Approaches to Spherically Symmetric Solutions in f(T) Gravity
Abstract
:1. Introduction
2. Spherical Symmetry in
3. Equations for the Spherically Symmetric Tetrads
3.1. Some Known Solutions
3.2. Further Comments on Exact Solutions
4. Approximate Solutions
4.1. Possible Solutions (For Some Choice of the Model)
4.2. Finding a Proper Function f
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Golovnev, A. Introduction to teleparallel gravities. In Proceedings of the 9th Mathematical Physics Meeting: School and Conference on Modern Mathematical Physics, Institute of Physics, Belgrade, Serbia, 18–23 September 2017; pp. 219–236. [Google Scholar]
- Krssak, M.; Hoogen, R.J.V.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Guzmán, M.J. Hamiltonian formalism for f(T) gravity. Phys. Rev. D 2018, 97, 104028. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M.; Nester, J.M. Local symmetries and physical degrees of freedom in f(T) gravity: A Dirac Hamiltonian constraint analysis. Phys. Rev. D 2020, 102, 064025. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.J. Nontrivial Minkowski backgrounds in f(T) gravity. Phys. Rev. D 2021, 103, 044009. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzmán, M.J. Foundational issues in f(T) gravity theory. Int. J. Geom. Methods Mod. Phys. 2021, 2140007. [Google Scholar] [CrossRef]
- Hashim, M.; Hanafy, W.E.; Golovnev, A.; El-Zant, A. Toward a Concordance Teleparallel Cosmology I: Background Dynamics. Available online: https://arxiv.org/abs/2010.14964 (accessed on 22 April 2021).
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 2018, 11, 012. [Google Scholar] [CrossRef] [Green Version]
- Golovnev, A.; Guzmán, M.J. Bianchi identities in f(T) gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Basilakos, S.; Saridakis, E.N.; Capozziello, S.; Atazadeh, K.; Darabi, F.; Tsamparlis, M. New Schwarzschild-like solutions in f(T) gravity through Noether symmetries. Phys. Rev. D 2014, 89, 104042. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. Schwarzschild solution in extended teleparallel gravity. EPL 2014, 105, 10001. [Google Scholar] [CrossRef] [Green Version]
- Bejarano, C.; Ferraro, R.; Guzmán, M.J. Kerr geometry in f(T) gravity. Eur. Phys. J. C 2015, 75, 77. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Radicella, N. Weak-Field Spherically Symmetric Solutions in f(T) gravity. Phys. Rev. D 2015, 91, 04014. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Myrzakulov, R.; Nojiri, S.; Odintsov, S.D. Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities and thermodynamics. Phys. Rev. D 2012, 85, 104036. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Flathmann, K.; Pfeifer, C. Photon sphere and perihelion shift in weak f(T) gravity. Phys. Rev. D 2019, 100, 084064. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Said, J.L.; Zubair, M. Solar system tests in modified teleparallel gravity. J. Cosmol. Astropart. Phys. 2020, 10, 024. [Google Scholar] [CrossRef]
- Bahamonde, S.; Pfeifer, C. General Teleparallel Modifications of Schwarzschild Geometry. Available online: https://arxiv.org/abs/2010.02161 (accessed on 22 April 2021).
- Pfeifer, C.; Schuster, S. Static Spherically Symmetric Black Holes in Weak f(T)-Gravity. Available online: https://arxiv.org/abs/2104.00116 (accessed on 22 April 2021).
- Bahamonde, S.; Valcarcel, J.G.; Järv, L.; Pfeifer, C. Exploring Axial Symmetry in Modified Teleparallel Gravity. Phys. Rev. D 2021, 103, 044058. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Spherically symmetric static spacetimes in vacuum f(T) gravity. Phys. Rev. D 2011, 84, 083518. [Google Scholar] [CrossRef] [Green Version]
- DeBenedictis, A.; Ilijic, S. Spherically symmetric vacuum in covariant F(T) = T + T2 + O(Tγ) gravity theory. Phys. Rev. D 2016, 94, 124025. [Google Scholar] [CrossRef] [Green Version]
1. | Please note that the superpotential is multiplied by a factor, which differs from many other works. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golovnev, A.; Guzmán, M.-J. Approaches to Spherically Symmetric Solutions in f(T) Gravity. Universe 2021, 7, 121. https://doi.org/10.3390/universe7050121
Golovnev A, Guzmán M-J. Approaches to Spherically Symmetric Solutions in f(T) Gravity. Universe. 2021; 7(5):121. https://doi.org/10.3390/universe7050121
Chicago/Turabian StyleGolovnev, Alexey, and María-José Guzmán. 2021. "Approaches to Spherically Symmetric Solutions in f(T) Gravity" Universe 7, no. 5: 121. https://doi.org/10.3390/universe7050121
APA StyleGolovnev, A., & Guzmán, M. -J. (2021). Approaches to Spherically Symmetric Solutions in f(T) Gravity. Universe, 7(5), 121. https://doi.org/10.3390/universe7050121