Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements
Abstract
1. Introduction
2. The Standard Cosmology and Its Challenges
3. Coupling between Dark Energy and Dust/Dark Matter
3.1. Dark Energy Coupled with Dust Matter
3.2. Dark Energy Coupled with Dark Matter
4. Constraints on the Coupling Model with Observational Data
5. Preferred Best-Fitting Models and Their Implications
- Model 1
- With the best-fitting parameters in this model, we have:
- EoR (), for OHD ( + BAO), from around 379.9 Myr (402.6 Myr) to 1.825 Gyr (1.718 Gyr), which lasts ∼ 1.445 Gyr (1.315 Gyr);
- The seed redshift of J0100+2802, for OHD ( + BAO), 9.74 (11.03);
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 272.8 Myr (234.1 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD ( + BAO);
- For OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD ( + BAO), QSO APM 08279+5255 with age around 2.1 Gyr [62] would have formed at .
- Model 2
- With the best-fitting parameters in this Model, we have:
- EoR (), for OHD ( + BAO), from around 478.7 Myr (534.1 Myr) to 1.371 Gyr (1.462 Gyr), which lasts ∼ 892.4 Myr (927.8 Myr);
- The seed redshift of J0100+2802, for OHD ( + BAO), ;
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 337.1 Myr (381.4 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD ( + BAO);
- For OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD ( + BAO), QSO APM 08279+5255 with age around 2.1 Gyr would have formed at . If we consider it to be formed after , then its age would be Gyr for OHD ( + BAO).
- Model 3
- With the best-fitting parameters in this model, we have:
- EoR (), for OHD ( + BAO), from around 286.8 Myr (293.9 Myr) to 992.2 Myr (1.011 Gyr), which lasts ∼ 705.4 Myr (716.8 Myr);
- The seed redshift of J0100+2802, for OHD and + BAO, ;
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 190.5 Myr (195.3 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD and + BAO;
- addedFor OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD and + BAO, QSO APM 08279+5255 with age around 2.1 Gyr would have formed at . (ruled out)
6. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortonson, M.J.; Weinberg, D.H.; White, M. Dark Energy: A Short Review. arXiv 2013, arXiv:1401.0046. [Google Scholar]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rep. Prog. Phys. 2017, 81, 016902. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.; Gudennavar, S.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166–186. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Tests of cosmological models constrained by inflation. Astrophys. J. 1984, 284, 439–444. [Google Scholar] [CrossRef]
- Sahni, V.; Shtanov, Y. Did the universe loiter at high redshifts? Phys. Rev. D 2005, 71, 084018. [Google Scholar] [CrossRef]
- Richards, G.T.; Strauss, M.A.; Pindor, B.; Haiman, Z.; Fan, X.; Eisenstein, D.; Schneider, D.P.; Bahcall, N.A.; Brinkmann, J.; Brunner, R.; et al. A Snapshot Survey for Gravitational Lenses among z ≥ 4.0 Quasars. I. The z > 5.7 Sample. Astron. J. 2004, 127, 1305–1312. [Google Scholar] [CrossRef][Green Version]
- Haiman, Z.; Quataert, E. The Formation and Evolution of the First Massive Black Holes. In Supermassive Black Holes in the Distant Universe; Astrophysics and Space Science Library; Barger, A.J., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 308, p. 147. [Google Scholar]
- Melia, F.; McClintock, T.M. Supermassive black holes in the early Universe. Proc. R. Soc. Lond. Ser. A 2015, 471, 20150449. [Google Scholar] [CrossRef]
- Wu, X.B.; Wang, F.; Fan, X. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 2015, 518, 512–515. [Google Scholar] [CrossRef]
- Pont, F.; Mayor, M.; Turon, C.; Vandenberg, D.A. HIPPARCOS subdwarfs and globular cluster ages: The distance and age of M 92. Astron. Astrophys. 1998, 329, 87–100. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Dunlop, J.; Peacock, J.; Spinrad, H.; Dey, A.; Jimenez, R.; Stern, D.; Windhorst, R. A 3.5-Gyr-old galaxy at redshift 1.55. Nature 1996, 381, 581–584. [Google Scholar] [CrossRef]
- Spinrad, H.; Dey, A.; Stern, D.; Dunlop, J.; Peacock, J.; Jimenez, R.; Windhorst, R. LBDS 53W091: An Old, Red Galaxy at z = 1.552. Astrophys. J. 1997, 484, 581–601. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, S.N. Interacting energy components and observational H(z) data. Phys. Lett. B 2007, 654, 139–147. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, S.N. Observational data and cosmological models. Phys. Lett. B 2007, 644, 7–15. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R.G. Interacting vectorlike dark energy, the first and second cosmological coincidence problems. Phys. Rev. D 2006, 73, 083002. [Google Scholar] [CrossRef]
- Gannouji, R.; Moraes, B.; Mota, D.F.; Polarski, D.; Tsujikawa, S.; Winther, H.A. Chameleon dark energy models with characteristic signatures. Phys. Rev. D 2010, 82, 124006. [Google Scholar] [CrossRef]
- Avilés, A.; Cervantes-Cota, J.L. Dark matter from dark energy-baryonic matter couplings. Phys. Rev. D 2011, 83, 023510. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Kumar, S.; Nunes, R.C. Echo of interactions in the dark sector. Phys. Rev. D 2017, 96, 103511. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O. Can interacting dark energy solve the H0 tension? Phys. Rev. D 2017, 96, 043503. [Google Scholar] [CrossRef]
- An, R.; Feng, C.; Wang, B. Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models. J. Cosmol. Astropart. Phys. 2018, 2018, 038. [Google Scholar] [CrossRef]
- Yang, W.; Mukherjee, A.; Di Valentino, E.; Pan, S. Interacting dark energy with time varying equation of state and the H0 tension. Phys. Rev. D 2018, 98, 123527. [Google Scholar] [CrossRef]
- Kumar, S.; Nunes, R.C.; Yadav, S.K. Dark sector interaction: A remedy of the tensions between CMB and LSS data. Eur. Phys. J. C 2019, 79, 576. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Singha, C.; Saridakis, E.N. Observational constraints on sign-changeable interaction models and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 083539. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Universe 2020, 30, 100666. [Google Scholar] [CrossRef]
- Benoit, A.; Ade, P.; Amblard, A.; Ansari, R.; Aubourg, E.; Bargot, S.; Bartlett, J.G.; Bhatia, R.S.; Blanchard, A.; Bock, J.J.; et al. Cosmological constraints from Archeops. Astro. Astrophys. 2003, 399, L25–L30. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Zaroubi, S. The Epoch of Reionization. In The First Galaxies; Astrophysics and Space Science Library; Wiklind, T., Mobasher, B., Bromm, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 396, p. 45. [Google Scholar]
- Bromm, V.; Yoshida, N.; Hernquist, L.; McKee, C.F. The formation of the first stars and galaxies. Nature 2009, 459, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bromm, V.; Coppi, P.S.; Larson, R.B. The Formation of the First Stars. I. The Primordial Star-forming Cloud. Astrophys. J. 2002, 564, 23–51. [Google Scholar] [CrossRef]
- Nunes, R.C.; Pacucci, F. Effects of the Hubble parameter on the cosmic growth of the first quasars. Mon. Not. R. Astron. Soc. 2020, 496, 888–893. [Google Scholar] [CrossRef]
- Bolotin, Y.L.; Kostenko, A.; Lemets, O.A.; Yerokhin, D.A. Cosmological evolution with interaction between dark energy and dark matter. Int. J. Mod. Phys. D 2015, 24, 1530007. [Google Scholar] [CrossRef]
- Ryan, J.; Doshi, S.; Ratra, B. Constraints on dark energy dynamics and spatial curvature from Hubble parameter and baryon acoustic oscillation data. Mon. Not. R. Astron. Soc. 2018, 480, 759–767. [Google Scholar] [CrossRef]
- Ryan, J.; Chen, Y.; Ratra, B. Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature. Mon. Not. R. Astron. Soc. 2019, 488, 3844–3856. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Cosmological constraints from HII starburst galaxy apparent magnitude and other cosmological measurements. Mon. Not. R. Astron. Soc. 2020, 497, 3191–3203. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Khadka, N.; Ratra, B. Cosmological constraints from higher-redshift gamma-ray burst, H II starburst galaxy, and quasar (and other) data. Mon. Not. R. Astron. Soc. 2021, 501, 1520–1538. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Using Pantheon and DES supernova, baryon acoustic oscillation, and Hubble parameter data to constrain the Hubble constant, dark energy dynamics, and spatial curvature. arXiv 2021, arXiv:2101.08817. [Google Scholar]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z ~ 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 8, 006. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z~0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 5, 014. [Google Scholar] [CrossRef]
- Moresco, M.; Jimenez, R.; Verde, L.; Pozzetti, L.; Cimatti, A.; Citro, A. Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements. Astrophys. J. 2018, 868, 84. [Google Scholar] [CrossRef]
- Moresco, M.; Jimenez, R.; Verde, L.; Cimatti, A.; Pozzetti, L. Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix. Astrophys. J. 2020, 898, 82. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Cao, S.L.; Duan, X.W.; Meng, X.L.; Zhang, T.J. Cosmological model-independent test of ΛCDM with two-point diagnostic by the observational Hubble parameter data. Eur. Phys. J. C 2018, 78, 313. [Google Scholar] [CrossRef]
- Cao, S.L.; Teng, H.Y.; Wan, H.Y.; Yu, H.R.; Zhang, T.J. Testing backreaction effects with observational Hubble parameter data. Eur. Phys. J. C 2018, 78, 170. [Google Scholar] [CrossRef]
- Cao, S.L.; Li, S.; Yu, H.R.; Zhang, T.J. Statefinder diagnostic and constraints on the Palatini f(R) gravity theories. Res. Astron. Astrophys. 2018, 18, 026. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221–1233. [Google Scholar] [CrossRef]
- Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB. Astrophys. J. 2003, 593, 622–629. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D Part. Fields, Gravit. Cosmol. 2005, 71, 123001. [Google Scholar] [CrossRef]
- Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z ~1.75. J. Cosmol. Astropart. Phys. 2012, 2012, 053. [Google Scholar] [CrossRef]
- Gaztañaga, E.; Cabré, A.; Hui, L. Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. [Google Scholar] [CrossRef]
- Xu, X.; Cuesta, A.J.; Padmanabhan, N.; Eisenstein, D.J.; McBride, C.K. Measuring DA and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 2013, 431, 2834–2860. [Google Scholar] [CrossRef]
- Blake, C.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Croton, D.; Davis, T.M.; Drinkwater, M.J.; Forster, K.; et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. R. Astron. Soc. 2012, 425, 405–414. [Google Scholar]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating luminous red galaxies observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 8. [Google Scholar] [CrossRef]
- Samushia, L.; Reid, B.A.; White, M.; Percival, W.J.; Cuesta, A.J.; Lombriser, L.; Manera, M.; Nichol, R.C.; Schneider, D.P.; Bizyaev, D.; et al. The clustering of galaxies in the SDSS-III DR9 baryon oscillation spectroscopic survey: Testing deviations from Λ and general relativity using anisotropic clustering of galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 1514–1528. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. R. Astron. Soc. Lett. 2015, 450, L16–L20. [Google Scholar] [CrossRef]
- Delubac, T.; Bautista, J.E.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.G.; Pieri, M.M.; Hamilton, J.C.; et al. Baryon Acoustic Oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef]
- Font-Ribera, A.; Kirkby, D.; Miralda-Escudé, J.; Ross, N.P.; Slosar, A.; Rich, J.; Aubourg, É.; Bailey, S.; Bhardwaj, V.; Bautista, J.; et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys. 2014, 2014, 027. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Lewis, A. GetDist: A Python package for analysing Monte Carlo samples. arXiv 2019, arXiv:astro-ph.IM/1910.13970, arXiv:astro–phIM/191013970. [Google Scholar]
- Friaça, A.C.S.; Alcaniz, J.S.; Lima, J.A.S. An old quasar in a young dark energy-dominated universe? Mon. Not. R. Astron. Soc. 2005, 362, 1295–1300. [Google Scholar] [CrossRef]
z | a | Method b | Ref. |
---|---|---|---|
I | Zhang et al. (2014)-[47] | ||
I | Jimenez et al. (2003)-[48] | ||
I | Zhang et al. (2014)-[47] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2012)-[50] | ||
I | Zhang et al. (2014)-[47] | ||
II | Gaztaaga et al. (2009)-[51] | ||
I | Simon et al. (2005)-[49] | ||
I | Zhang et al. (2014)-[47] | ||
II | Xu et al. (2013)-[52] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2016)-[40] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2016)-[40] | ||
I | Moresco et al. (2016)-[40] | ||
II | Gaztaaga et al. (2009)-[51] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2016)-[40] | ||
I | Ratsimbazafy et al. (2017)-[54] | ||
I | Moresco et al. (2016)-[40] | ||
I | Stern et al. (2010)-[55] | ||
II | Samushia et al. (2013)-[56] | ||
I | Moresco et al. (2012)-[50] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2012)-[50] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2012)-[50] | ||
I | Stern et al. (2010)-[55] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2012)-[50] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco (2015)-[57] | ||
I | Simon et al. (2005)-[49] | ||
I | Simon et al. (2005)-[49] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco (2015)-[57] | ||
II | Delubac et al. (2015)-[58] | ||
II | Font-Ribera et al. (2014)-[59] |
Model | Data Set | a | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | OHD | – | – | 0.020 | 71.34 | 1.210 | 0.333 | – | 15.85 | 35 | 0.45 | 25.85 | 34.30 | 0.35 | 2.04 | |
+ BAO | 0.0010 | 0.0742 | 0.171 | 66.64 | 0.907 | 0.472 | – | 17.85 | 36 | 0.50 | 29.85 | 40.27 | 1.43 | 3.16 | ||
Model 2 | OHD | – | – | 0.383 | 76.39 | – | – | 0.167 | 17.50 | 36 | 0.49 | 25.50 | 32.26 | 0.00 | 0.00 | |
+ BAO | 0.2598 | 0.0064 | 0.579 | 67.90 | – | – | 0.206 | 18.42 | 37 | 0.50 | 28.42 | 37.11 | 0.00 | 0.00 | ||
Model 3 | OHD | – | – | 0.157 | 70.48 | – | – | 0.112 | 18.47 | 36 | 0.51 | 26.47 | 33.23 | 0.97 | 0.97 | |
+ BAO | 0.1330 | 0.0195 | 0.361 | 65.12 | – | – | 19.65 | 37 | 0.53 | 29.65 | 38.34 | 1.23 | 1.23 |
Model | Data Set | a | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | OHD | – | – | – | |||||
+ BAO | – | ||||||||
Model 2 | OHD | – | – | – | – | ||||
+ BAO | – | – | |||||||
Model 3 | OHD | – | – | – | – | ||||
+ BAO | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Zhang, T.-J.; Wang, X.; Zhang, T. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe 2021, 7, 57. https://doi.org/10.3390/universe7030057
Cao S, Zhang T-J, Wang X, Zhang T. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe. 2021; 7(3):57. https://doi.org/10.3390/universe7030057
Chicago/Turabian StyleCao, Shulei, Tong-Jie Zhang, Xinya Wang, and Tingting Zhang. 2021. "Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements" Universe 7, no. 3: 57. https://doi.org/10.3390/universe7030057
APA StyleCao, S., Zhang, T.-J., Wang, X., & Zhang, T. (2021). Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe, 7(3), 57. https://doi.org/10.3390/universe7030057