Astrophysical Neutrinos and Blazars
Abstract
:1. Introduction
2. Blazars
3. Astrophysical Neutrinos and Blazars
4. Blazars of Different Types
4.1. Blazar Samples
- The BZCAT catalogue, fifth edition [49], which includes over 3500 objects classified as BZQ (that is showing broad lines typical of QSOs), BZB (BL Lacs with no or very weak lines), BZU (blazars of uncertain type), and BZG (blazars where the optical/IR data in the SED reveals the presence of the host galaxy). BZCAT, being an heterogeneous list of blazars, is not a flux limited sample directly usable for statistical purposes;
- The 3HSP catalogue, which includes 2013 HBL sources [50] with radio flux larger than ∼1 mJy. The sample is not complete at low radio flux densities values;
A Sample of IBL Blazars
4.2. LBLs vs. IBLs vs. LBLs
4.3. Transient Blazars and Neutrino Astronomy
5. Summary and Discussion
- A detailed study of the blazars located in the error regions of a sample of 70 well-reconstructed IceCube tracks found 47 IHBL blazars compared to a background expectation of 26.8, an overabundance equivalent to a 3.2 post trial significance. No excess of LBL blazars was found [39]. This is the statistically most compelling result in favour of IHBLs. Very recently Savard et al. [67], extending this work to 10 additional and newly detected neutrino tracks, confirmed that blazars from the 3HSP catalogue are significantly overrepresented in neutrino error regions.
- A chance probability of 1 per cent was found in ref. [68] where the authors compared the positions of extreme (IHBL) blazars with those of a sample of IceCube neutrinos. Other types of blazars gave null results.
- The search for point-like sources in the 10 year IceCube sample [4] resulted in a 3.3 excess over the expected background associated with the bright Seyfert 2 galaxy NGC 1068 and the three blazars PKS 1424+240, TXS 0506+056, and GB6 J1542+6129, all of which are bright (fradio 200 mJy) IHBL objects with very similar overall SEDs, as illustrated in Figure 4. A study aimed at finding additional similarities among these three sources will be presented by Padovani et al. (2022), in preparation.
- The IHBL blazar 3HSP J095507.9+35510, located in the error region IceCube-200107A, was undergoing a strong X-ray flare at the time of the neutrino arrival [40].
- A very recent search for neutrino flare emission in the IceCube 10 year data set [38] reported possible flares at the level of 3 from NGC 1068, two IHBL blazars TXS 0506+056, GB6 J1542+6129, and M87, a giant radio galaxy with -ray properties similar to that of IHBL objects that was already noticed as a possible counterpart of the track IceCube-141126A [39]. The IHBL 1ES1959+650, the next object in order of significance in the list of probable flaring sources of ref. [38], was also noticed as a possible counterpart of three neutrinos detected by AMANDA, the predecessor of IceCube, in 2002 in correspondence of a rare high-energy -ray flare [70].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anchordoqui, L.A. Ultra-high-energy cosmic rays. Phys. Rep. 2019, 801, 1–93. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, A. Characterization of the Astrophysical Diffuse Neutrino Flux with IceCube High-Energy Starting Events. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 36, p. 1004. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophys. J. 2019, 886, 12. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, K. γ rays and neutrinos from a powerful cosmic accelerator. Phys. Rev. D 1993, 48, 2408–2414. [Google Scholar] [CrossRef]
- Ahlers, M.; Halzen, F. High-energy cosmic neutrino puzzle: A review. Rep. Prog. Phys. 2015, 78, 126901. [Google Scholar] [CrossRef]
- Tavecchio, F.; Ghisellini, G. High-energy cosmic neutrinos from spine-sheath BL Lac jets. Mon. Not. RAS 2015, 451, 1502–1510. [Google Scholar] [CrossRef]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulos, S.I.; Petropoulou, M.; Giommi, P.; Vasilopoulos, G.; Padovani, P.; Mastichiadis, A. Probing Neutrino Emission from X-ray Blazar Flares observed with Swift-XRT. arXiv 2021, arXiv:2107.14632. [Google Scholar]
- Ghisellini, G.; Maraschi, L.; Treves, A. Inhomogeneous synchrotron-self-compton models and the problem of relativistic beaming of BL Lac objects. Astron. Astrophys. 1985, 146, 204–212. [Google Scholar]
- Maraschi, L.; Ghisellini, G.; Celotti, A. A Jet Model for the Gamma-Ray–emitting Blazar 3C 279. Astrophys. J. Lett. 1992, 397, L5. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 12, 807–814. [Google Scholar] [CrossRef]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P.; Giommi, P.; Resconi, E.; Glauch, T.; Arsioli, B.; Sahakyan, N.; Huber, M. Dissecting the region around IceCube-170922A: The blazar TXS 0506+056 as the first cosmic neutrino source. Mon. Not. RAS 2018, 480, 192–203. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803–845. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.; Rees, M. Some comments on radiation mechanisms in Lacertids. In Proceedings of the Pittsburgh Conference on BL Lac Objects, Pittsburgh, PA, USA, 24–26 April 1978; Wolfe, A.M., Ed.; University of Pittsburgh Press: Pittsburgh, PA, USA, 1978; pp. 341–347. [Google Scholar]
- Falomo, R.; Pian, E.; Treves, A. An optical view of BL Lacertae objects. Astron. Astrophys. Rev. 2014, 22, 73. [Google Scholar] [CrossRef] [Green Version]
- Giommi, P.; Polenta, G.; Lähteenmäki, A.; Thompson, D.J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; González-Nuevo, J.; León-Tavares, J.; López-Caniego, M.; et al. Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars. Astron. Astrophys. 2012, 541, A160. [Google Scholar] [CrossRef] [Green Version]
- Giommi, P.; Perri, M.; Capalbi, M.; D’Elia, V.; Barres de Almeida, U.; Brandt, C.H.; Pollock, A.M.T.; Arneodo, F.; Di Giovanni, A.; Chang, Y.L.; et al. X-ray spectra, light curves and SEDs of blazars frequently observed by Swift. Mon. Not. RAS 2021, 507, 5690–5702. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P. The connection between x-ray- and radio-selected BL Lacertae objects. Astrophys. J. 1995, 444, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30–70. [Google Scholar] [CrossRef] [Green Version]
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- Ballet, J.; Burnett, T.H.; Digel, S.W.; Lott, B. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. arXiv 2020, arXiv:2005.11208. [Google Scholar]
- Bulgarelli, A.; Fioretti, V.; Parmiggiani, N.; Verrecchia, F.; Pittori, C.; Lucarelli, F.; Tavani, M.; Aboudan, A.; Cardillo, M.A.; Giuliani, A.N.; et al. Second AGILE catalogue of gamma-ray sources. Astron. Astrophys. 2019, 627, A13. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Canonical high-power blazars. Mon. Not. RAS 2009, 397, 985–1002. [Google Scholar] [CrossRef]
- Stecker, F.W.; Done, C.; Salamon, M.H.; Sommers, P. High-energy neutrinos from active galactic nuclei. Phys. Rev. Lett. 1991, 66, 2697–2700. [Google Scholar] [CrossRef]
- Mannheim, K.; Stanev, T.; Biermann, P.L. Neutrinos from flat-spectrum radio quasars. Astron. Astrophys. 1992, 260, L1–L3. [Google Scholar]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophys. J. 2021, 911, 48. [Google Scholar] [CrossRef]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Hovatta, T.; Lindfors, E.; Kiehlmann, S.; Max-Moerbeck, W.; Hodges, M.; Liodakis, I.; Lähteemäki, A.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.A.; et al. Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories. Astron. Astrophys. 2021, 650, A83. [Google Scholar] [CrossRef]
- Desai, A.; Vandenbroucke, J.; Pizzuto, A. Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data. arXiv 2021, arXiv:2107.08115. [Google Scholar]
- Zhou, B.; Kamionkowski, M.; Liang, Y.F. Search for high-energy neutrino emission from radio-bright AGN. Phys. Rev. D 2021, 103, 123018. [Google Scholar] [CrossRef]
- IceCube Collaboration. Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophys. J. Lett. 2021, 920, L45. [Google Scholar] [CrossRef]
- Giommi, P.; Glauch, T.; Padovani, P.; Resconi, E.; Turcati, A.; Chang, Y.L. Dissecting the regions around IceCube high-energy neutrinos: Growing evidence for the blazar connection. Mon. Not. RAS 2020, 497, 865–878. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Oikonomou, F.; Glauch, T.; Paiano, S.; Resconi, E. 3HSP J095507.9+355101: A flaring extreme blazar coincident in space and time with IceCube-200107A. Astron. Astrophys. 2020, 640, L4. [Google Scholar] [CrossRef]
- Paiano, S.; Falomo, R.; Treves, A.; Padovani, P.; Giommi, P.; Scarpa, R. The spectra of IceCube neutrino candidate sources–I. Optical spectroscopy of blazars. Mon. Not. RAS 2021, 504, 3338–3353. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P.; Mastichiadis, A.; Resconi, E. Photohadronic origin of γ -ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. RAS 2015, 448, 2412–2429. [Google Scholar] [CrossRef]
- Petropoulou, M.; Oikonomou, F.; Mastichiadis, A.; Murase, K.; Padovani, P.; Vasilopoulos, G.; Giommi, P. Comprehensive Multimessenger Modeling of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube. Astrophys. J. 2020, 899, 113. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P.; Falomo, R.; Oikonomou, F.; Petropoulou, M.; Glauch, T.; Resconi, E.; Treves, A.; Paiano, S. The Spectra of IceCube Neutrino (SIN) candidate sources-II. Source Characterisation. Mon. Not. R. Astron. Soc. 2021. submitted. [Google Scholar]
- Padovani, P.; Oikonomou, F.; Petropoulou, M.; Giommi, P.; Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. RAS 2019, 484, L104–L108. [Google Scholar] [CrossRef] [Green Version]
- Giommi, P.; Padovani, P.; Polenta, G.; Turriziani, S.; D’Elia, V.; Piranomonte, S. A simplified view of blazars: Clearing the fog around long-standing selection effects. Mon. Not. RAS 2012, 420, 2899–2911. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Polenta, G. A simplified view of blazars: The γ-ray case. Mon. Not. RAS 2013, 431, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G. The transition between BL Lac objects and flat spectrum radio quasars. Mon. Not. RAS 2011, 414, 2674–2689. [Google Scholar] [CrossRef]
- Massaro, E.; Maselli, A.; Leto, C.; Marchegiani, P.; Perri, M.; Giommi, P.; Piranomonte, S. The 5th edition of the Roma-BZCAT. A short presentation. Astrophys. Space Sci. 2015, 357, 75. [Google Scholar] [CrossRef]
- Chang, Y.L.; Arsioli, B.; Giommi, P.; Padovani, P.; Brandt, C.H. The 3HSP catalogue of extreme and high-synchrotron peaked blazars. Astron. Astrophys. 2019, 632, A77. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; Angioni, R.; Axelsson, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 892, 105. [Google Scholar] [CrossRef]
- Lott, B.; Gasparrini, D.; Ciprini, S. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope–Data Release 2. arXiv 2020, arXiv:2010.08406. [Google Scholar]
- Chang, Y.L.; Brandt, C.H.; Giommi, P. The Open Universe VOU-Blazars tool. Astron. Comput. 2020, 30, 100350. [Google Scholar] [CrossRef]
- Condon, J.; Cotton, W.; Greisen, E.; Yin, Q.; Perley, R.; Taylor, G.; Broderick, J. The NRAO VLA Sky Survey. Astron. J. 1998, 115, 1693–1716. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P.; Landt, H.; Perlman, E.S. The Deep X-Ray Radio Blazar Survey. III. Radio Number Counts, Evolutionary Properties, and Luminosity Function of Blazars. Astrophys. J. 2007, 662, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Hasinger, G.; Miyaji, T.; Schmidt, M. Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron. Astrophys. 2005, 441, 417–434. [Google Scholar] [CrossRef]
- Giommi, P.; Menna, M.T.; Padovani, P. The sedentary multifrequency survey-I. Statistical identification and cosmological properties of high-energy peaked BL Lacs. Mon. Not. RAS 1999, 310, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Rector, T.A.; Stocke, J.T.; Perlman, E.S.; Morris, S.L.; Gioia, I.M. The Properties of the X-Ray-selected EMSS Sample of BL Lacertae Objects. Astron. J. 2000, 120, 1626–1647. [Google Scholar] [CrossRef] [Green Version]
- Prince, R. Broadband study of BL Lac during flare of 2020: Spectral evolution and emergence of HBL component. arXiv 2021, arXiv:2105.00221. [Google Scholar]
- Sahakyan, N.; Giommi, P. A thirteen-year-long broadband view of BL Lac. arXiv 2021, arXiv:2108.12232. [Google Scholar]
- Lister, M.L.; Homan, D.C.; Hovatta, T.; Kellermann, K.I.; Kiehlmann, S.; Kovalev, Y.Y.; Max-Moerbeck, W.; Pushkarev, A.B.; Readhead, A.C.S.; Ros, E.; et al. MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars. Astrophys. J. 2019, 874, 43. [Google Scholar] [CrossRef] [Green Version]
- Jannuzi, B.T.; Smith, P.S.; Elston, R. The Optical Polarization Properties of X-Ray–selected BL Lacertae Objects. Astrophys. J. 1994, 428, 130. [Google Scholar] [CrossRef]
- Impey, C.D.; Tapia, S. The Optical Polarization Properties of Quasars. Astrophys. J. 1990, 354, 124. [Google Scholar] [CrossRef]
- Sahakyan, N.; Giommi, P. The strange case of the transient HBL blazar 4FGL J1544.3−0649. Mon. Not. RAS 2021, 502, 836–844. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Petropoulou, M. Hadronic X-ray Flares from Blazars. Astrophys. J. 2021, 906, 131. [Google Scholar] [CrossRef]
- Rodrigues, X.; Garrappa, S.; Gao, S.; Paliya, V.S.; Franckowiak, A.; Winter, W. Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106. Astrophys. J. 2021, 912, 54. [Google Scholar] [CrossRef]
- Savard, K.; Ruan, J.J.; Haggard, D. Are blazars above the blazar sequence a significant source of IceCube neutrinos? Mon. Not. RAS 2021, 509, 4620–4625. [Google Scholar] [CrossRef]
- Padovani, P.; Resconi, E.; Giommi, P.; Arsioli, B.; Chang, Y.L. Extreme blazars as counterparts of IceCube astrophysical neutrinos. Mon. Not. R. Astron. Soc. 2016, 457, 3582–3592. [Google Scholar] [CrossRef]
- Icecube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astron. Astrophys. 2017, 607, A115. [Google Scholar] [CrossRef] [Green Version]
- Halzen, F. The Observation of High-Energy Neutrinos from the Cosmos: Lessons Learned for Multimessenger Astronomy. arXiv 2021, arXiv:2110.01687. [Google Scholar]
- Liu, R.Y.; Taylor, A.; Wang, X.Y.; Aharonian, F. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; American Institute of Physics Conference Series. Volume 1792, p. 060005. [Google Scholar] [CrossRef]
- Agostini, M.; Böhmer, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuser, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giommi, P.; Padovani, P. Astrophysical Neutrinos and Blazars. Universe 2021, 7, 492. https://doi.org/10.3390/universe7120492
Giommi P, Padovani P. Astrophysical Neutrinos and Blazars. Universe. 2021; 7(12):492. https://doi.org/10.3390/universe7120492
Chicago/Turabian StyleGiommi, Paolo, and Paolo Padovani. 2021. "Astrophysical Neutrinos and Blazars" Universe 7, no. 12: 492. https://doi.org/10.3390/universe7120492
APA StyleGiommi, P., & Padovani, P. (2021). Astrophysical Neutrinos and Blazars. Universe, 7(12), 492. https://doi.org/10.3390/universe7120492