Y. Transfer matrix formalism for twodimensional quantum gravity and fractal structures of space-time. Phys. Lett. B
**1993**, 306, 19–26. [Google Scholar] [CrossRef][Green Version] - Ambjorn, J.; Jurkiewicz, J.; Loll, R. Spectral dimension of the Universe. Phys. Rev. Lett.
**2005**, 95, 171301. [Google Scholar] [CrossRef] [PubMed][Green Version] - Savelova, E.P. Gas of wormholes in Euclidean quantum field theory. Grav. Cosmol.
**2015**, 21, 48–56. [Google Scholar] [CrossRef][Green Version] - Kirillov, A.A.; Savelova, E.P. Cosmological wormholes. Int. J. Mod. Phys. D
**2016**, 25, 1650075. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Wormhole as a possible accelerator of high-energy cosmic-ray particles. Eur. Phys. J. C
**2020**, 80, 45. [Google Scholar] [CrossRef] - Coleman, P.H.; Pietronero, L. The fractal structure of the Universe. Phys. Rep.
**1992**, 213, 311–389. [Google Scholar] [CrossRef] - Baryshev, Y.; Teerikorpi, P. Discovery of Cosmic Fractals; World Scientific: London, UK, 2002; p. 408. [Google Scholar]
- Geller, M.J.; Huchra, J.P. Mapping the Universe. Science
**1989**, 246, 897–903. [Google Scholar] [CrossRef] [PubMed] - SDSS Collaboration. The Thirteenth data release of the SDSS: First Spectroscopic data from the SDSS-IV Survey Mapping nearby galaxies at Apache point observatory. Astrophys. J. Suppl. Ser.
**2017**, 233, 25. [Google Scholar] [CrossRef] - Horvath, I.; Bagoly, Z.; Hakkila, J.; Toth, L.V. New data support the existence of the Hercules-Corona Borealis Great Wall. Astron. Astrophys.
**2015**, 584, A48. [Google Scholar] [CrossRef][Green Version] - Planck Collaboration. Planck 2018 results—IV. Diffuse component separation. Astron. Astrophys.
**2020**, 641, A4. [Google Scholar] [CrossRef][Green Version] - Fukugitai, M.; Hogan, C.J.; Peebles, P.J.E. The cosmic baryon budget. Astrophys. J.
**1998**, 503, 518. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Effects of scattering of radiation on wormholes. Universe
**2018**, 4, 35. [Google Scholar] [CrossRef][Green Version] - Kirillov, A.A.; Savelova, E.P. Dark matter from a gas of wormholes. Phys. Lett. B
**2008**, 660, 93–99. [Google Scholar] [CrossRef][Green Version] - Kirillov, A.A.; Savelova, E.P. On Modification of Newton’s Law by a Homogeneous Distribution of Wormholes in Space. Gravit. Cosmol.
**2018**, 24, 337–343. [Google Scholar] [CrossRef] - Norris, R.; Intema, H.; Kapińska, A.; Koribalski, B.; Lenc, E.; Rudnick, L.; Whiting, M. Unexpected circular radio objects at high Galactic latitude. Publ. Astron. Soc. Aust.
**2021**, 38, E003. [Google Scholar] [CrossRef] - Kirillov, A.A.; Savelova, E.P. Possible formation of ring galaxies by torus—Shaped magnetic wormholes. Eur. Phys. J. C
**2020**, 80, 810. [Google Scholar] [CrossRef] - Abedi, J.; Dykaar, H.; Afshordi, N. Echoes from the Abyss: Tentative evidence for Planck-scale structure atblack hole horizons. Phys. Rev. D
**2017**, 96, 082004. [Google Scholar] [CrossRef][Green Version] - Conklin, R.S.; Holdom, B.; Ren, J. Gravitational wave echoes through new windows. Phys. Rev. D
**2018**, 98, 044021. [Google Scholar] [CrossRef][Green Version] - Westerweck, J.; Nielsen, A.B.; Fischer-Birnholtz, O.; Cabero, M.; Capano, C.; Dent, T.; Krishnan, B.; Meadors, G.; Nitz, A.H. Low significance of evidence for black hole echoes in gravitational wave data. Phys. Rev. D
**2018**, 97, 124037. [Google Scholar] [CrossRef][Green Version] - Abedi, J.; Afshordi, N. Echoes from the abyss: A highly spinning black hole remnant for the binary neutron star merger GW170817. JCAP
**2019**, 11, 10. [Google Scholar] [CrossRef][Green Version] - Cardoso, V.; Franzin, E.; Pani, P. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? Phys. Rev. Lett.
**2016**, 116, 171101. [Google Scholar] [CrossRef] - Cardoso, V.; Hopper, S.; Macedo, C.F.; Palenzuela, C.; Pani, P. Echoes of ECOs: Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D
**2016**, 94, 084031. [Google Scholar] [CrossRef][Green Version] - Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Rel.
**2019**, 22, 4. [Google Scholar] [CrossRef][Green Version] - Kirillov, A.A.; Savelova, E.P.; Lecian, O.M. On generation of a stochastic GW background by the scattering on relic wormholes. Eur. Phys. J. C
**2021**, 81, 263. [Google Scholar] [CrossRef] - De Falco, V.; Battista, E.; Capozziello, S.; De Laurentis, M. Reconstructing wormhole solutions in curvature based Extended Theories of Gravity. Eur. Phys. J. C
**2021**, 81, 157. [Google Scholar] [CrossRef] - Ashraf, A.; Mustafa, G.; Ahmad, M.; Hussain, I. Lorentz distributed wormhole solutions in f(T) gravity with off-diagonal tetrad under conformal motions. Mod. Phys. Lett. A
**2020**, 35, 2050240. [Google Scholar] [CrossRef] - Zubair, M.; Waheed, S.; Mustafa, G.; Rehman, H. Ur Noncommutative inspired wormholes admitting conformal motion involving minimal coupling. Int. J. Mod. Phys. D
**2019**, 28, 1950067. [Google Scholar] [CrossRef][Green Version] - Khatsymovsky, V. Can wormholes exist? Phys. Lett. B
**1994**, 320, 234–240. [Google Scholar] [CrossRef][Green Version] - Hochberg, D.; Popov, A.; Sushkov, S.V. Self-consistent wormhole solutions of semiclassical gravity. Phys. Rev. Lett.
**1997**, 78, 2050. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Krechet, V.G. Potentially observable cylindrical wormholes without exotic matter in general relativity. Phys. Rev. D
**2019**, 99, 084051. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Cylindrical wormholes: A search for viable phantom-free models in GR. Int. J. Mod. Phys. D
**2019**, 28, 1941008. [Google Scholar] [CrossRef][Green Version] - Lifshitz, E. On the gravitational stability of the expanding universe. J. Phys. (USSR)
**1946**, 10, 116–129, republication in: Gen. Relativ. Gravit.**2017**, 49, 18. [Google Scholar] - Nicarstro, F.; Mathur, S.; Elvis, M.; Drake, J.; Fiore, F.; Fang, T.; Fruscione, A.; Krongold, Y.; Marshall, H.; Williams, R. Chandra detection of the first X-ray forest along the line of sight to Markarian 421. Astrophys. J.
**2005**, 629, 700. [Google Scholar] [CrossRef] - Tripp, T.M.; Sembach, K.R.; Bowen, D.V.; Savage, B.D.; Jenkins, E.B.; Lehner, N.; Richter, P.A. High-resolution survey of low-redshift QSO absorption lines: Statistics and physical conditions of OVI absorbers. Astrophys. J. Suppliment Ser.
**2008**, 177, 39. [Google Scholar] [CrossRef][Green Version] - Buote, D.A.; Zappacosta, L.; Fang, T.; Humphrey, P.J.; Gastaldello, F.; Tagliaferri, G. X-Ray absorption by WHIM in the sculptor wall. Astrophys. J.
**2009**, 695, 1351. [Google Scholar] [CrossRef] - Samorodmitzky, G.; Taggy, M.S. Stable Non-Gaussian Random Processes; Chapman & Hall: New York, NY, USA, 1994. [Google Scholar]

**Figure 1.**(

**a**) The Lobachevsky plane. Dashed lines give the polar frame. The stripe between the two geodesic lines $r=1/R$ and $r=R$ corresponds to the wormhole region. Regions below red dashed geodesics (semi-circles) correspond to two unrestricted Lobschevsky spaces ${E}_{\pm}$. The point $y=i$ corresponds to the center point of the wormhole throat ($\chi =0$). The line $y=0$ corresponds to infinity $\chi \to \infty $ for the plane. (

**b**) The same plane in coordinates $w=r{e}^{i\theta}$, where $r=tanh\frac{\chi}{2}$.

**Figure 2.**(

**a**) The form of a throat as it is seen on sky in the open model. It represents the colored curved rectangle. Regions behind the circles are copies of the physical region. All additional images lay within the circles. (

**b**) The form of the throat as it is seen in flat models upon the deformation of the metric from the negative curvature space. The throat has the torus-like form and only part of the throat surface is seen. Additional images lay inside the surface of the torus.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kirillov, A.A.; Savelova, E.P.; Vladykina, P.O.
Possible Effects of the Fractal Distribution of Relic Wormholes. *Universe* **2021**, *7*, 178.
https://doi.org/10.3390/universe7060178

**AMA Style**

Kirillov AA, Savelova EP, Vladykina PO.
Possible Effects of the Fractal Distribution of Relic Wormholes. *Universe*. 2021; 7(6):178.
https://doi.org/10.3390/universe7060178

**Chicago/Turabian Style**

Kirillov, Alexander A., Elena P. Savelova, and Polina O. Vladykina.
2021. "Possible Effects of the Fractal Distribution of Relic Wormholes" *Universe* 7, no. 6: 178.
https://doi.org/10.3390/universe7060178