Lorentz Symmetry and High-Energy Neutrino Astronomy
Abstract
1. Tests of Lorentz Violation with High-Energy Astrophysical Neutrinos
- Neutrino energy reaches higher than any anthropogenic beam.
- Neutrinos travel very long distance, from source to detection, in a straight path.
- Quantum mixings can enhance the sensitivity.
2. Tests of Lorentz Violation with Kinematic Observables
3. Tests of Lorentz Violation with Neutrino Oscillations
4. Tests of Lorentz Violation with Neutrino Mixings
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michelson, A.A.; Morley, E.W. On the Relative Motion of the Earth and the Luminiferous Ether. Am. J. Sci. 1887, 34, 333–345. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. 1989, D39, 683. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.M.; Harvey, J.A.; Kostelecky, V.A.; Lane, C.D.; Okamoto, T. Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef] [PubMed]
- Gambini, R.; Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 1999, 59, 124021. [Google Scholar] [CrossRef]
- Pospelov, M.; Shang, Y. On Lorentz violation in Horava-Lifshitz type theories. Phys. Rev. 2012, D85, 105001. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. arXiv 2008, arXiv:0801.0287. [Google Scholar]
- Kostelecký, V.A.; Melissinos, A.C.; Mewes, M. Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys. Lett. B 2016, 761, 1–7. [Google Scholar] [CrossRef]
- Jaffe, M.; Haslinger, P.; Xu, V.; Hamilton, P.; Upadhye, A.; Elder, B.; Khoury, J.; Müller, H. Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass. Nat. Phys. 2017, 13, 938. [Google Scholar] [CrossRef]
- Pruttivarasin, T.; Ramm, M.; Porsev, S.G.; Tupitsyn, I.I.; Safronova, M.; Hohensee, M.A.; Haeffner, H. A Michelson-Morley Test of Lorentz Symmetry for Electrons. Nature 2015, 517, 592. [Google Scholar] [CrossRef] [PubMed]
- Carle, A.; Chanon, N.; Perries, S. Prospects for Lorentz Invariance Violation searches with top pair production at the LHC and future hadron colliders. Eur. Phys. J. C 2020, 80, 128. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.R.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef]
- Maccione, L.; Taylor, A.M.; Mattingly, D.M.; Liberati, S. Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays. JCAP 2009, 4, 22. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 15020. [Google Scholar] [CrossRef]
- Kostelecky, A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 96005. [Google Scholar] [CrossRef]
- Kostelecký, A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 96006. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Bustamante, M.; Kheirandish, A.; Palomares-Ruiz, S.; Salvado, J.; Vincent, A.C. Fundamental physics with high-energy cosmic neutrinos today and in the future. PoS 2020, ICRC2019, 849. [Google Scholar] [CrossRef]
- Gagnon, O.; Moore, G.D. Limits on Lorentz violation from the highest energy cosmic rays. Phys. Rev. D 2004, 70, 65002. [Google Scholar] [CrossRef]
- Altschul, B. Astrophysical limits on Lorentz violation for all charged species. Astropart. Phys. 2007, 28, 380–384. [Google Scholar] [CrossRef][Green Version]
- Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory. Phys. Rev. D 2007, 76, 25024. [Google Scholar] [CrossRef]
- Maccione, L.; Liberati, S.; Celotti, A.; Kirk, J.G. New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula. JCAP 2007, 10, 13. [Google Scholar] [CrossRef][Green Version]
- Altschul, B. Astrophysical limits on Lorentz violation for pions. Phys. Rev. D 2008, 77, 105018. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Schreck, M. New two-sided bound on the isotropic Lorentz-violating parameter of modified-Maxwell theory. Phys. Rev. D 2008, 78, 85026. [Google Scholar] [CrossRef]
- Altschul, B. Modeling-Free Bounds on Nonrenormalizable Isotropic Lorentz and CPT Violation in QED. Phys. Rev. D 2011, 83, 56012. [Google Scholar] [CrossRef]
- Diaz, J.S.; Klinkhamer, F.R. Parton-model calculation of a nonstandard decay process in isotropic modified Maxwell theory. Phys. Rev. D 2015, 92, 25007. [Google Scholar] [CrossRef]
- Altschul, B. Cerenkov-Like Emission of Pions by Photons in a Lorentz-Violating Theory. Phys. Rev. D 2016, 93, 105007. [Google Scholar] [CrossRef]
- Schreck, M. Vacuum Cherenkov radiation for Lorentz-violating fermions. Phys. Rev. D 2017, 96, 95026. [Google Scholar] [CrossRef]
- Colladay, D.; Noordmans, J.P.; Potting, R. Cosmic-ray fermion decay by emission of on-shell W bosons with CPT violation. Phys. Rev. D 2017, 96, 35034. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. Pair Creation Constrains Superluminal Neutrino Propagation. Phys. Rev. Lett. 2011, 107, 181803. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.S.; Kostelecky, A.; Mewes, M. Testing Relativity with High-Energy Astrophysical Neutrinos. Phys. Rev. D 2014, 89, 43005. [Google Scholar] [CrossRef]
- Borriello, E.; Chakraborty, S.; Mirizzi, A.; Serpico, P.D. Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 2013, 87, 116009. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation. Phys. Rev. D 2014, 90, 43012. [Google Scholar] [CrossRef]
- Wang, K.; Xi, S.Q.; Shao, L.; Liu, R.Y.; Li, Z.; Zhang, Z.K. Limiting Superluminal Neutrino Velocity and Lorentz Invariance Violation by Neutrino Emission from the Blazar TXS 0506+056. Phys. Rev. D 2020, 102, 63027. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef]
- Abbasi, R.; et al. [IceCube Collaboration] The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2020, 104, 022002. [Google Scholar] [CrossRef]
- Longo, M.J. New Precision Tests of the Einstein Equivalence Principle From SN1987A. Phys. Rev. Lett. 1988, 60, 173. [Google Scholar] [CrossRef]
- Krauss, L.M.; Tremaine, S. Test of the Weak Equivalence Principle for Neutrinos and Photons. Phys. Rev. Lett. 1988, 60, 176. [Google Scholar] [CrossRef]
- Ellis, J.; Janka, H.T.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan, E.K.G. Probing Lorentz Violation in Neutrino Propagation from a Core-Collapse Supernova. Phys. Rev. D 2012, 85, 045032. [Google Scholar] [CrossRef]
- Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. Limits on Neutrino Lorentz Violation from Multimessenger Observations of TXS 0506+056. Phys. Lett. B 2019, 789, 352–355. [Google Scholar] [CrossRef]
- Laha, R. Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+056. Phys. Rev. D 2019, 100, 103002. [Google Scholar] [CrossRef]
- Wei, J.J.; Zhang, B.B.; Shao, L.; Gao, H.; Li, Y.; Yin, Q.Q.; Wu, X.F.; Wang, X.Y.; Zhang, B.; Dai, Z.G. Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. J. High Energy Astrophys. 2019, 22, 1–4. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory. Astrophys. J. 2016, 824, 115. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Extending the search for muon neutrinos coincident with gamma-ray bursts in IceCube data. Astrophys. J. 2017, 843, 112. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, B.Q. Testing Lorentz invariance and CPT symmetry using gamma-ray burst neutrinos. Phys. Rev. D 2019, 99, 43013. [Google Scholar] [CrossRef]
- Crivellin, A.; Kirk, F.; Schreck, M. Implications of SU(2)L gauge invariance for constraints on Lorentz violation. JHEP 2021, 4, 82. [Google Scholar] [CrossRef]
- Cooper-Sarkar, A.; Mertsch, P.; Sarkar, S. The high energy neutrino cross-section in the Standard Model and its uncertainty. JHEP 2011, 8, 42. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Halzen, F.; Wille, L.; Kroll, M.; Reno, M.H. High-energy behavior of photon, neutrino, and proton cross sections. Phys. Rev. D 2015, 92, 74040. [Google Scholar] [CrossRef]
- Bertone, V.; Gauld, R.; Rojo, J. Neutrino Telescopes as QCD Microscopes. JHEP 2019, 1, 217. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N.M.; Andeen, K.; et al. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224, Erratum in Nature 2021, 592, E11. [Google Scholar] [CrossRef]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. 2016, G43, 84001. [Google Scholar] [CrossRef]
- Avrorin, A.D.; et al. [Baikal-GVD Collaboration] The Baikal-GVD neutrino telescope: First results of multi-messenger studies. HAWC Contributions to the 36th International Cosmic Ray Conference (ICRC2019). arXiv, 2019; arXiv:1908.05450. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
- Agostini, M.; Böhme, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuse, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. arXiv 2020, arXiv:2005.09493. [Google Scholar] [CrossRef]
- Sasaki, M.; Kifune, T. Ashra Neutrino Telescope Array (NTA): Combined Imaging Observation of Astroparticles—For Clear Identification of Cosmic Accelerators and Fundamental Physics Using Cosmic Beams. JPS Conf. Proc. 2017, 15, 011013. [Google Scholar] [CrossRef]
- Romero-Wolf, A.; Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Cummings, A.; Schoorlemmer, H.; Wissel, S.; Zas, E.; Argüelles, C.; Barreda, H.; Bazo, J.; et al. An Andean Deep-Valley Detector for High-Energy Tau Neutrinos. Latin American Strategy Forum for Research Infrastructure. arXiv 2020, arXiv:2002.06475. [Google Scholar]
- Álvarez-Muñiz, J.; Batista, R.A.; Balagopal, V.A.; Bolmont, J.; Bustamante, M.; Carvalho, W., Jr.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2020, 63, 219501. [Google Scholar] [CrossRef]
- Olinto, A.V.; et al. [ POEMMA Collaboration] The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. JCAP 2021, 6, 7. [Google Scholar] [CrossRef]
- Fedynitch, A.; Riehn, F.; Engel, R.; Gaisser, T.K.; Stanev, T. Hadronic interaction model sibyll 2.3c and inclusive lepton fluxes. Phys. Rev. D 2019, 100, 103018. [Google Scholar] [CrossRef]
- Abe, K.; et al. [Super-Kamiokande Collaboration] Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 2015, 91, 52003. [Google Scholar] [CrossRef]
- Abbasi, R.; et al. [IceCube Collaboration] Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 2010, 82, 112003. [Google Scholar] [CrossRef]
- Abbasi, R.; et al. [IceCube Collaboration] Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II. Phys. Rev. D 2009, 79, 102005. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube. Nat. Phys. 2018, 14, 961–966. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Phys. Rev. Lett. 2015, 115, 81102. [Google Scholar] [CrossRef] [PubMed]
- Aharmim, B.; et al. [SNO Collaboration] Tests of Lorentz invariance at the Sudbury Neutrino Observatory. Phys. Rev. D 2018, 98, 112013. [Google Scholar] [CrossRef]
- Katori, T.; Argüelles, C.A.; Farrag, K.; Mandalia, S. Test of Lorentz Violation with Astrophysical Neutrino Flavor at IceCube. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 12–16 May 2019; pp. 166–169. [Google Scholar] [CrossRef]
- Moore, G.D.; Nelson, A.E. Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. JHEP 2001, 09, 23. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 2015, 749, 551–559. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Constraints on relativity violations from gamma-ray bursts. Phys. Rev. Lett. 2013, 110, 201601. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; et al. [IceCube Collaboration] Measurement of Astrophysical Tau Neutrinos in IceCube’s High-Energy Starting Events. arXiv 2020, arXiv:2011.03561. [Google Scholar]
- Argüelles, C.A.; Katori, T.; Salvado, J. New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303. [Google Scholar] [CrossRef]
- Bustamante, M.; Beacom, J.F.; Winter, W. Theoretically palatable flavor combinations of astrophysical neutrinos. Phys. Rev. Lett. 2015, 115, 161302. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Li, S.W.; Argüelles, C.A.; Bustamante, M.; Vincent, A.C. The Future of High-Energy Astrophysical Neutrino Flavor Measurements. JCAP 2021, 4, 54. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube. Phys. Rev. Lett. 2015, 114, 171102. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [The IceCube Collaboration] A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 2015, 809, 98. [Google Scholar] [CrossRef]
- Aartsen, M.G.; et al. [IceCube Collaboration] Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Phys. Rev. D 2019, 99, 32004. [Google Scholar] [CrossRef]
- Miranda, O.G.; Moura, C.A.; Parada, A. Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes. Phys. Lett. B 2015, 744, 55–58. [Google Scholar] [CrossRef]
- De Salas, P.F.; Lineros, R.A.; Tórtola, M. Neutrino propagation in the galactic dark matter halo. Phys. Rev. D 2016, 94, 123001. [Google Scholar] [CrossRef]
- Farzan, Y.; Palomares-Ruiz, S. Flavor of cosmic neutrinos preserved by ultralight dark matter. Phys. Rev. D 2019, 99, 51702. [Google Scholar] [CrossRef]
- Ando, S.; Kamionkowski, M.; Mocioiu, I. Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy. Phys. Rev. D 2009, 80, 123522. [Google Scholar] [CrossRef]
- Klop, N.; Ando, S. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos. Phys. Rev. D 2018, 97, 63006. [Google Scholar] [CrossRef]
- DiFranzo, A.; Hooper, D. Searching for MeV-Scale Gauge Bosons with IceCube. Phys. Rev. D 2015, 92, 95007. [Google Scholar] [CrossRef]
- Cherry, J.F.; Friedland, A.; Shoemaker, I.M. Short-baseline neutrino oscillations, Planck, and IceCube. arXiv 2016, arXiv:1605.06506. [Google Scholar]
- Creque-Sarbinowski, C.; Hyde, J.; Kamionkowski, M. Resonant neutrino self-interactions. Phys. Rev. D 2021, 103, 23527. [Google Scholar] [CrossRef]
- Bustamante, M.; Agarwalla, S.K. Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos. Phys. Rev. Lett. 2019, 122, 61103. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; et al. [IceCube Collaboration] Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube. arXiv 2021, arXiv:2111.04654. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüelles, C.A.; Katori, T. Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe 2021, 7, 490. https://doi.org/10.3390/universe7120490
Argüelles CA, Katori T. Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe. 2021; 7(12):490. https://doi.org/10.3390/universe7120490
Chicago/Turabian StyleArgüelles, Carlos A., and Teppei Katori. 2021. "Lorentz Symmetry and High-Energy Neutrino Astronomy" Universe 7, no. 12: 490. https://doi.org/10.3390/universe7120490
APA StyleArgüelles, C. A., & Katori, T. (2021). Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe, 7(12), 490. https://doi.org/10.3390/universe7120490