The Search for the Universality Class of Metric Quantum Gravity
Abstract
:1. Introduction
2. The Diffeomorphisms Group and Its Siblings
3. Guiding Principles and Illustrative Examples
- If , that is, if the theory is Landau-trivial at , we have that is a physically interesting fixed point for , implying that the theory could be extended nontrivially to . In this case, coincides with the upper critical dimension, . The natural interpretation is that the fixed point is infrared, because it governs the scale dependence of the model at low energies, , that can be seen from a simple stability analysis. When the model is trivial, meaning that the IR is governed by the Gaussian point, with at most logarithmic corrections to scaling. An example of Landau-trivial theory would be in ;
- If , that is, if the theory is asymptotically free, we have that is physical for . This suggests that the theory can be extended nontrivially to , mirroring the previous case, at least from a formal point of view. In this case, we can assume that , however we do not know if is big enough to include interesting physical values. The mirroring continues in that the fixed point is ultraviolet, because it governs the scale dependence of the model at high energies, . An example of asymptotically free theory would be a gauge theory in .
4. The Candidate Metric Theories
4.1. Gravity in
4.2. Higher Derivative Gravity in
4.3. Cubic Gravity in
4.4. A Final Remark: Unitarity
5. A Toy-Model: Gauge Theory in
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B 1986, 266, 709–736. [Google Scholar] [CrossRef]
- Van de Ven, A.E.M. Two loop quantum gravity. Nucl. Phys. B 1992, 378, 309–366. [Google Scholar] [CrossRef]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, S. Critical Phenomena for Field Theorists. In Understanding the Fundamental Constituents of Matter; Zichichi, A., Ed.; The Subnuclear Series; Springer: Berlin/Heidelberg, Germany, 2012; Volume 14. [Google Scholar]
- Kawai, H.; Ninomiya, M. Renormalization Group and Quantum Gravity. Nucl. Phys. B 1990, 336, 115–145. [Google Scholar] [CrossRef]
- Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In General Relativity: An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 2010; Chapter 16; pp. 790–831. [Google Scholar]
- Jack, I.; Jones, D.R.T. The Epsilon expansion of two-dimensional quantum gravity. Nucl. Phys. B 1991, 358, 695. [Google Scholar] [CrossRef] [Green Version]
- Aida, T.; Kitazawa, Y. Two loop prediction for scaling exponents in (2+epsilon)-dimensional quantum gravity. Nucl. Phys. B 1997, 491, 427. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971–985. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Knorr, B.; Lippoldt, S. Generalized Parametrization Dependence in Quantum Gravity. Phys. Rev. D 2015, 92, 084020. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, J.F. A Critique of the Asymptotic Safety Program. Front. Phys. 2020, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Percacci, R.; Reuter, M.; Saueressig, F.; Vacca, G.P. Critical reflections on asymptotically safe gravity. Front. Phys. 2020, 8, 269. [Google Scholar] [CrossRef]
- Gielen, S.; de León Ardón, R.; Percacci, R. Gravity with more or less gauging. Class. Quant. Grav. 2018, 35, 195009. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. A class of elementary particle models without any adjustable real parameters. Found. Phys. 2011, 41, 1829–1856. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R.; Pi, S.Y. Fake Conformal Symmetry in Conformal Cosmological Models. Phys. Rev. D 2015, 91, 067501. [Google Scholar] [CrossRef] [Green Version]
- Martini, R.; Ugolotti, A.; Porro, F.D.; Zanusso, O. Gravity in d = 2 + ϵ dimensions and realizations of the diffeomorphisms group. arXiv 2021, under review. arXiv:2103.12421. [Google Scholar]
- Benedetti, D. Essential nature of Newton’s constant in unimodular gravity. Gen. Rel. Grav. 2016, 48, 68. [Google Scholar] [CrossRef] [Green Version]
- de Brito, G.P.; Pereira, A.D. Unimodular quantum gravity: Steps beyond perturbation theory. JHEP 2020, 9, 196. [Google Scholar] [CrossRef]
- Kleinert, H.; Schulte-Frohlinde, V. Critical Properties of ϕ4 Theories; World Scientific: Singapore, 2001. [Google Scholar]
- Wilson, K.G.; Fisher, M.E. Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 1972, 28, 240–243. [Google Scholar] [CrossRef]
- Brezin, E.; Zinn-Justin, J. Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets. Phys. Rev. Lett. 1976, 36, 691–694. [Google Scholar] [CrossRef]
- Bardeen, W.A.; Lee, B.W.; Shrock, R.E. Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum. Phys. Rev. D 1976, 14, 985. [Google Scholar] [CrossRef]
- Janssen, L.; Herbut, I.F. Phase diagram of electronic systems with quadratic Fermi nodes in 2 < d < 4: 2+ϵ expansion, 4-ϵ expansion, and functional renormalization group. Phys. Rev. B 2017, 95, 075101. [Google Scholar]
- Osborn, H.; Stergiou, A. Heavy Handed Quest for Fixed Points in Multiple Coupling Scalar Theories in the ε Expansion. JHEP 2021, 04, 128. [Google Scholar] [CrossRef]
- Arici, F.; Becker, D.; Ripken, C.; Saueressig, F.; van Suijlekom, W.D. Reflection positivity in higher derivative scalar theories. J. Math. Phys. 2018, 59, 082302. [Google Scholar] [CrossRef] [Green Version]
- Regge, T. GENERAL RELATIVITY WITHOUT COORDINATES. Nuovo Cim. 1961, 19, 558–571. [Google Scholar] [CrossRef]
- Hamber, H.W. Quantum Gravitation: The Feynman Path Integral Approach; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ambjorn, J.; Jurkiewicz, J.; Loll, R. A Nonperturbative Lorentzian path integral for gravity. Phys. Rev. Lett. 2000, 85, 924–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coumbe, D.; Laiho, J. Exploring Euclidean Dynamical Triangulations with a Non-trivial Measure Term. JHEP 2015, 4, 028. [Google Scholar] [CrossRef] [Green Version]
- Gorbenko, V.; Rychkov, S.; Zan, B. Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q>4. SciPost Phys. 2018, 5, 050. [Google Scholar] [CrossRef] [Green Version]
- Codello, A.; Safari, M.; Vacca, G.P.; Zanusso, O. Multicritical Landau–Potts field theory. Phys. Rev. D 2020, 102, 125024. [Google Scholar] [CrossRef]
- Pelissetto, A.; Vicari, E. Critical phenomena and renormalization group theory. Phys. Rept. 2002, 368, 549–727. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B.; Lee, J.W.; Son, D.T.; Stephanov, M.A. Conformality Lost. Phys. Rev. D 2009, 80, 125005. [Google Scholar] [CrossRef] [Green Version]
- Kubota, K.I.; Terao, H. Dynamical symmetry breaking in QED(3) from the Wilson RG point of view. Prog. Theor. Phys. 2001, 105, 809–825. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, K.; Herbut, I.F. Chiral symmetry breaking in QED(3) in presence of irrelevant interactions: A Renormalization group study. Phys. Rev. B 2005, 71, 184519. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Jaeckel, J. Chiral phase structure of QCD with many flavors. Eur. Phys. J. C 2006, 46, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Houthoff, W.; Kurov, A.; Saueressig, F. On the scaling of composite operators in asymptotic safety. JHEP 2020, 04, 099. [Google Scholar] [CrossRef]
- Polyakov, A.M. Quantum Gravity in Two-Dimensions. Mod. Phys. Lett. A 1987, 2, 893. [Google Scholar] [CrossRef]
- Polyakov, A.M. Quantum Geometry of Bosonic Strings. Phys. Lett. B 1981, 103, 207–210. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Shapiro, I.L. One loop renormalization of two-dimensional induced quantum gravity. Phys. Lett. B 1991, 263, 183–189. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D. Dilatonic gravity near two-dimensions as a string theory. Mod. Phys. Lett. A 1995, 10, 2001–2008. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Fixed points of quantum gravity. Phys. Rev. Lett. 2004, 92, 201301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codello, A.; Percacci, R. Fixed Points of Nonlinear Sigma Models in d>2. Phys. Lett. B 2009, 672, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Falls, K. Renormalization of Newton’s constant. Phys. Rev. D 2015, 92, 124057. [Google Scholar] [CrossRef] [Green Version]
- Binder, D.J.; Rychkov, S. Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N. JHEP 2020, 04, 117. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B 1982, 201, 469. [Google Scholar] [CrossRef]
- Avramidi, I.G.; Barvinsky, A.O. Asymptotic freedom in higher derivative quantum gravity. Phys. Lett. B 1985, 159, 269–274. [Google Scholar] [CrossRef]
- Salvio, A. Quadratic Gravity. Front. Phys. 2018, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Jack, I. One-loop beta-functions for renormalisable gravity. arXiv 2020, arXiv:2002.12661. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- de Berredo-Peixoto, G.; Shapiro, L. Higher derivative quantum gravity with Gauss–Bonnet term. Phys. Rev. D 2005, 71, 064005. [Google Scholar] [CrossRef] [Green Version]
- Salvio, A.; Strumia, A. Agravity up to infinite energy. Eur. Phys. J. C 2018, 78, 124. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. The Ultraviolet Behavior of Quantum Gravity. JHEP 2018, 1805, 027. [Google Scholar] [CrossRef]
- Mannheim, P.D. Ghost problems from Pauli–Villars to fourth-order quantum gravity and their resolution. Int. J. Mod. Phys. D 2020, 29, 2043009. [Google Scholar] [CrossRef]
- de Berredo-Peixoto, G.; Shapiro, I.L. Conformal quantum gravity with the Gauss–Bonnet term. Phys. Rev. D 2004, 70, 044024. [Google Scholar] [CrossRef] [Green Version]
- Hamada, K.J. Resummation and higher order renormalization in 4-D quantum gravity. Prog. Theor. Phys. 2002, 108, 399–433. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Mazur, P.O.; Mottola, E. Conformal symmetry and central charges in four-dimensions. Nucl. Phys. B 1992, 388, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Groh, K.; Rechenberger, S.; Saueressig, F.; Zanusso, O. Higher Derivative Gravity from the Universal Renormalization Group Machine. Available online: https://arxiv.org/abs/1111.1743 (accessed on 24 April 2021).
- Becker, M.; Pagani, C.; Zanusso, O. Fractal Geometry of Higher Derivative Gravity. Phys. Rev. Lett. 2020, 124, 151302. [Google Scholar] [CrossRef] [PubMed]
- Casarin, L.; Tseytlin, A.A. One-loop β-functions in 4-derivative gauge theory in 6 dimensions. JHEP 2019, 08, 159. [Google Scholar] [CrossRef] [Green Version]
- Percacci, R.; Zanusso, O. One loop beta functions and fixed points in Higher Derivative Sigma Models. Phys. Rev. D 2010, 81, 065012. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y. One-Loop Divergences in 6D Conformal Gravity. Phys. Rev. D 2012, 86, 084039. [Google Scholar] [CrossRef] [Green Version]
- Chernicoff, M.; Giribet, G.; Grandi, N.; Lavia, E.; Oliva, J. Q-curvature and gravity. Phys. Rev. D 2018, 98, 104023. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Knorr, B.; Lippoldt, S.; Saueressig, F. Gravitational Two-Loop Counterterm Is Asymptotically Safe. Phys. Rev. Lett. 2016, 116, 211302. [Google Scholar] [CrossRef]
- Niedermaier, M.R. Gravitational Fixed Points from Perturbation Theory. Phys. Rev. Lett. 2009, 103, 101303. [Google Scholar] [CrossRef] [PubMed]
- Falls, K. Physical renormalization schemes and asymptotic safety in quantum gravity. Phys. Rev. D 2017, 96, 126016. [Google Scholar] [CrossRef] [Green Version]
- Falls, K.; Herrero-Valea, M. Frame (In)equivalence in Quantum Field Theory and Cosmology. Eur. Phys. J. C 2019, 79, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peskin, M.E. Critical point behavior of the wilson loop. Phys. Lett. B 1980, 94, 161–165. [Google Scholar] [CrossRef]
- Morris, T.R. Renormalizable extra-dimensional models. JHEP 2005, 01, 002. [Google Scholar] [CrossRef] [Green Version]
- Gies, H. Renormalizability of gauge theories in extra dimensions. Phys. Rev. D 2003, 68, 085015. [Google Scholar] [CrossRef] [Green Version]
- Sannino, F.; Schechter, J. Nonperturbative Results for Yang–Mills Theories. Phys. Rev. D 2010, 82, 096008. [Google Scholar] [CrossRef] [Green Version]
- Ryttov, T.A.; Sannino, F. Supersymmetry inspired QCD beta function. Phys. Rev. D 2008, 78, 065001. [Google Scholar] [CrossRef] [Green Version]
- Banks, T.; Zaks, A. On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. Nucl. Phys. B 1982, 196, 189–204. [Google Scholar] [CrossRef]
- Kawai, H.; Nio, M.; Okamoto, Y. On existence of nonrenormalizable field theory: Pure SU(2) lattice gauge theory in five-dimensions. Prog. Theor. Phys. 1992, 88, 341–350. [Google Scholar] [CrossRef]
- Florio, A.; Lopes, J.M.V.P.; Matos, J.; Penedones, J. Searching for Continuous Phase Transitions in 5D SU(2) Lattice Gauge Theory. Available online: https://arxiv.org/abs/2103.15242 (accessed on 24 April 2021).
- Gracey, J.A. Six dimensional QCD at two loops. Phys. Rev. D 2016, 93, 025025. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.; Vacca, G.P. Multicritical scalar theories with higher-derivative kinetic terms: A perturbative RG approach with the ϵ-expansion. Phys. Rev. D 2018, 97, 041701. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.; Vacca, G.P. Uncovering novel phase structures in □k scalar theories with the renormalization group. Eur. Phys. J. C 2018, 78, 251. [Google Scholar] [CrossRef]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Modesto, L. Super-renormalizable Quantum Gravity. Phys. Rev. D 2012, 86, 044005. [Google Scholar] [CrossRef] [Green Version]
- Krasnikov, N.V. Nonlocal gauge theories. Theor. Math. Phys. 1987, 73, 1184–1190. [Google Scholar] [CrossRef]
- Kuzmin, Y.V. The convergent nonlocal gravitation. Sov. J. Nucl. Phys. 1989, 50, 1011–1014. (In Russian) [Google Scholar]
- Tomboulis, E.T. Superrenormalizable Gauge and Gravitational Theories. Available online: https://arxiv.org/abs/hep-th/9702146 (accessed on 24 April 2021).
- Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 2012, 108, 031101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshelev, A.S.; Kumar, K.S.; Starobinsky, A.A. R2 inflation to probe non-perturbative quantum gravity. JHEP 2018, 03, 071. [Google Scholar] [CrossRef] [Green Version]
- Ruf, M.S.; Steinwachs, C.F. One-loop divergences for f(R) gravity. Phys. Rev. D 2018, 97, 044049. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.G.; Shapiro, I.L.; Zanusso, O. Gravitational form factors and decoupling in 2D. Phys. Lett. B 2018, 782, 324–331. [Google Scholar] [CrossRef]
- Franchino-Viñas, S.A.; de Paula Netto, T.; Shapiro, O.; Zanusso, L.I. Form factors and decoupling of matter fields in four-dimensional gravity. Phys. Lett. B 2019, 790, 229–236. [Google Scholar] [CrossRef]
- Knorr, B.; Ripken, C.; Saueressig, F. Form Factors in Asymptotic Safety: Conceptual ideas and computational toolbox. Class. Quant. Grav. 2019, 36, 234001. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M.; Mancarella, M. Nonlocal gravity and dark energy. Phys. Rev. D 2014, 90, 023005. [Google Scholar] [CrossRef] [Green Version]
- Codello, A.; Jain, R.K. On the covariant formalism of the effective field theory of gravity and leading order corrections. Class. Quant. Grav. 2016, 33, 225006. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, R.; Ugolotti, A.; Zanusso, O. The Search for the Universality Class of Metric Quantum Gravity. Universe 2021, 7, 162. https://doi.org/10.3390/universe7060162
Martini R, Ugolotti A, Zanusso O. The Search for the Universality Class of Metric Quantum Gravity. Universe. 2021; 7(6):162. https://doi.org/10.3390/universe7060162
Chicago/Turabian StyleMartini, Riccardo, Alessandro Ugolotti, and Omar Zanusso. 2021. "The Search for the Universality Class of Metric Quantum Gravity" Universe 7, no. 6: 162. https://doi.org/10.3390/universe7060162
APA StyleMartini, R., Ugolotti, A., & Zanusso, O. (2021). The Search for the Universality Class of Metric Quantum Gravity. Universe, 7(6), 162. https://doi.org/10.3390/universe7060162