Lorentz Symmetry and High-Energy Neutrino Astronomy
Abstract
:1. Tests of Lorentz Violation with High-Energy Astrophysical Neutrinos
- Neutrino energy reaches higher than any anthropogenic beam.
- Neutrinos travel very long distance, from source to detection, in a straight path.
- Quantum mixings can enhance the sensitivity.
2. Tests of Lorentz Violation with Kinematic Observables
3. Tests of Lorentz Violation with Neutrino Oscillations
4. Tests of Lorentz Violation with Neutrino Mixings
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michelson, A.A.; Morley, E.W. On the Relative Motion of the Earth and the Luminiferous Ether. Am. J. Sci. 1887, 34, 333–345. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. 1989, D39, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, S.M.; Harvey, J.A.; Kostelecky, V.A.; Lane, C.D.; Okamoto, T. Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 124021. [Google Scholar] [CrossRef] [Green Version]
- Pospelov, M.; Shang, Y. On Lorentz violation in Horava-Lifshitz type theories. Phys. Rev. 2012, D85, 105001. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. arXiv 2008, arXiv:0801.0287. [Google Scholar]
- Kostelecký, V.A.; Melissinos, A.C.; Mewes, M. Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys. Lett. B 2016, 761, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, M.; Haslinger, P.; Xu, V.; Hamilton, P.; Upadhye, A.; Elder, B.; Khoury, J.; Müller, H. Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass. Nat. Phys. 2017, 13, 938. [Google Scholar] [CrossRef]
- Pruttivarasin, T.; Ramm, M.; Porsev, S.G.; Tupitsyn, I.I.; Safronova, M.; Hohensee, M.A.; Haeffner, H. A Michelson-Morley Test of Lorentz Symmetry for Electrons. Nature 2015, 517, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carle, A.; Chanon, N.; Perries, S. Prospects for Lorentz Invariance Violation searches with top pair production at the LHC and future hadron colliders. Eur. Phys. J. C 2020, 80, 128. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Maccione, L.; Taylor, A.M.; Mattingly, D.M.; Liberati, S. Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays. JCAP 2009, 4, 22. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 15020. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 96005. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 96006. [Google Scholar] [CrossRef] [Green Version]
- Argüelles, C.A.; Bustamante, M.; Kheirandish, A.; Palomares-Ruiz, S.; Salvado, J.; Vincent, A.C. Fundamental physics with high-energy cosmic neutrinos today and in the future. PoS 2020, ICRC2019, 849. [Google Scholar] [CrossRef]
- Gagnon, O.; Moore, G.D. Limits on Lorentz violation from the highest energy cosmic rays. Phys. Rev. D 2004, 70, 65002. [Google Scholar] [CrossRef] [Green Version]
- Altschul, B. Astrophysical limits on Lorentz violation for all charged species. Astropart. Phys. 2007, 28, 380–384. [Google Scholar] [CrossRef] [Green Version]
- Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory. Phys. Rev. D 2007, 76, 25024. [Google Scholar] [CrossRef] [Green Version]
- Maccione, L.; Liberati, S.; Celotti, A.; Kirk, J.G. New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula. JCAP 2007, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Altschul, B. Astrophysical limits on Lorentz violation for pions. Phys. Rev. D 2008, 77, 105018. [Google Scholar] [CrossRef] [Green Version]
- Klinkhamer, F.R.; Schreck, M. New two-sided bound on the isotropic Lorentz-violating parameter of modified-Maxwell theory. Phys. Rev. D 2008, 78, 85026. [Google Scholar] [CrossRef] [Green Version]
- Altschul, B. Modeling-Free Bounds on Nonrenormalizable Isotropic Lorentz and CPT Violation in QED. Phys. Rev. D 2011, 83, 56012. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.S.; Klinkhamer, F.R. Parton-model calculation of a nonstandard decay process in isotropic modified Maxwell theory. Phys. Rev. D 2015, 92, 25007. [Google Scholar] [CrossRef] [Green Version]
- Altschul, B. Cerenkov-Like Emission of Pions by Photons in a Lorentz-Violating Theory. Phys. Rev. D 2016, 93, 105007. [Google Scholar] [CrossRef] [Green Version]
- Schreck, M. Vacuum Cherenkov radiation for Lorentz-violating fermions. Phys. Rev. D 2017, 96, 95026. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Noordmans, J.P.; Potting, R. Cosmic-ray fermion decay by emission of on-shell W bosons with CPT violation. Phys. Rev. D 2017, 96, 35034. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.G.; Glashow, S.L. Pair Creation Constrains Superluminal Neutrino Propagation. Phys. Rev. Lett. 2011, 107, 181803. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.S.; Kostelecky, A.; Mewes, M. Testing Relativity with High-Energy Astrophysical Neutrinos. Phys. Rev. D 2014, 89, 43005. [Google Scholar] [CrossRef] [Green Version]
- Borriello, E.; Chakraborty, S.; Mirizzi, A.; Serpico, P.D. Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 2013, 87, 116009. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W.; Scully, S.T. Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation. Phys. Rev. D 2014, 90, 43012. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xi, S.Q.; Shao, L.; Liu, R.Y.; Li, Z.; Zhang, Z.K. Limiting Superluminal Neutrino Velocity and Lorentz Invariance Violation by Neutrino Emission from the Blazar TXS 0506+056. Phys. Rev. D 2020, 102, 63027. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; et al. [IceCube Collaboration] The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2020, 104, 022002. [Google Scholar] [CrossRef]
- Longo, M.J. New Precision Tests of the Einstein Equivalence Principle From SN1987A. Phys. Rev. Lett. 1988, 60, 173. [Google Scholar] [CrossRef] [Green Version]
- Krauss, L.M.; Tremaine, S. Test of the Weak Equivalence Principle for Neutrinos and Photons. Phys. Rev. Lett. 1988, 60, 176. [Google Scholar] [CrossRef]
- Ellis, J.; Janka, H.T.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan, E.K.G. Probing Lorentz Violation in Neutrino Propagation from a Core-Collapse Supernova. Phys. Rev. D 2012, 85, 045032. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. Limits on Neutrino Lorentz Violation from Multimessenger Observations of TXS 0506+056. Phys. Lett. B 2019, 789, 352–355. [Google Scholar] [CrossRef]
- Laha, R. Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+056. Phys. Rev. D 2019, 100, 103002. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.J.; Zhang, B.B.; Shao, L.; Gao, H.; Li, Y.; Yin, Q.Q.; Wu, X.F.; Wang, X.Y.; Zhang, B.; Dai, Z.G. Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. J. High Energy Astrophys. 2019, 22, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory. Astrophys. J. 2016, 824, 115. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; et al. [IceCube Collaboration] Extending the search for muon neutrinos coincident with gamma-ray bursts in IceCube data. Astrophys. J. 2017, 843, 112. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, B.Q. Testing Lorentz invariance and CPT symmetry using gamma-ray burst neutrinos. Phys. Rev. D 2019, 99, 43013. [Google Scholar] [CrossRef] [Green Version]
- Crivellin, A.; Kirk, F.; Schreck, M. Implications of SU(2)L gauge invariance for constraints on Lorentz violation. JHEP 2021, 4, 82. [Google Scholar] [CrossRef]
- Cooper-Sarkar, A.; Mertsch, P.; Sarkar, S. The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP 2011, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Argüelles, C.A.; Halzen, F.; Wille, L.; Kroll, M.; Reno, M.H. High-energy behavior of photon, neutrino, and proton cross sections. Phys. Rev. D 2015, 92, 74040. [Google Scholar] [CrossRef] [Green Version]
- Bertone, V.; Gauld, R.; Rojo, J. Neutrino Telescopes as QCD Microscopes. JHEP 2019, 1, 217. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N.M.; Andeen, K.; et al. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224, Erratum in Nature 2021, 592, E11. [Google Scholar] [CrossRef]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. 2016, G43, 84001. [Google Scholar] [CrossRef]
- Avrorin, A.D.; et al. [Baikal-GVD Collaboration] The Baikal-GVD neutrino telescope: First results of multi-messenger studies. HAWC Contributions to the 36th International Cosmic Ray Conference (ICRC2019). arXiv, 2019; arXiv:1908.05450. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
- Agostini, M.; Böhme, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuse, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. arXiv 2020, arXiv:2005.09493. [Google Scholar] [CrossRef]
- Sasaki, M.; Kifune, T. Ashra Neutrino Telescope Array (NTA): Combined Imaging Observation of Astroparticles—For Clear Identification of Cosmic Accelerators and Fundamental Physics Using Cosmic Beams. JPS Conf. Proc. 2017, 15, 011013. [Google Scholar] [CrossRef] [Green Version]
- Romero-Wolf, A.; Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Cummings, A.; Schoorlemmer, H.; Wissel, S.; Zas, E.; Argüelles, C.; Barreda, H.; Bazo, J.; et al. An Andean Deep-Valley Detector for High-Energy Tau Neutrinos. Latin American Strategy Forum for Research Infrastructure. arXiv 2020, arXiv:2002.06475. [Google Scholar]
- Álvarez-Muñiz, J.; Batista, R.A.; Balagopal, V.A.; Bolmont, J.; Bustamante, M.; Carvalho, W., Jr.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2020, 63, 219501. [Google Scholar] [CrossRef] [Green Version]
- Olinto, A.V.; et al. [ POEMMA Collaboration] The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. JCAP 2021, 6, 7. [Google Scholar] [CrossRef]
- Fedynitch, A.; Riehn, F.; Engel, R.; Gaisser, T.K.; Stanev, T. Hadronic interaction model sibyll 2.3c and inclusive lepton fluxes. Phys. Rev. D 2019, 100, 103018. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [Super-Kamiokande Collaboration] Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 2015, 91, 52003. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; et al. [IceCube Collaboration] Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 2010, 82, 112003. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; et al. [IceCube Collaboration] Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II. Phys. Rev. D 2009, 79, 102005. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; et al. [IceCube Collaboration] Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube. Nat. Phys. 2018, 14, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; et al. [IceCube Collaboration] Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Phys. Rev. Lett. 2015, 115, 81102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharmim, B.; et al. [SNO Collaboration] Tests of Lorentz invariance at the Sudbury Neutrino Observatory. Phys. Rev. D 2018, 98, 112013. [Google Scholar] [CrossRef] [Green Version]
- Katori, T.; Argüelles, C.A.; Farrag, K.; Mandalia, S. Test of Lorentz Violation with Astrophysical Neutrino Flavor at IceCube. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 12–16 May 2019; pp. 166–169. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.D.; Nelson, A.E. Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. JHEP 2001, 09, 23. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 2015, 749, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Constraints on relativity violations from gamma-ray bursts. Phys. Rev. Lett. 2013, 110, 201601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, R.; et al. [IceCube Collaboration] Measurement of Astrophysical Tau Neutrinos in IceCube’s High-Energy Starting Events. arXiv 2020, arXiv:2011.03561. [Google Scholar]
- Argüelles, C.A.; Katori, T.; Salvado, J. New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.; Beacom, J.F.; Winter, W. Theoretically palatable flavor combinations of astrophysical neutrinos. Phys. Rev. Lett. 2015, 115, 161302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.; Li, S.W.; Argüelles, C.A.; Bustamante, M.; Vincent, A.C. The Future of High-Energy Astrophysical Neutrino Flavor Measurements. JCAP 2021, 4, 54. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube. Phys. Rev. Lett. 2015, 114, 171102. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; et al. [The IceCube Collaboration] A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 2015, 809, 98. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Phys. Rev. D 2019, 99, 32004. [Google Scholar] [CrossRef] [Green Version]
- Miranda, O.G.; Moura, C.A.; Parada, A. Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes. Phys. Lett. B 2015, 744, 55–58. [Google Scholar] [CrossRef] [Green Version]
- De Salas, P.F.; Lineros, R.A.; Tórtola, M. Neutrino propagation in the galactic dark matter halo. Phys. Rev. D 2016, 94, 123001. [Google Scholar] [CrossRef] [Green Version]
- Farzan, Y.; Palomares-Ruiz, S. Flavor of cosmic neutrinos preserved by ultralight dark matter. Phys. Rev. D 2019, 99, 51702. [Google Scholar] [CrossRef] [Green Version]
- Ando, S.; Kamionkowski, M.; Mocioiu, I. Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy. Phys. Rev. D 2009, 80, 123522. [Google Scholar] [CrossRef] [Green Version]
- Klop, N.; Ando, S. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos. Phys. Rev. D 2018, 97, 63006. [Google Scholar] [CrossRef] [Green Version]
- DiFranzo, A.; Hooper, D. Searching for MeV-Scale Gauge Bosons with IceCube. Phys. Rev. D 2015, 92, 95007. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.F.; Friedland, A.; Shoemaker, I.M. Short-baseline neutrino oscillations, Planck, and IceCube. arXiv 2016, arXiv:1605.06506. [Google Scholar]
- Creque-Sarbinowski, C.; Hyde, J.; Kamionkowski, M. Resonant neutrino self-interactions. Phys. Rev. D 2021, 103, 23527. [Google Scholar] [CrossRef]
- Bustamante, M.; Agarwalla, S.K. Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos. Phys. Rev. Lett. 2019, 122, 61103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, R.; et al. [IceCube Collaboration] Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube. arXiv 2021, arXiv:2111.04654. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüelles, C.A.; Katori, T. Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe 2021, 7, 490. https://doi.org/10.3390/universe7120490
Argüelles CA, Katori T. Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe. 2021; 7(12):490. https://doi.org/10.3390/universe7120490
Chicago/Turabian StyleArgüelles, Carlos A., and Teppei Katori. 2021. "Lorentz Symmetry and High-Energy Neutrino Astronomy" Universe 7, no. 12: 490. https://doi.org/10.3390/universe7120490
APA StyleArgüelles, C. A., & Katori, T. (2021). Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe, 7(12), 490. https://doi.org/10.3390/universe7120490